Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Immunopathol Pharmacol ; 35: 20587384211063976, 2021.
Article in English | MEDLINE | ID: covidwho-1582484

ABSTRACT

The underlying cause of many complications associated with severe COVID-19 is attributed to the inflammatory cytokine storm that leads to acute respiratory distress syndrome (ARDS), which appears to be the leading cause of death in COVID-19. Systemic corticosteroids have anti-inflammatory activity through repression of pro-inflammatory genes and inhibition of inflammatory cytokines, which makes them a potential medical intervention to diminish the upregulated inflammatory response. Early in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the role of corticosteroids was unclear. Corticosteroid use in other indications such as ARDS and septic shock has proven benefit while its use in other respiratory viral pneumonias is associated with reduced viral clearance and increased secondary infections. This review article evaluates the benefits and harms of systemic corticosteroids in patients with COVID-19 to assist clinicians in improving patient outcomes, including patient safety. Dexamethasone up to 10 days is the preferred regimen to reduce mortality risk in COVID-19 patients requiring oxygen support, mechanical ventilation, or extracorporeal membrane oxygenation. If dexamethasone is unavailable, other corticosteroids can be substituted at equivalent doses. Higher doses of corticosteroids may be beneficial in patients who develop ARDS. Corticosteroids should be avoided early in the disease course when patients do not require oxygen support because of potential harms.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19/drug therapy , Adrenal Cortex Hormones/adverse effects , Dexamethasone/adverse effects , Dexamethasone/therapeutic use , Humans , Hydrocortisone/adverse effects , Hydrocortisone/therapeutic use , Influenza, Human/drug therapy , Methylprednisolone/adverse effects , Methylprednisolone/therapeutic use , Prednisolone/adverse effects , Prednisolone/therapeutic use
2.
Respir Res ; 22(1): 245, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1412433

ABSTRACT

BACKGROUND: We performed a multicenter, randomized open-label trial in patients with moderate to severe Covid-19 treated with a range of possible treatment regimens. METHODS: Patients were randomly assigned to one of three regimen groups at a ratio of 1:1:1. The primary outcome of this study was admission to the intensive care unit. Secondary outcomes were intubation, in-hospital mortality, time to clinical recovery, and length of hospital stay (LOS). Between April 13 and August 9, 2020, a total of 336 patients were randomly assigned to receive one of the 3 treatment regimens including group I (hydroxychloroquine stat, prednisolone, azithromycin and naproxen; 120 patients), group II (hydroxychloroquine stat, azithromycin and naproxen; 116 patients), and group III (hydroxychloroquine and lopinavir/ritonavir (116 patients). The mean LOS in patients receiving prednisolone was 5.5 in the modified intention-to-treat (mITT) population and 4.4 days in the per-protocol (PP) population compared with 6.4 days (mITT population) and 5.8 days (PP population) in patients treated with Lopinavir/Ritonavir. RESULTS: The mean LOS was significantly lower in the mITT and PP populations who received prednisolone compared with populations treated with Lopinavir/Ritonavir (p = 0.028; p = 0.0007). We observed no significant differences in the number of deaths, ICU admission, and need for mechanical ventilation between the Modified ITT and per-protocol populations treated with prednisolone and Lopinavir/Ritonavir, although these outcomes were better in the arm treated with prednisolone. The time to clinical recovery was similar in the modified ITT and per-protocol populations treated with prednisolone, lopinavir/ritonavir, and azithromycin (P = 0.335; P = 0.055; p = 0.291; p = 0.098). CONCLUSION: The results of the present study show that therapeutic regimen (regimen I) with low dose prednisolone was superior to other regimens in shortening the length of hospital stay in patients with moderate to severe COVID-19. The steroid sparing effect may be utilized to increase the effectiveness of corticosteroids in the management of diabetic patients by decreasing the dosage.


Subject(s)
COVID-19/drug therapy , Glucocorticoids/therapeutic use , Prednisolone/therapeutic use , Adult , Aged , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , Drug Therapy, Combination , Female , Glucocorticoids/adverse effects , Hospital Mortality , Humans , Intensive Care Units , Intubation, Intratracheal , Iran , Length of Stay , Male , Middle Aged , Prednisolone/adverse effects , Severity of Illness Index , Time Factors , Treatment Outcome
3.
Biomed Pharmacother ; 130: 110529, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-679604

ABSTRACT

The aim of the present study was to identify the clinical efficacy of glucocorticoid therapy on the treatment of patients with Coronavirus Disease 2019 (COVID-19) pneumonia. Clinical and laboratory parameters were collected from 308 patients with COVID-19 pneumonia from the fever clinic of Wuhan Pulmonary Hospital (Wuhan City, Hubei Province, China) between January 14, 2020 and February 9, 2020, of which 216 patients received low-dose (equivalent of methylprednisolone 0.75-1.5 mg/kg/d) glucocorticoid treatment. The effect of glucocorticoid on imaging progress, adverse events, nucleic acid results and the outcomes were investigated. Lymphocyte count and C-reactive protein (CRP) significantly differed between the glucocorticoid therapy and non-glucocorticoid therapy groups. Compared with the non-glucocorticoid therapy group, glucocorticoid therapy did not significantly influence the clinical course of COVID-19 pneumonia, including imaging progress and the time duration for negative transformation of nucleic acid. Glucocorticoid therapy did not significantly influence the outcomes nor the adverse events of COVID-19 pneumonia. For the treatment of COVID-19 pneumonia, systemic and in-depth investigation is needed to determine the timing and dosage of glucocorticoids needed to inhibit overwhelming inflammatory response and not the protective immune response to COVID-19 pneumonia.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Methylprednisolone/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Prednisolone/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coinfection/etiology , Coronavirus Infections/diagnosis , Coronavirus Infections/diagnostic imaging , Female , Humans , Male , Methylprednisolone/adverse effects , Middle Aged , Pharynx/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/diagnostic imaging , Prednisolone/adverse effects , RNA, Viral/analysis , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL