Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
BMJ Open ; 11(2): e041880, 2021 02 18.
Article in English | MEDLINE | ID: covidwho-1090935

ABSTRACT

OBJECTIVES: To explore the association between N95 respirator wearing and device-related pressure injury (DRPI) and to provide a basis for protecting medical staff from skin injuries. DESIGN: A cross-sectional, multicentre study. SETTING AND PARTICIPANTS: Medical staff of 60 hospitals were selected from 145 designated medical institutions located in the epidemic area where the patients with COVID-19 were treated in China. RESULTS: In total, 1761 respondents wore N95 respirators (use alone 20.8%; combination use 79.2%), and the prevalence of DRPI was 59.2% (95% CI 56.93 to 61.53). A daily wearing time of >4 hours (OR 1.62, 95% CI 1.11 to 2.35), wearing a N95 respirator in combination with goggles both with the presence of sweating (OR 13.40, 95% CI 7.34 to 23.16) and without the presence of sweating (OR 0.80, 95% CI 0.56 to 1.14) and wearing only a N95 respirator with the presence of sweating (OR 9.60, 95% CI 7.00 to 13.16) were associated with DRPI. A correspondence analysis indicated that if there was no sweating, regardless of whether the N95 respirator was worn by itself or in combination with goggles, single-site DRPI mainly occurred on the nose bridge, cheek and auricle. If there was sweating present, regardless of whether the N95 was worn by itself or in combination with goggles, multiple DRPI sites occurred more often on the face. CONCLUSIONS: The prevalence of DRPI among medical staff caused by N95 respirators was very high, which was mainly associated with a longer daily wearing time and interaction with sweating. The nasal bridge, cheeks and auricles were the primary protection locations found.


Subject(s)
COVID-19/prevention & control , N95 Respirators/adverse effects , Occupational Exposure/prevention & control , Occupational Injuries/epidemiology , Adult , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Pressure , Sweating
2.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1066785

ABSTRACT

Transmission of highly infectious respiratory diseases, including SARS-CoV-2, is facilitated by the transport of exhaled droplets and aerosols that can remain suspended in air for extended periods of time. A passenger car cabin represents one such situation with an elevated risk of pathogen transmission. Here, we present results from numerical simulations to assess how the in-cabin microclimate of a car can potentially spread pathogenic species between occupants for a variety of open and closed window configurations. We estimate relative concentrations and residence times of a noninteracting, passive scalar-a proxy for infectious particles-being advected and diffused by turbulent airflows inside the cabin. An airflow pattern that travels across the cabin, farthest from the occupants, can potentially reduce the transmission risk. Our findings reveal the complex fluid dynamics during everyday commutes and nonintuitive ways in which open windows can either increase or suppress airborne transmission.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Automobiles , Communicable Diseases/transmission , Aerosols , COVID-19/transmission , Computer Simulation , Humans , Hydrodynamics , Pressure , Risk , Travel
3.
PLoS One ; 15(12): e0243601, 2020.
Article in English | MEDLINE | ID: covidwho-1067395

ABSTRACT

BACKGROUND: Current limitations in the supply of ventilators during the Covid19 pandemic have limited respiratory support for patients with respiratory failure. Split ventilation allows a single ventilator to be used for more than one patient but is not practicable due to requirements for matched patient settings, risks of cross-contamination, harmful interference between patients and the inability to individualize ventilator support parameters. We hypothesized that a system could be developed to circumvent these limitations. METHODS AND FINDINGS: A novel delivery system was developed to allow individualized peak inspiratory pressure settings and PEEP using a pressure regulatory valve, developed de novo, and an inline PEEP 'booster'. One-way valves, filters, monitoring ports and wye splitters were assembled in-line to complete the system and achieve the design targets. This system was then tested to see if previously described limitations could be addressed. The system was investigated in mechanical and animal trials (ultimately with a pig and sheep concurrently ventilated from the same ventilator). The system demonstrated the ability to provide ventilation across clinically relevant scenarios including circuit occlusion, unmatched physiology, and a surgical procedure, while allowing significantly different pressures to be safely delivered to each animal for individualized support. CONCLUSIONS: In settings of limited ventilator availability, systems can be developed to allow increased delivery of ventilator support to patients. This enables more rapid deployment of ventilator capacity under constraints of time, space and financial cost. These systems can be smaller, lighter, more readily stored and more rapidly deployable than ventilators. However, optimizing ventilator support for patients with individualized ventilation parameters will still be dependent upon ease of use and the availability of medical personnel.


Subject(s)
Respiration, Artificial/instrumentation , Ventilators, Mechanical , Animals , Equipment Design , Female , Humans , Male , Pressure , Sheep , Swine
6.
Neonatology ; 117(6): 736-741, 2020.
Article in English | MEDLINE | ID: covidwho-949225

ABSTRACT

BACKGROUND: Bubble CPAP may be used in infants with suspected or confirmed COVID-19. Electrostatic filters may reduce cross infection. This study aims to determine if including a filter in the bubble CPAP circuit impacts stability of pressure delivery. METHODS: A new electrostatic filter was placed before (pre) or after (post) the bubble CPAP generator, or with no filter (control) in an in vitro study. Pressure was recorded at the nasal interface for 18 h (6 L/min; 7 cm H2O) on 3 occasions for each configuration. Filter failure was defined as pressure >9 cm H2O for 60 continuous minutes. The filter was weighed before and after each experiment. RESULTS: Mean (SD) time to reach the fail point was 257 (116) min and 525 (566) min for filter placement pre- and post-CPAP generator, respectively. Mean pressure was higher throughout in the pre-generator position compared to control. The filter weight was heavier at end study in the pre- compared to the post-generator position. CONCLUSIONS: Placement of the filter at the pre-generator position in a bubble CPAP circuit should be avoided due to unstable mean pressure. Filters are likely to become saturated with water over time. The post-generator position may accommodate a filter, but regular pressure monitoring and early replacement are required.


Subject(s)
COVID-19/prevention & control , Continuous Positive Airway Pressure/instrumentation , Filtration/methods , Respiratory Distress Syndrome, Newborn/therapy , Ventilators, Mechanical , Equipment Design , Humans , In Vitro Techniques , Infant , Infant, Newborn , Pressure , Respiration , Tidal Volume
7.
PLoS One ; 15(11): e0242123, 2020.
Article in English | MEDLINE | ID: covidwho-941704

ABSTRACT

BACKGROUND: With large numbers of COVID-19 patients requiring mechanical ventilation and ventilators possibly being in short supply, in extremis two patients may have to share one ventilator. Careful matching of patient ventilation requirements is necessary. However, good matching is difficult to achieve as lung characteristics can have a wide range and may vary over time. Adding flow restriction to the flow path between ventilator and patient gives the opportunity to control the airway pressure and hence flow and volume individually for each patient. This study aimed to create and validate a simple model for calculating required flow restriction. METHODS AND FINDINGS: We created a simple linear resistance-compliance model, termed the BathRC model, of the ventilator tubing system and lung allowing direct calculation of the relationships between pressures, volumes, and required flow restriction. Experimental measurements were made for parameter determination and validation using a clinical ventilator connected to two test lungs. For validation, differing amounts of restriction were introduced into the ventilator circuit. The BathRC model was able to predict tidal lung volumes with a mean error of 4% (min:1.2%, max:9.3%). CONCLUSION: We present a simple model validated model that can be used to estimate required flow restriction for dual patient ventilation. The BathRC model is freely available; this tool is provided to demonstrate that flow restriction can be readily estimated. Models and data are available at DOI 10.15125/BATH-00816.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiration, Artificial/methods , Ventilators, Mechanical , Betacoronavirus , COVID-19 , Equipment Design , Humans , Linear Models , Pandemics , Pressure , Respiration, Artificial/instrumentation , SARS-CoV-2 , Tidal Volume
8.
Thromb Res ; 197: 44-47, 2021 01.
Article in English | MEDLINE | ID: covidwho-922142

ABSTRACT

COVID-19 has been associated with an increased risk of thrombotic events; however, the reported incidence of deep vein thrombosis varies depending, at least in part, on the severity of the disease. Aim of this prospective, multicenter, observational study was to investigate the incidence of lower limb deep vein thrombosis as assessed by compression ultrasound in consecutive patients admitted to three pulmonary medicine wards designated to care for patients with COVID-19 related pneumonia, with or without respiratory failure but not requiring admission to an intensive care unit. Consecutive patients admitted between March 27 and May 6, 2020 were enrolled. Patients were excluded if they were less than 18-year-old or if compression ultrasound could not be performed for any reason. Patients were assessed at admission (t0) and after 7 days (t1). Major and non-major clinically relevant bleedings were recorded. Sixty-eight patients were enrolled. Two were excluded due to anatomical abnormalities that prevented compression ultrasound; sixty patients were retested at (t1). All patients were started on antithrombotic prophylaxis, unless therapeutic anticoagulation was required. Deep vein thrombosis as assessed by compression ultrasound was observed in 2 patients (3%); one of them was later deemed to represent a previous episode. No new episodes were detected at t1. One major and 2 non-major clinically relevant bleedings were observed. In the setting of patients with COVID-related pneumonia not requiring admission to an intensive care unit, the incidence of deep vein thrombosis is low and our data support not screening asymptomatic patients.


Subject(s)
COVID-19/complications , Intermediate Care Facilities/statistics & numerical data , SARS-CoV-2 , Thrombophlebitis/etiology , Aged , Aged, 80 and over , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , COVID-19/blood , Comorbidity , Female , Hemorrhage/chemically induced , Humans , Incidence , Male , Middle Aged , Platelet Aggregation Inhibitors/therapeutic use , Pressure , Prospective Studies , Pulmonary Embolism/etiology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Thrombophilia/drug therapy , Thrombophilia/etiology , Thrombophlebitis/diagnostic imaging , Thrombophlebitis/epidemiology , Ultrasonography/methods
9.
Am J Infect Control ; 49(1): 1-7, 2021 01.
Article in English | MEDLINE | ID: covidwho-917194

ABSTRACT

BACKGROUND: Due to COVID-19 and high demand for respirators, some healthcare professionals have been using the Halyard H600 fabric as an alternative to N95 respirators without testing the filtration efficiency of the fabric with established scientific methods. The purpose of this study was to assess the efficiency of the Halyard H600 as a respirator filtering material as compared to the NIOSH-certified N95 and P100 filters, and determine if H600 is a good alternative for respiratory protection for healthcare professionals during the COVID-19 pandemic. METHODS: Three filter types (Halyard H600, N95, and P100) were challenged with salt particles inside an exposure chamber at a flow rate of 43 LPM and relative humidity of 40 ± 2%. N95 and P100 respirator filters were tested initially to establish the validity of the chamber, followed by the Halyard H600 fabric. Particle penetration was measured using an aerosol spectrometer. The filtration efficiency was calculated for different particle sizes by measuring the particle number concentration upstream and downstream of the filter. The pressure drop across the filter materials was measured using a manometer. RESULTS: The efficiency of the P100 for particles ≥250 nm was 100%. The N95 efficiency was 97 ± 1% at 275 nm, 99 ± 0% at 324 nm, and 100% for larger particles. The Halyard H600 fabric had a variable efficiency with an average of 62 ± 28% at 275 nm, 89 ± 8% at 324 nm, and 100% efficiency for particles >450 nm. The pressure drop values for P100 and N95 were 32 and 8 mmH2O, respectively. The Halyard H600 fabric resistance increased dramatically from 30 mmH2O at the start of the exposure to 65 mmH2O after 16-minutes of exposure. CONCLUSION: The high variability in filter efficiency for particles ≤324 nm and the increased fabric breathing resistance demonstrate that the Halyard H600 has an inferior performance and is not a good substitute for N95 and P100. Thus, the use of the Halyard H600 fabric for respiratory protection is not recommended.


Subject(s)
Air Filters , COVID-19/prevention & control , Materials Testing , Respiratory Protective Devices , Textiles , COVID-19/transmission , Humans , N95 Respirators , Particle Size , Pressure , SARS-CoV-2 , Spectrum Analysis , Sterilization
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(8): 1036-1040, 2020 Aug 15.
Article in Chinese | MEDLINE | ID: covidwho-719850

ABSTRACT

At present, the 2019-nCoV epidemic situation is in severe and complex period. In order to prevent the virus from invading and infecting, it is very important and urgent for medical personnel to protect themselves. However, in the process of using protective equipment by medical personnel, the performance of device related pressure injuries (DRPI) caused by pain, numbness, redness, and even breakage caused by the equipment has seriously endangered the health of medical personnel. This article, based on Prevention and Treatment of Pressure Ulcers/Injuries: Quick Reference Guide 2019, references, and clinical experiences of wound specialists in West China Hospital of Sichuan University, summarize the preventive and protective measures of West China Hospital for medical personnel to prevent DRPI, so as to provide clinical preventive measurements for medical personnel.


Subject(s)
Coronavirus Infections/epidemiology , Equipment Failure , Personal Protective Equipment/adverse effects , Pneumonia, Viral/epidemiology , Wounds and Injuries/prevention & control , Betacoronavirus , COVID-19 , China , Health Personnel , Humans , Pandemics , Pressure , SARS-CoV-2
12.
Neurocrit Care ; 33(2): 597-603, 2020 10.
Article in English | MEDLINE | ID: covidwho-706787

ABSTRACT

BACKGROUND: Many COVID-19 patients with neurological manifestations and respiratory failure remain dependent on mechanical ventilation and require tracheostomy, which is an aerosol generating procedure (AGP). The risk of SARS-CoV-2 transmission to healthcare staff during AGPs is well documented, and negative-pressure rooms are often unavailable. Innovative techniques to decrease risk to healthcare providers during AGPs are necessary. Our objective was to demonstrate the feasibility of percutaneous dilatational tracheostomy (PDT) performed using a novel prefabricated low-cost negative-pressure tent (AerosolVE). METHODS: Retrospective review of consecutive PDT procedures performed by neurointensivists on intubated adult patients with COVID-19 using the AerosolVE tent during the pandemic under an innovative clinical care protocol. The AerosolVE negative-pressure tent consists of a clear plastic canopy with slits for hand access attached to a U-shaped base with air vents. Air within the tent is drawn through a high-efficiency particulate air filter and released outside. Preliminary testing during simulated AGPs demonstrated negligible escape of particulate matter beyond the tent. The main outcome measure was successful completion of PDT and bronchoscopy within the AerosolVE tent, without complications. RESULTS: The patients were a 53-year-old man with multifocal ischemic stroke and acute respiratory distress syndrome (ARDS), 53-year-old woman with cerebellar hemorrhage and ARDS, and a 69-year-old man with ARDS. Pre-procedure FiO2 requirement was 40-50% and positive end-expiratory pressure (PEEP) 8-12 cm H2O. The tent was successfully positioned around the patient and PDT completed with real-time ultrasound guidance in all 3 patients. Bronchoscopy was performed to confirm tube position and perform pulmonary toilet. No complications occurred. CONCLUSIONS: It is feasible to perform PDT on intubated COVID-19 patients using the AerosolVE negative-pressure tent. This is a promising low-cost device to decrease risk to healthcare providers during AGPs.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Protective Devices , Tracheostomy/instrumentation , Aged , COVID-19 , Coronavirus Infections/diagnosis , Equipment Design , Female , Humans , Male , Middle Aged , Pneumonia, Viral/diagnosis , Pressure , SARS-CoV-2
13.
J Laryngol Otol ; 134(8): 735-738, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-678491

ABSTRACT

BACKGROUND: Coronavirus disease 2019 is an international pandemic. One of the cardinal features is acute respiratory distress syndrome, and proning has been identified as beneficial for a subset of patients. However, proning is associated with pressure-related side effects, including injury to the nose and face. METHOD: This paper describes a pressure-relieving technique using surgical scrub sponges. This technique was derived based on previous methods used in patients following rhinectomy. CONCLUSION: The increased use of prone ventilation has resulted in a number of referrals to the ENT team with concerns regarding nasal pressure damage. The described technique, which is straightforward and uses readily available materials, has proven effective in relieving pressure in a small number of patients.


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pressure/adverse effects , Prone Position/physiology , Respiration, Artificial/methods , Surgical Sponges/standards , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Equipment Design/methods , Facial Injuries/prevention & control , Humans , Nose/injuries , Nose/surgery , Patient Positioning/methods , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2
14.
In Vivo ; 34(3 Suppl): 1637-1644, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-541808

ABSTRACT

BACKGROUND: Sneezes produce many pathogen-containing micro-droplets with high velocities of 4.5-50.0 m/s. Face masks are believed to protect people from infection by blocking those droplets. However, current filtration efficiency tests can't evaluate masks under sneeze-like pressure. The goal of this study was to establish a method to evaluate the filtration efficiency of mask materials under extreme conditions. MATERIALS AND METHODS: Efficiency of surgical masks, gauze masks, gauze, cotton, silk, linen and tissue paper on blocking micro-droplet sized starch particles (average 8.2 µm) and latex microspheres (0.75 µm) with a velocity of 44.4 m/s created by centrifugation was qualitatively analyzed by using imaging-based analysis. RESULTS: The 4 layers of silk could block 93.8% of microspheres and 88.9% of starch particles, followed by the gauze mask (78.5% of microspheres and 90.4% of starch particles) and the 2 layers of cotton (74.6% of microspheres and 87.5-89.0% of particles). Other materials also blocked 53.2-66.5% of microspheres and 76.4%-87.9% of particles except the 8 layers of gauze which only blocked 36.7% of particles. The filtration efficiency was improved by the increased layers of materials. CONCLUSION: Centrifugation-based filtration efficiency test not only compensates shortcomings of current tests for masks, but also offers a simple way to explore new mask materials during pandemics. Common mask materials can potentially provide protection against respiratory droplet transmission.


Subject(s)
Centrifugation/methods , Infection Control/instrumentation , Masks , Materials Testing/methods , Sneezing , Filtration , Humans , Hydrophobic and Hydrophilic Interactions , Microspheres , Paper , Particle Size , Particulate Matter , Pressure , Static Electricity , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL