Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Allergy Clin Immunol ; 149(3): 907-911.e3, 2022 03.
Article in English | MEDLINE | ID: covidwho-1649500

ABSTRACT

BACKGROUND: Data on the safety and efficacy of coronavirus disease 2019 (COVID-19) vaccination in people with a range of primary immunodeficiencies (PIDs) are lacking because these patients were excluded from COVID-19 vaccine trials. This information may help in clinical management of this vulnerable patient group. OBJECTIVE: We assessed humoral and T-cell immune responses after 2 doses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in patients with PID and functional B-cell defects. METHODS: A double-center retrospective review was performed of patients with PID who completed COVID-19 mRNA vaccination and who had humoral responses assessed through SARS-CoV-2 spike protein receptor binding domain (RBD) IgG antibody levels with reflex assessment of the antibody to block RBD binding to angiotensin-converting enzyme 2 (ACE2; hereafter referred to as ACE2 receptor blocking activity, as a surrogate test for neutralization) and T-cell response evaluated by an IFN-γ release assay. Immunization reactogenicity was also reviewed. RESULTS: A total of 33 patients with humoral defect were evaluated; 69.6% received BNT162b2 vaccine (Pfizer-BioNTech) and 30.3% received mRNA-1273 (Moderna). The mRNA vaccines were generally well tolerated without severe reactions. The IFN-γ release assay result was positive in 24 (77.4%) of 31 patients. Sixteen of 33 subjects had detectable RBD-specific IgG responses, but only 2 of these 16 subjects had an ACE2 receptor blocking activity level of ≥50%. CONCLUSION: Vaccination of this cohort of patients with PID with COVID-19 mRNA vaccines was safe, and cellular immunity was stimulated in most subjects. However, antibody responses to the spike protein RBD were less consistent, and, when detected, were not effective at ACE2 blocking.


Subject(s)
/immunology , COVID-19/immunology , COVID-19/prevention & control , Primary Immunodeficiency Diseases/immunology , /administration & dosage , Adult , Aged , Antibodies, Viral/biosynthesis , B-Lymphocytes/immunology , /adverse effects , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/biosynthesis , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Young Adult
2.
J Clin Immunol ; 42(2): 253-265, 2022 02.
Article in English | MEDLINE | ID: covidwho-1565436

ABSTRACT

Patients with primary antibody deficiency are at risk for severe and in many cases for prolonged COVID-19. Convalescent plasma treatment of immunocompromised individuals could be an option especially in countries with limited access to monoclonal antibody therapies. While studies in immunocompetent COVID19 patients have demonstrated only a limited benefit, evidence for the safety, timing, and effectiveness of this treatment in antibody-deficient patients is lacking. Here, we describe 16 cases with primary antibody deficiency treated with convalescent plasma in four medical centers. In our cohort, treatment was associated with a reduction in viral load and improvement of clinical symptoms, even when applied over a week after onset of infection. There were no relevant side effects besides a short-term fever reaction in one patient. Longitudinal full-genome sequencing revealed the emergence of mutations in the viral genome, potentially conferring an antibody escape in one patient with persistent viral RNA shedding upon plasma treatment. However, he resolved the infection after a second course of plasma treatment. Thus, our data suggest a therapeutic benefit of convalescent plasma treatment in patients with primary antibody deficiency even months after infection. While it appears to be safe, PCR follow-up for SARS-CoV-2 is advisable and early re-treatment might be considered in patients with persistent viral shedding.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Plasma/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Child , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Virus Shedding/immunology , Young Adult
3.
EBioMedicine ; 74: 103705, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1540597

ABSTRACT

BACKGROUND: Patients with immunocompromised disorders have mainly been excluded from clinical trials of vaccination against COVID-19. Thus, the aim of this prospective clinical trial was to investigate safety and efficacy of BNT162b2 mRNA vaccination in five selected groups of immunocompromised patients and healthy controls. METHODS: 539 study subjects (449 patients and 90 controls) were included. The patients had either primary (n=90), or secondary immunodeficiency disorders due to human immunodeficiency virus infection (n=90), allogeneic hematopoietic stem cell transplantation/CAR T cell therapy (n=90), solid organ transplantation (SOT) (n=89), or chronic lymphocytic leukemia (CLL) (n=90). The primary endpoint was seroconversion rate two weeks after the second dose. The secondary endpoints were safety and documented SARS-CoV-2 infection. FINDINGS: Adverse events were generally mild, but one case of fatal suspected unexpected serious adverse reaction occurred. 72.2% of the immunocompromised patients seroconverted compared to 100% of the controls (p=0.004). Lowest seroconversion rates were found in the SOT (43.4%) and CLL (63.3%) patient groups with observed negative impact of treatment with mycophenolate mofetil and ibrutinib, respectively. INTERPRETATION: The results showed that the mRNA BNT162b2 vaccine was safe in immunocompromised patients. Rate of seroconversion was substantially lower than in healthy controls, with a wide range of rates and antibody titres among predefined patient groups and subgroups. This clinical trial highlights the need for additional vaccine doses in certain immunocompromised patient groups to improve immunity. FUNDING: Knut and Alice Wallenberg Foundation, the Swedish Research Council, Nordstjernan AB, Region Stockholm, Karolinska Institutet, and organizations for PID/CLL-patients in Sweden.


Subject(s)
/adverse effects , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/therapeutic use , Antibodies, Viral/blood , COVID-19/prevention & control , Female , Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive , Leukemia, Lymphocytic, Chronic, B-Cell , Male , Middle Aged , Mycophenolic Acid/adverse effects , Mycophenolic Acid/therapeutic use , Organ Transplantation , Piperidines/adverse effects , Piperidines/therapeutic use , Primary Immunodeficiency Diseases/immunology , Prospective Studies , Seroconversion , Spike Glycoprotein, Coronavirus/immunology , Vaccination/adverse effects
5.
Cells ; 10(11)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488494

ABSTRACT

BACKGROUND: Patients with primary antibody deficiencies are at risk in the current COVID-19 pandemic due to their impaired response to infection and vaccination. Specifically, patients with common variable immunodeficiency (CVID) generated poor spike-specific antibody and T cell responses after immunization. METHODS: Thirty-four CVID convalescent patients after SARS-CoV-2 infection, 38 CVID patients immunized with two doses of the BNT162b2 vaccine, and 20 SARS-CoV-2 CVID convalescents later and immunized with BNT162b2 were analyzed for the anti-spike IgG production and the generation of spike-specific memory B cells and T cells. RESULTS: Spike-specific IgG was induced more frequently after infection than after vaccination (82% vs. 34%). The antibody response was boosted in convalescents by vaccination. Although immunized patients generated atypical memory B cells possibly by extra-follicular or incomplete germinal center reactions, convalescents responded to infection by generating spike-specific memory B cells that were improved by the subsequent immunization. Poor spike-specific T cell responses were measured independently from the immunological challenge. CONCLUSIONS: SARS-CoV-2 infection primed a more efficient classical memory B cell response, whereas the BNT162b2 vaccine induced non-canonical B cell responses in CVID. Natural infection responses were boosted by subsequent immunization, suggesting the possibility to further stimulate the immune response by additional vaccine doses in CVID.


Subject(s)
/immunology , COVID-19/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/prevention & control , Convalescence , Female , Humans , Immunization , Immunoglobulin G/immunology , Male , Middle Aged , Primary Immunodeficiency Diseases/complications , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
6.
Front Immunol ; 12: 727850, 2021.
Article in English | MEDLINE | ID: covidwho-1477821

ABSTRACT

Mass SARS-Cov-2 vaccination campaign represents the only strategy to defeat the global pandemic we are facing. Immunocompromised patients represent a vulnerable population at high risk of developing severe COVID-19 and thus should be prioritized in the vaccination programs and in the study of the vaccine efficacy. Nevertheless, most data on efficacy and safety of the available vaccines derive from trials conducted on healthy individuals; hence, studies on immunogenicity of SARS-CoV2 vaccines in such populations are deeply needed. Here, we perform an observational longitudinal study analyzing the humoral and cellular response following the BNT162b2 mRNA COVID-19 vaccine in a cohort of patients affected by inborn errors of immunity (IEI) compared to healthy controls (HC). We show that both IEI and HC groups experienced a significant increase in anti-SARS-CoV-2 Abs 1 week after the second scheduled dose as well as an overall statistically significant expansion of the Ag-specific CD4+CD40L+ T cells in both HC and IEI. Five IEI patients did not develop any specific CD4+CD40L+ T cellular response, with one of these patients unable to also mount any humoral response. These data raise immunologic concerns about using Ab response as a sole metric of protective immunity following vaccination for SARS-CoV-2. Taken together, these findings suggest that evaluation of vaccine-induced immunity in this subpopulation should also include quantification of Ag-specific T cells.


Subject(s)
Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4 Lymphocyte Count , COVID-19/prevention & control , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunocompromised Host/immunology , Longitudinal Studies , Male , Middle Aged , Vaccination , Young Adult
7.
Int J Immunopathol Pharmacol ; 35: 20587384211044344, 2021.
Article in English | MEDLINE | ID: covidwho-1440890

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has changed many aspects of everyday life. Patients with primary immunodeficiency (PID) are in a particularly difficult situation. The purpose of the present study was to contribute to the very limited research on the everyday aspects of functioning in PID patients during the COVID-19 pandemic. METHODS: The survey included 85 adult PID patients treated with immunoglobulin replacement therapy in four reference centers for immunology. Everyday functioning of the patients as well as their opinion concerning new solutions in medical care were analyzed. RESULTS: During the pandemic, the percentage of patients experiencing fear/anxiety has increased from 47% to 70%. The wide dissemination of information about the SARS-CoV-2 in the media has increased anxiety in 40% of the patients. Patients diagnosed with PID were most afraid of the exposure to contact with strangers, especially in public places. As many as 67 respondents (79%) considered the introduction of restrictions concerning social functioning as good. Only every fifth person learned about the pandemic from reliable sources. Eighty three percent of the patients receiving immunoglobulin substitution experienced less fear of SARS-CoV-2 infection. The patients positively evaluated the solutions related to the direct delivery of drugs to the place of residence in order to continue home IgRT therapy. Fifty three respondents (62.5%) believed that the possibility of a remote consultation was a very good solution. CONCLUSION: It is necessary to increase educational activities concerning the pandemic provided by health care professionals, as patients obtain information mainly from the media and the Internet, which adversely affects the feeling of anxiety. The pandemic, in addition to the very negative impact on patients and the deterioration of their daily functioning, has made patients appreciate their life more, devote more time to family and friends, and do things they like.


Subject(s)
Activities of Daily Living , COVID-19 , Immunocompromised Host , Immunoglobulin G/therapeutic use , Primary Immunodeficiency Diseases/drug therapy , Access to Information , Adult , Affect , Anxiety/etiology , Anxiety/psychology , Cost of Illness , Drug Substitution , Fear , Female , Health Care Surveys , Health Knowledge, Attitudes, Practice , Humans , Immunoglobulin G/adverse effects , Male , Middle Aged , Patient Education as Topic , Poland , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/psychology , Social Behavior , Telemedicine , Treatment Outcome
8.
Curr Opin Allergy Clin Immunol ; 21(6): 545-552, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1429315

ABSTRACT

PURPOSE OF REVIEW: Antisevere acute respiratory syndrome-corona virus 2 (SARS-CoV-2) vaccines may provide prompt, effective, and safe solution for the COVID-19 pandemic. Several vaccine candidates have been evaluated in randomized clinical trials (RCTs). Furthermore, data from observational studies mimicking real-life practice and studies on specific groups, such as pregnant women or immunocompromised patients who were excluded from RCTs, are currently available. The main aim of the review is to summarize and provide an immunologist's view on mechanism of action, efficacy and safety, and future challenges in vaccination against SARS-CoV-2. RECENT FINDINGS: mRNA and recombinant viral vector-based vaccines have been approved for conditional use in Europe and the USA. They show robust humoral and cellular responses, high with efficacy in prevention of COVID-19 infection (66.9 95%) and favorable safety profile in RCTs. High efficacy of 80-92% was observed in real-life practice. A pilot study also confirmed good safety profile of the mRNA vaccines in pregnant women. Unlike in those with secondary immunodeficiencies where postvaccination responses did not occur, encouraging results were obtained in patients with inborn errors of immunity. SUMMARY: Although both RCTs and observational studies suggest good efficacy and safety profiles of the vaccines, their long-term efficacy and safety are still being discussed. Despite the promising results, clinical evidence for specific groups such as children, pregnant and breastfeeding women, and immunocompromised patients, and for novel virus variants are lacking. VIDEO ABSTRACT: http://links.lww.com/COAI/A21.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Pandemics/prevention & control , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/adverse effects , Humans , Immunocompromised Host , Observational Studies as Topic , Pilot Projects , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/genetics , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects
9.
Curr Opin Allergy Clin Immunol ; 21(6): 515-524, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1398151

ABSTRACT

PURPOSE OF REVIEW: The severe acute respiratory syndrome (SARS)-coronavirus 2 (CoV2)/COVID-19 pandemic has reminded us of the fundamental and nonredundant role played by the innate and adaptive immune systems in host defense against emerging pathogens. The study of rare 'experiments of nature' in the setting of inborn errors of immunity (IEI) caused by monogenic germline variants has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. This review will provide an overview of the discoveries obtained from investigating severe COVID-19 in patients with defined IEI or otherwise healthy individuals. RECENT FINDINGS: Genetic, serological and cohort studies have provided key findings regarding host defense against SARS-CoV2 infection, and mechanisms of disease pathogenesis. Remarkably, the risk factors, severity of disease, and case fatality rate following SARS-CoV2 infection in patients with IEI were not too dissimilar to that observed for the general population. However, the type I interferon (IFN) signaling pathway - activated in innate immune cells in response to viral sensing - is critical for anti-SARS-CoV2 immunity. Indeed, genetic variants or autoAbs affecting type I IFN function account for up to 20% of all cases of life-threatening COVID-19. SUMMARY: The analysis of rare cases of severe COVID-19, coupled with assessing the impact of SARS-CoV2 infection in individuals with previously diagnosed IEI, has revealed fundamental aspects of human immunology, disease pathogenesis and immunopathology in the context of exposure to and infection with a novel pathogen. These findings can be leveraged to improve therapies for treating for emerging and established infectious diseases.


Subject(s)
COVID-19/immunology , Host-Pathogen Interactions/genetics , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/genetics , Risk Factors , Severity of Illness Index
12.
Front Immunol ; 12: 634181, 2021.
Article in English | MEDLINE | ID: covidwho-1177976

ABSTRACT

Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.


Subject(s)
Bacterial Infections/immunology , Immunocompromised Host , Immunoglobulins/deficiency , Primary Immunodeficiency Diseases/immunology , Respiratory Tract Infections/immunology , Agammaglobulinemia/blood , Agammaglobulinemia/immunology , Agammaglobulinemia/therapy , Animals , Bacterial Infections/blood , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Class I Phosphatidylinositol 3-Kinases/blood , Class I Phosphatidylinositol 3-Kinases/immunology , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/therapy , Humans , Immunoglobulins/blood , Primary Immunodeficiency Diseases/blood , Primary Immunodeficiency Diseases/therapy , Prognosis , Respiratory Tract Infections/blood , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Risk Assessment , Risk Factors
15.
J Interferon Cytokine Res ; 40(12): 549-554, 2020 12.
Article in English | MEDLINE | ID: covidwho-990532

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread rapidly and become a pandemic. Caused by a novel human coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe COVID-19 is characterized by cytokine storm syndromes due to innate immune activation. Primary immunodeficiency (PID) cases represent a special patient population whose impaired immune system might make them susceptible to severe infections, posing a higher risk to COVID-19, but this could also lead to suppressed inflammatory responses and cytokine storm. It remains an open question as to whether the impaired immune system constitutes a predisposing or protective factor for PID patients when facing SARS-CoV-2 infection. After literature review, it was found that, similar to other patient populations with different comorbidities, PID patients may be susceptible to SARS-CoV-2 infection. Their varied immune status, however, may lead to different disease severity and outcomes after SARS-CoV-2 infection. PID patients with deficiency in antiviral innate immune signaling [eg, Toll-like receptor (TLR)3, TLR7, or interferon regulatory factor 7 (IRF7)] or interferon signaling (IFNAR2) may be linked to severe COVID-19. Because of its anti-infection, anti-inflammatory, and immunomodulatory effects, routine intravenous immunoglobulin therapy may provide some protective effects to the PID patients.


Subject(s)
COVID-19/complications , COVID-19/immunology , Immune System , Inflammation , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/immunology , Comorbidity , Disease Susceptibility , Humans , Immunity, Innate , Immunoglobulins, Intravenous/metabolism , Interferon Regulatory Factor-7/metabolism , Pandemics , Receptor, Interferon alpha-beta/metabolism , Risk , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/metabolism
16.
J Allergy Clin Immunol ; 147(3): 870-875.e1, 2021 03.
Article in English | MEDLINE | ID: covidwho-988206

ABSTRACT

BACKGROUND: As of November 2020, severe acute respiratory syndrome coronavirus 2 has resulted in 55 million infections worldwide and more than 1.3 million deaths from coronavirus disease 2019 (COVID-19). Outcomes following severe acute respiratory syndrome coronavirus 2 infection in individuals with primary immunodeficiency (PID) or symptomatic secondary immunodeficiency (SID) remain uncertain. OBJECTIVES: We sought to document the outcomes of individuals with PID or symptomatic SID following COVID-19 in the United Kingdom. METHODS: At the start of the COVID-19 pandemic, the United Kingdom Primary Immunodeficiency Network established a registry of cases to collate the nationwide outcomes of COVID-19 in individuals with PID or symptomatic SID and determine risk factors associated with morbidity and mortality from COVID-19 in these patient groups. RESULTS: A total of 100 patients had been enrolled by July 1, 2020, 60 with PID, 7 with other inborn errors of immunity including autoinflammatory diseases and C1 inhibitor deficiency, and 33 with symptomatic SID. In individuals with PID, 53.3% (32 of 60) were hospitalized, the infection-fatality ratio was 20.0% (12 of 60), the case-fatality ratio was 31.6% (12 of 38), and the inpatient mortality was 37.5% (12 of 32). Individuals with SID had worse outcomes than those with PID; 75.8% (25 of 33) were hospitalized, the infection-fatality ratio was 33.3% (11 of 33), the case-fatality ratio was 39.2% (11 of 28), and inpatient mortality was 44.0% (11 of 25). CONCLUSIONS: In comparison to the general population, adult patients with PID and symptomatic SID display greater morbidity and mortality from COVID-19. This increased risk must be reflected in public health guidelines to adequately protect vulnerable patients from exposure to the virus.


Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Registries , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19/mortality , Female , Humans , Male , Middle Aged , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/mortality , Primary Immunodeficiency Diseases/virology , Risk Factors , United Kingdom/epidemiology
18.
Int J Med Sci ; 17(18): 2974-2986, 2020.
Article in English | MEDLINE | ID: covidwho-902898

ABSTRACT

In the ongoing COVID-19 pandemic, all COVID-19 patients are naïve patients as it is the first-time humans have been exposed to the SARS-CoV-2 virus. As with exposure to many viruses, individuals with pre-existing, compromised immune systems may be at increased risk of developing severe symptoms and/or dying because of (SARS-CoV-2) infection. To learn more about such individuals, we conducted a search and review of published reports on the clinical characteristics and outcomes of COVID-19 patients with pre-existing, compromised immune systems. Here we present our review of patients who possess pre-existing primary antibody deficiency (PAD) and those who are organ transplant recipients on maintenance immunosuppressants. Our review indicates different clinical outcomes for the patients with pre-existing PAD, depending on the underlying causes. For organ transplant recipients, drug-induced immune suppression alone does not appear to enhance COVID-19 mortality risk - rather, advanced age, comorbidities, and the development of secondary complications appears required.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Immune System Diseases/complications , Immune System Diseases/diagnosis , Immunocompromised Host , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Betacoronavirus/immunology , Betacoronavirus/physiology , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Immunocompromised Host/immunology , Immunosuppressive Agents/therapeutic use , Mortality , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/mortality , Prognosis , SARS-CoV-2 , Transplant Recipients/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL