Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Commun ; 13(1): 2268, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1815534

ABSTRACT

Emerging SARS-CoV-2 variants continue to threaten the effectiveness of COVID-19 vaccines, and small-molecule antivirals can provide an important therapeutic treatment option. The viral main protease (Mpro) is critical for virus replication and thus is considered an attractive drug target. We performed the design and characterization of three covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2 created by splicing components of hepatitis C protease inhibitors boceprevir and narlaprevir, and known SARS-CoV-1 protease inhibitors. A joint X-ray/neutron structure of the Mpro/BBH-1 complex demonstrates that a Cys145 thiolate reaction with the inhibitor's keto-warhead creates a negatively charged oxyanion. Protonation states of the ionizable residues in the Mpro active site adapt to the inhibitor, which appears to be an intrinsic property of Mpro. Structural comparisons of the hybrid inhibitors with PF-07321332 reveal unconventional F···O interactions of PF-07321332 with Mpro which may explain its more favorable enthalpy of binding. BBH-1, BBH-2 and NBH-2 exhibit comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19 Vaccines , Coronavirus 3C Proteases , Cyclopropanes , Humans , Lactams , Leucine/analogs & derivatives , Nitriles , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Sulfones , Urea
2.
Viruses ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: covidwho-1742735

ABSTRACT

Enhancing treatment uptake for hepatitis C to achieve the elimination goals set by the World Health Organization could be achieved by reducing the treatment duration. The aim of this study was to compare the sustained virological response at week 12 (SVR12) after four weeks of glecaprevir/pibrentasvir (GLE/PIB) + ribavirin compared to eight weeks of GLE/PIB and to estimate predictors for SVR12 with four weeks of treatment through a multicenter open label randomized controlled trial. Patients were randomized 2:1 (4 weeks:8 weeks) and stratified by genotype 3 and were treatment naïve of all genotypes and without significant liver fibrosis. A total of 27 patients were analyzed for predictors for SVR12, including 15 from the first pilot phase of the study. In the 'modified intention to treat' group, 100% (7/7) achieved cure after eight weeks and for patients treated for four weeks the SVR12 was 58.3% (7/12). However, patients with a baseline viral load <2 mill IU/mL had 93% SVR12. The study closed prematurely due to the low number of included patients due to the COVID-19 pandemic. Our results suggest that viral load should be taken into account when considering trials of short course treatment.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Aminoisobutyric Acids , Antiviral Agents/therapeutic use , Benzimidazoles , Cyclopropanes , Hepatitis C, Chronic/drug therapy , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Pandemics , Proline/analogs & derivatives , Pyrrolidines , Quinoxalines , Ribavirin/therapeutic use , Sulfonamides
3.
Arch Virol ; 167(4): 1125-1130, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1694546

ABSTRACT

Given the structural similarities of the viral enzymes of different coronaviruses (CoVs), we investigated the potency of the anti-SARS-CoV-2 agents boceprevir and GC376 for counteracting seasonal coronavirus infections. In contrast to previous findings that both boceprevir and GC376 are potent inhibitors of the main protease (Mpro) of SARS-CoV-2, we found that GC376 is much more effective than boceprevir in inhibiting SARS-CoV-2 and three seasonal CoVs (NL63, 229E, and OC43) in cell culture models. However, these results are discordant with a molecular docking analysis that suggested comparable affinity of boceprevir and GC376 for the different Mpro enzymes of the four CoVs. Collectively, our results support future development of GC376 but not boceprevir (although it is an FDA-approved antiviral medication) as a pan-coronavirus antiviral agent. Furthermore, we caution against overinterpretation of in silico data when developing antiviral therapies.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans , Molecular Docking Simulation , Proline/analogs & derivatives , Protease Inhibitors/pharmacology , Pyrrolidines , SARS-CoV-2 , Sulfonic Acids
5.
JCI Insight ; 6(7)2021 04 08.
Article in English | MEDLINE | ID: covidwho-1383578

ABSTRACT

Proline-glycine-proline (PGP) and its acetylated form (Ac-PGP) are neutrophil chemoattractants generated by collagen degradation, and they have been shown to play a role in chronic inflammatory disease. However, the mechanism for matrikine regulation in acute inflammation has not been well established. Here, we show that these peptides are actively transported from the lung by the oligopeptide transporter, PEPT2. Following intratracheal instillation of Ac-PGP in a mouse model, there was a rapid decline in concentration of the labeled peptide in the bronchoalveolar lavage (BAL) over time and redistribution to extrapulmonary sites. In vitro knockdown of the PEPT2 transporter in airway epithelia or use of a competitive inhibitor of PEPT2, cefadroxil, significantly reduced uptake of Ac-PGP. Animals that received intratracheal Ac-PGP plus cefadroxil had higher levels of Ac-PGP in BAL and lung tissue. Utilizing an acute LPS-induced lung injury model, we demonstrate that PEPT2 blockade enhanced pulmonary Ac-PGP levels and lung inflammation. We further validated this effect using clinical samples from patients with acute lung injury in coculture with airway epithelia. This is the first study to our knowledge to determine the in vitro and in vivo significance of active matrikine transport as a mechanism of modulating acute inflammation and to demonstrate that it may serve as a potential therapeutic target.


Subject(s)
Acute Lung Injury/immunology , COVID-19 , Cefadroxil/pharmacology , Inflammation/metabolism , Oligopeptides , Proline/analogs & derivatives , Symporters , Animals , Anti-Bacterial Agents/pharmacology , Biological Transport, Active/immunology , COVID-19/immunology , COVID-19/metabolism , Cells, Cultured , Chemotactic Factors/immunology , Chemotactic Factors/pharmacology , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Extracellular Matrix , Extracellular Matrix Proteins/metabolism , Humans , Mice , Oligopeptides/immunology , Oligopeptides/pharmacology , Proline/immunology , Proline/pharmacology , Symporters/antagonists & inhibitors , Symporters/metabolism
6.
Biochem Biophys Res Commun ; 571: 26-31, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1312941

ABSTRACT

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amides/pharmacology , Antiviral Agents/chemistry , Benzimidazoles/pharmacology , COVID-19/virology , Carbamates/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cyclopropanes/pharmacology , Drug Evaluation, Preclinical , Drug Repositioning , Fluorenes/pharmacology , Humans , Lactams, Macrocyclic/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Proline/analogs & derivatives , Proline/pharmacology , Protein Conformation , Quinoxalines/pharmacology , Sulfonamides/pharmacology
7.
Science ; 371(6536): 1374-1378, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1255508

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing Mpro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 Mpro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of Mpro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Chemokine CXCL10/metabolism , Disease Models, Animal , Drug Design , Humans , Interferon-beta/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Oligopeptides , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Protease Inhibitors/toxicity , Rats , Rats, Sprague-Dawley , Viral Load/drug effects , Virus Replication
8.
J Med Chem ; 65(4): 2848-2865, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1199254

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II, and XII, with each containing a reactive warhead that covalently modifies the catalytic Cys145. Coupling structure-based drug design with the one-pot Ugi four-component reaction, we discovered one of the most potent noncovalent inhibitors, 23R (Jun8-76-3A) that is structurally distinct from the canonical Mpro inhibitor GC376. Significantly, 23R is highly selective compared with covalent inhibitors such as GC376, especially toward host proteases. The cocrystal structure of SARS-CoV-2 Mpro with 23R revealed a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study discovered 23R, one of the most potent and selective noncovalent SARS-CoV-2 Mpro inhibitors reported to date, and a novel binding pocket in Mpro that can be explored for inhibitor design.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Drug Design , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Proline/analogs & derivatives , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , SARS-CoV-2/enzymology , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology , Vero Cells
9.
Biochem Biophys Res Commun ; 555: 147-153, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1157143

ABSTRACT

Several existing drugs are currently being tested worldwide to treat COVID-19 patients. Recent data indicate that SARS-CoV-2 is rapidly evolving into more transmissible variants. It is therefore highly possible that SARS-CoV-2 can accumulate adaptive mutations modulating drug susceptibility and hampering viral antigenicity. Thus, it is vital to predict potential non-synonymous mutation sites and predict the evolution of protein structural modifications leading to drug tolerance. As two FDA-approved anti-hepatitis C virus (HCV) drugs, boceprevir, and telaprevir, have been shown to effectively inhibit SARS-CoV-2 by targeting the main protease (Mpro), here we used a high-throughput interface-based protein design strategy to identify mutational hotspots and potential signatures of adaptation in these drug binding sites of Mpro. Several mutants exhibited reduced binding affinity to these drugs, out of which hotspot residues having a strong tendency to undergo positive selection were identified. The data further indicated that these anti-HCV drugs have larger footprints in the mutational landscape of Mpro and hence encompass the highest potential for positive selection and adaptation. These findings are crucial in understanding the potential structural modifications in the drug binding sites of Mpro and thus its signatures of adaptation. Furthermore, the data could provide systemic strategies for robust antiviral design and discovery against COVID-19 in the future.


Subject(s)
Adaptation, Physiological/genetics , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Drug Design , Drug Resistance, Viral/genetics , Mutation , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Amino Acid Sequence , Antiviral Agents/pharmacology , Binding Sites/drug effects , Binding Sites/genetics , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Genetic Fitness/genetics , Hepacivirus/drug effects , Hepacivirus/enzymology , Ligands , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Reproducibility of Results , SARS-CoV-2/drug effects , Selection, Genetic/genetics , Structure-Activity Relationship
10.
Molecules ; 26(6)2021 Mar 17.
Article in English | MEDLINE | ID: covidwho-1138745

ABSTRACT

The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the absence of any effective antiviral treatment is the major concern for the global population. The reports of the occurrence of various point mutations within the important therapeutic target protein of SARS-CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but demonstrates a high affinity against the studied mutants as well.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/chemistry , Indoles/pharmacology , Leucine/chemistry , Leucine/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Binding Sites , COVID-19/drug therapy , Computer Simulation , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Databases, Protein , Diarylquinolines/chemistry , Diarylquinolines/pharmacology , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Nitrophenols/chemistry , Nitrophenols/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics
11.
J Comput Chem ; 42(13): 897-907, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1130516

ABSTRACT

SARS-CoV and SARS-CoV-2 belong to the subfamily Coronaviridae and infect humans, they are constituted by four structural proteins: Spike glycoprotein (S), membrane (M), envelope (E) and nucleocapsid (N), and nonstructural proteins, such as Nsp15 protein which is exclusively present on nidoviruses and is absent in other RNA viruses, making it an ideal target in the field of drug design. A virtual screening strategy to search for potential drugs was proposed, using molecular docking to explore a library of approved drugs available in the DrugBank database in order to identify possible NSP15 inhibitors to treat Covid19 disease. We found from the docking analysis that the antiviral drugs: Paritaprevir and Elbasvir, currently both approved for hepatitis C treatment which showed some of the lowest free binding energy values were considered as repositioning drugs to combat SARS-CoV-2. Furthermore, molecular dynamics simulations of the Apo and Holo-Nsp15 systems were performed in order to get insights about the stability of these protein-ligand complexes.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , COVID-19/drug therapy , Cyclopropanes/pharmacology , Endoribonucleases/antagonists & inhibitors , Imidazoles/pharmacology , Lactams, Macrocyclic/pharmacology , Proline/analogs & derivatives , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19/virology , Drug Repositioning , Endoribonucleases/metabolism , Humans , Molecular Docking Simulation , Molecular Targeted Therapy , Proline/pharmacology , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism
12.
ACS Infect Dis ; 7(3): 586-597, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1108883

ABSTRACT

As the COVID-19 pandemic continues to unfold, the morbidity and mortality are increasing daily. Effective treatment for SARS-CoV-2 is urgently needed. We recently discovered four SARS-CoV-2 main protease (Mpro) inhibitors including boceprevir, calpain inhibitors II and XII, and GC-376 with potent antiviral activity against infectious SARS-CoV-2 in cell culture. In this study, we further characterized the mechanism of action of these four compounds using the SARS-CoV-2 pseudovirus neutralization assay. It was found that GC-376 and calpain inhibitors II and XII have a dual mechanism of action by inhibiting both viral Mpro and host cathepsin L in Vero cells. To rule out the cell-type dependent effect, the antiviral activity of these four compounds against SARS-CoV-2 was also confirmed in type 2 transmembrane serine protease-expressing Caco-2 cells using the viral yield reduction assay. In addition, we found that these four compounds have broad-spectrum antiviral activity in inhibiting not only SARS-CoV-2 but also SARS-CoV, and MERS-CoV, as well as human coronaviruses (CoVs) 229E, OC43, and NL63. The mechanism of action is through targeting the viral Mpro, which was supported by the thermal shift-binding assay and enzymatic fluorescence resonance energy transfer assay. We further showed that these four compounds have additive antiviral effect when combined with remdesivir. Altogether, these results suggest that boceprevir, calpain inhibitors II and XII, and GC-376 might be promising starting points for further development against existing human coronaviruses as well as future emerging CoVs.


Subject(s)
Antiviral Agents/pharmacology , Carbonates/pharmacology , Glycoproteins/pharmacology , Leucine/pharmacology , Oligopeptides/pharmacology , Proline/analogs & derivatives , SARS-CoV-2/drug effects , Sulfonic Acids/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , COVID-19/drug therapy , Caco-2 Cells , Cathepsin L/antagonists & inhibitors , Cell Line , Chlorocebus aethiops , Coronavirus 229E, Human/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus NL63, Human/drug effects , Coronavirus OC43, Human/drug effects , Drug Combinations , HEK293 Cells , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Proline/pharmacology , Serine Endopeptidases/metabolism , Vero Cells
13.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: covidwho-1099357

ABSTRACT

Due to the lack of efficient therapeutic options and clinical trial limitations, the FDA-approved drugs can be a good choice to handle Coronavirus disease (COVID-19). Many reports have enough evidence for the use of FDA-approved drugs which have inhibitory potential against target proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we utilized a structure-based drug design approach to find possible drug candidates from the existing pool of FDA-approved drugs and checked their effectiveness against the SARS-CoV-2. We performed virtual screening of the FDA-approved drugs against the main protease (Mpro) of SARS-CoV-2, an essential enzyme, and a potential drug target. Using well-defined computational methods, we identified Glecaprevir and Maraviroc (MVC) as the best inhibitors of SARS-CoV-2 Mpro. Both drugs bind to the substrate-binding pocket of SARS-CoV-2 Mpro and form a significant number of non-covalent interactions. Glecaprevir and MVC bind to the conserved residues of substrate-binding pocket of SARS-CoV-2 Mpro. This work provides sufficient evidence for the use of Glecaprevir and MVC for the therapeutic management of COVID-19 after experimental validation and clinical manifestations.


Subject(s)
Betacoronavirus/enzymology , Maraviroc/pharmacology , Protease Inhibitors/pharmacology , Quinoxalines/pharmacology , Sulfonamides/pharmacology , Aminoisobutyric Acids , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Computer Simulation , Cyclopropanes , Drug Evaluation, Preclinical/methods , Lactams, Macrocyclic , Leucine/analogs & derivatives , Maraviroc/chemistry , Maraviroc/metabolism , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Quinoxalines/chemistry , Quinoxalines/metabolism , SARS-CoV-2 , Sulfonamides/chemistry , Sulfonamides/metabolism
14.
Biomolecules ; 10(9)2020 09 21.
Article in English | MEDLINE | ID: covidwho-976281

ABSTRACT

We report the results of our in silico study of approved drugs as potential treatments for COVID-19. The study is based on the analysis of normal modes of proteins. The drugs studied include chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and α-difluoromethylornithine (DMFO). We applied the tools we developed and standard tools used in the structural biology community. Our results indicate that small molecules selectively bind to stable, kinetically active residues and residues adjoining them on the surface of proteins and inside protein pockets, and that some prefer hydrophobic sites over other active sites. Our approach is not restricted to viruses and can facilitate rational drug design, as well as improve our understanding of molecular interactions, in general.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Angiotensin-Converting Enzyme 2 , Antibodies, Viral/immunology , Antigen-Antibody Reactions , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Betacoronavirus , Binding Sites , COVID-19 , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/prevention & control , Drug Repositioning , Eflornithine/chemistry , Eflornithine/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Ivermectin/chemistry , Ivermectin/pharmacology , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/drug effects , Models, Molecular , Molecular Docking Simulation , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/prevention & control , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Protein Binding , Protein Conformation , Protein Interaction Mapping , Receptors, Glycine/chemistry , Receptors, Glycine/drug effects , SARS-CoV-2 , Saposins/chemistry , Saposins/drug effects , Sofosbuvir/chemistry , Sofosbuvir/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects , Structure-Activity Relationship
15.
Medicine (Baltimore) ; 99(48): e23357, 2020 Nov 25.
Article in English | MEDLINE | ID: covidwho-944499

ABSTRACT

INTRODUCTION: As coronavirus disease 2019 (COVID-19) outbreak globally, repurposing approved drugs is emerging as important therapeutic options. Danoprevir boosted by ritonavir (Ganovo) is a potent hepatitis C virus (HCV) protease (NS3/4A) inhibitor, which was approved and marketed in China since 2018 to treat chronic hepatitis C patients. METHODS: This is an open-label, single arm study evaluating the effects of danoprevir boosted by ritonavir on treatment naïve and experienced COVID-19 patients for the first time. Patients received danoprevir boosted by ritonavir (100 mg/100 mg, twice per day). The primary endpoint was the rate of composite adverse outcomes and efficacy was also evaluated. RESULTS: The data showed that danoprevir boosted by ritonavir is safe and well tolerated in all patients. No patient had composite adverse outcomes during this study. After initiation of danoprevir/ritonavir treatment, the first negative reverse real-time PCR (RT-PCR) test occurred at a median of 2 days, ranging from 1 to 8 days, and the obvious absorption in CT scans occurred at a median 3 days, ranging from 2 to 4 days. After 4 to 12-day treatment of danoprevir boosted by ritonavir, all enrolled 11 patients were discharged from the hospital. CONCLUSION: Our findings suggest that repurposing danoprevir for COVID-19 is a promising therapeutic option.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cyclopropanes/therapeutic use , Isoindoles/therapeutic use , Lactams, Macrocyclic/therapeutic use , Proline/analogs & derivatives , Ritonavir/therapeutic use , Sulfonamides/therapeutic use , Adolescent , Adult , Aged , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/diagnostic imaging , Cyclopropanes/administration & dosage , Cyclopropanes/adverse effects , Drug Therapy, Combination , Female , Humans , Isoindoles/administration & dosage , Isoindoles/adverse effects , Lactams, Macrocyclic/administration & dosage , Lactams, Macrocyclic/adverse effects , Male , Middle Aged , Pandemics , Proline/administration & dosage , Proline/adverse effects , Proline/therapeutic use , Real-Time Polymerase Chain Reaction , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Tomography, X-Ray Computed , Young Adult
16.
Sci Rep ; 10(1): 17716, 2020 10 19.
Article in English | MEDLINE | ID: covidwho-880701

ABSTRACT

In the rapidly evolving coronavirus disease (COVID-19) pandemic, repurposing existing drugs and evaluating commercially available inhibitors against druggable targets of the virus could be an effective strategy to accelerate the drug discovery process. The 3C-Like proteinase (3CLpro) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as an important drug target due to its role in viral replication. The lack of a potent 3CLpro inhibitor and the availability of the X-ray crystal structure of 3CLpro (PDB-ID 6LU7) motivated us to perform computational studies to identify commercially available potential inhibitors. A combination of modeling studies was performed to identify potential 3CLpro inhibitors from the protease inhibitor database MEROPS ( https://www.ebi.ac.uk/merops/index.shtml ). Binding energy evaluation identified key residues for inhibitor design. We found 15 potential 3CLpro inhibitors with higher binding affinity than that of an α-ketoamide inhibitor determined via X-ray structure. Among them, saquinavir and three other investigational drugs aclarubicin, TMC-310911, and faldaprevir could be suggested as potential 3CLpro inhibitors. We recommend further experimental investigation of these compounds.


Subject(s)
Betacoronavirus/enzymology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Aclarubicin/chemistry , Aclarubicin/metabolism , Aminoisobutyric Acids , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cysteine Endopeptidases/metabolism , Databases, Factual , Humans , Hydrogen Bonding , Leucine/analogs & derivatives , Oligopeptides/chemistry , Oligopeptides/metabolism , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proline/analogs & derivatives , Protease Inhibitors/metabolism , Quinolines , SARS-CoV-2 , Thermodynamics , Thiazoles/chemistry , Thiazoles/metabolism , Viral Nonstructural Proteins/metabolism
17.
Nat Commun ; 11(1): 4417, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-744372

ABSTRACT

COVID-19 was declared a pandemic on March 11 by WHO, due to its great threat to global public health. The coronavirus main protease (Mpro, also called 3CLpro) is essential for processing and maturation of the viral polyprotein, therefore recognized as an attractive drug target. Here we show that a clinically approved anti-HCV drug, Boceprevir, and a pre-clinical inhibitor against feline infectious peritonitis (corona) virus (FIPV), GC376, both efficaciously inhibit SARS-CoV-2 in Vero cells by targeting Mpro. Moreover, combined application of GC376 with Remdesivir, a nucleotide analogue that inhibits viral RNA dependent RNA polymerase (RdRp), results in sterilizing additive effect. Further structural analysis reveals binding of both inhibitors to the catalytically active side of SARS-CoV-2 protease Mpro as main mechanism of inhibition. Our findings may provide critical information for the optimization and design of more potent inhibitors against the emerging SARS-CoV-2 virus.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Proline/analogs & derivatives , Protease Inhibitors/pharmacology , Pyrrolidines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Binding Sites/drug effects , COVID-19 , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Disease Models, Animal , High-Throughput Screening Assays , Models, Molecular , Pandemics , Proline/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Sulfonic Acids , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
18.
Comb Chem High Throughput Screen ; 24(5): 716-728, 2021.
Article in English | MEDLINE | ID: covidwho-721423

ABSTRACT

AIMS: To predict potential drugs for COVID-19 by using molecular docking for virtual screening of drugs approved for other clinical applications. BACKGROUND: SARS-CoV-2 is the betacoronavirus responsible for the COVID-19 pandemic. It was listed as a potential global health threat by the WHO due to high mortality, high basic reproduction number, and lack of clinically approved drugs and vaccines. The genome of the virus responsible for COVID-19 has been sequenced. In addition, the three-dimensional structure of the main protease has been determined experimentally. OBJECTIVE: To identify potential drugs that can be repurposed for treatment of COVID-19 by using molecular docking based virtual screening of all approved drugs. METHODS: A list of drugs approved for clinical use was obtained from the SuperDRUG2 database. The structure of the target in the apo form, as well as structures of several target-ligand complexes, were obtained from RCSB PDB. The structure of SARS-CoV-2 Mpro determined from X-ray diffraction data was used as the target. Data regarding drugs in clinical trials for COVID-19 was obtained from clinicaltrials.org. Input for molecular docking based virtual screening was prepared by using Obabel and customized python, bash, and awk scripts. Molecular docking calculations were carried out with Vina and SMINA, and the docked conformations were analyzed and visualized with PLIP, Pymol, and Rasmol. RESULTS: Among the drugs that are being tested in clinical trials for COVID-19, Danoprevir and Darunavir were predicted to have the highest binding affinity for the Main protease (Mpro) target of SARS-CoV-2. Saquinavir and Beclabuvir were identified as the best novel candidates for COVID-19 therapy by using Virtual Screening of drugs approved for other clinical indications. CONCLUSION: Protease inhibitors approved for treatment of other viral diseases have the potential to be repurposed for treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Drug Evaluation, Preclinical , Molecular Docking Simulation , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Benzazepines/chemistry , Benzazepines/pharmacology , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Darunavir/chemistry , Darunavir/pharmacology , Drug Repositioning , High-Throughput Screening Assays , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles/chemistry , Isoindoles/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Saquinavir/chemistry , Saquinavir/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology
19.
SLAS Discov ; 25(10): 1097-1107, 2020 12.
Article in English | MEDLINE | ID: covidwho-658373

ABSTRACT

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), was first reported in Wuhan, China, in December 2019. Since then, the virus has stretched its grip to almost all the countries in the world, affecting millions of people and causing enormous casualties. The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2019. As of June 12, 2020, almost 7.30 million people have already been infected globally, with 413,000 reported casualties. In the United States alone, 2.06 million people have been infected and 115,000 have succumbed to this pandemic. A multipronged approach has been launched toward combating this pandemic, with the main focus on exhaustive screening, developing efficacious therapies, and vaccines for long-term immunity. Several pharmaceutical companies in collaboration with various academic institutions and governmental organizations have started investigating new therapeutics and repurposing approved drugs so as to find fast and affordable treatments against this disease. The present communication is aimed at highlighting the efforts that are currently underway to treat or prevent SARS-CoV-2 infection, with details on the science, clinical status, and timeline for selected investigational drugs and vaccines. This article is going to be of immense help to the scientific community and researchers as it brings forth all the necessary clinical information of the most-talked-about therapeutics against SARS-CoV-2. All the details pertaining to the clinical status of each therapeutic candidate have been updated as of June 12, 2020.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Vaccines/pharmacology , COVID-19/drug therapy , Drug Repositioning , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amides/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , COVID-19/prevention & control , Chloroquine/pharmacology , Clinical Trials as Topic , Cyclopropanes , Drug Evaluation, Preclinical , Humans , Isoindoles , Lactams/pharmacology , Lactams, Macrocyclic , Mice, Transgenic , Proline/analogs & derivatives , Pyrazines/pharmacology , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , Vaccines, Synthetic/pharmacology
20.
Cell Res ; 30(8): 678-692, 2020 08.
Article in English | MEDLINE | ID: covidwho-599672

ABSTRACT

A new coronavirus SARS-CoV-2, also called novel coronavirus 2019 (2019-nCoV), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.35% as of May 26, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 µM. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known substrate-based peptidomimetic Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three protomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Coronavirus Infections/metabolism , Glycoproteins/pharmacology , Pneumonia, Viral/metabolism , Proline/analogs & derivatives , Pyrrolidines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , COVID-19 , Caco-2 Cells , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Discovery/methods , Humans , Inhibitory Concentration 50 , Kinetics , Pandemics , Pneumonia, Viral/virology , Proline/pharmacology , Protein Conformation , Pyrrolidines/chemistry , SARS-CoV-2 , Sulfonic Acids , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL