Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add filters

Document Type
Year range
1.
Sci Rep ; 11(1): 24507, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1597358

ABSTRACT

Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and -validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as 'NanoSpot.ai', is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Diagnostic Tests, Routine/methods , Hemagglutination Tests/methods , Point-of-Care Testing , Spike Glycoprotein, Coronavirus/immunology , Humans , Proof of Concept Study
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: covidwho-1475573

ABSTRACT

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other pathogens with pandemic potential requires safe, protective, inexpensive, and easily accessible vaccines that can be developed and manufactured rapidly at a large scale. DNA vaccines can achieve these criteria, but induction of strong immune responses has often required bulky, expensive electroporation devices. Here, we report an ultra-low-cost (<1 USD), handheld (<50 g) electroporation system utilizing a microneedle electrode array ("ePatch") for DNA vaccination against SARS-CoV-2. The low cost and small size are achieved by combining a thumb-operated piezoelectric pulser derived from a common household stove lighter that emits microsecond, bipolar, oscillatory electric pulses and a microneedle electrode array that targets delivery of high electric field strength pulses to the skin's epidermis. Antibody responses against SARS-CoV-2 induced by this electroporation system in mice were strong and enabled at least 10-fold dose sparing compared to conventional intramuscular or intradermal injection of the DNA vaccine. Vaccination was well tolerated with mild, transient effects on the skin. This ePatch system is easily portable, without any battery or other power source supply, offering an attractive, inexpensive approach for rapid and accessible DNA vaccination to combat COVID-19, as well as other epidemics.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Electroporation/instrumentation , SARS-CoV-2 , Vaccines, DNA/administration & dosage , Animals , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Costs and Cost Analysis , Electroporation/economics , Electroporation/methods , Equipment Design , Female , Genes, Reporter , Humans , Mice , Mice, Inbred BALB C , Microelectrodes , Needles , Pandemics/prevention & control , Proof of Concept Study , Rats , Rats, Wistar , Skin/immunology , Skin/metabolism , Transfection , Vaccination/economics , Vaccination/instrumentation , Vaccination/methods , Vaccines, DNA/genetics , Vaccines, DNA/immunology
4.
Sci Rep ; 11(1): 20143, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1462040

ABSTRACT

Rapid, high-throughput diagnostic tests are essential to decelerate the spread of the novel coronavirus disease 2019 (COVID-19) pandemic. While RT-PCR tests performed in centralized laboratories remain the gold standard, rapid point-of-care antigen tests might provide faster results. However, they are associated with markedly reduced sensitivity. Bedside breath gas analysis of volatile organic compounds detected by ion mobility spectrometry (IMS) may enable a quick and sensitive point-of-care testing alternative. In this proof-of-concept study, we investigated whether gas analysis by IMS can discriminate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from other respiratory viruses in an experimental set-up. Repeated gas analyses of air samples collected from the headspace of virus-infected in vitro cultures were performed for 5 days. A three-step decision tree using the intensities of four spectrometry peaks correlating to unidentified volatile organic compounds allowed the correct classification of SARS-CoV-2, human coronavirus-NL63, and influenza A virus H1N1 without misassignment when the calculation was performed with data 3 days post infection. The forward selection assignment model allowed the identification of SARS-CoV-2 with high sensitivity and specificity, with only one of 231 measurements (0.43%) being misclassified. Thus, volatile organic compound analysis by IMS allows highly accurate differentiation of SARS-CoV-2 from other respiratory viruses in an experimental set-up, supporting further research and evaluation in clinical studies.


Subject(s)
Antigens, Viral/isolation & purification , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing/instrumentation , Chlorocebus aethiops , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/isolation & purification , Diagnosis, Differential , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Ion Mobility Spectrometry , Proof of Concept Study , SARS-CoV-2/immunology , Vero Cells
5.
J Nanobiotechnology ; 19(1): 301, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1448238

ABSTRACT

BACKGROUND: In the past decades, different diseases and viruses, such as Ebola, MERS and COVID-19, impacted the human society and caused huge cost in different fields. With the increasing threat from the new or unknown diseases, the demand of rapid and sensitive assay method is more and more urgent. RESULTS: In this work, we developed a magneto-optical biochip based on the Cotton-Mouton effect of γ-Fe2O3@Au core/shell magnetic nanoparticles. We performed a proof-of-concept experiment for the detection of the spike glycoprotein S of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The assay was achieved by measuring the magneto-optical Cotton-Mouton effect of the biochip. This magneto-optical biochip can not only be used to detect SARS-CoV-2 but also can be easily modified for other diseases assay. CONCLUSION: The assay process is simple and the whole testing time takes only 50 min including 3 min for the CM rotation measurement. The detection limit of our method for the spike glycoprotein S of SARS-CoV-2 is estimated as low as 0.27 ng/mL (3.4 pM).


Subject(s)
Antibodies, Viral/immunology , COVID-19 Testing/methods , COVID-19/diagnosis , Magnetic Iron Oxide Nanoparticles/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/virology , Ferric Compounds/chemistry , Gold/chemistry , Humans , Immunoassay , Limit of Detection , Proof of Concept Study , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
6.
Cytokine ; 148: 155719, 2021 12.
Article in English | MEDLINE | ID: covidwho-1433128

ABSTRACT

Effective therapies for coronavirus disease 2019 (COVID-19) are urgently needed. Maladaptive hyperinflammation and excessive cytokine release underlie the disease severity, with antiinflammatory and cytokine inhibiting agents expected to exert therapeutic effects. A major present challenge is identification of appropriate phase of the illness for a given intervention to yield optimum outcomes. Considering its established disease biomarker and drug discovery potential, a compendious analysis of existing transcriptomic data is presented here toward addressing this gap. The analysis is based on COVID-19 data related to intensive care unit (ICU) and non-ICU admissions, discharged and deceased patients, ventilation and non-ventilation phases, and high oxygen supplementation. It integrates transcriptomic data related to the effects of, in various cellular treatment models, the COVID-19 randomized clinical trial (RCT) successful drug dexamethasone, and the failed drug, with a potential to harm, hydroxychloroquine/chloroquine. Similarly, effects of various COVID-19 candidate drugs/anticytokines as well as proinflammatory cytokines implicated in the illness are also examined. The underlying assumption was that compared to COVID-19, an effective drug/anticytokine and a disease aggravating agent would affect gene regulation in opposite and same direction, in that order. Remarkably, the assumption was supported with respect to both the RCT drugs. With this control validation, etanercept, followed by tofacitinib and adalimumab, showed transcriptomic effects predictive of benefits in both ventilation and non-ventilation ICU stages as well as in non-ICU phase. On the other hand, canakinumab showed potential for effectiveness in high oxygen supplementation phase. These findings may inform experimental and clinical studies toward drug repurposing in COVID-19.


Subject(s)
COVID-19/drug therapy , COVID-19/genetics , Gene Expression Profiling , COVID-19/physiopathology , Humans , Intensive Care Units , Oxygen/therapeutic use , Patient Discharge , Proof of Concept Study , Respiration, Artificial
7.
Eur J Med Chem ; 215: 113286, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1385487

ABSTRACT

Covalent drugs have been intensively studied in some very important fields such as anti-tumor and anti-virus, including the currently global-spread SARS-CoV-2. However, these drugs may interact with a variety of biological macromolecules and cause serious toxicology, so how to reactivate the inhibited targets seems to be imperative in the near future. Organophosphate was an extreme example, which could form a covalent bound easily with acetylcholinesterase and irreversibly inhibited the enzyme, causing high toxicology. Some nucleophilic oxime reactivators for organophosphate poisoned acetylcholinesterase had been developed, but the reactivation process was still less understanding. Herein, we proposed there should be a pre-reactivated pose during the reactivating process and compounds whose binding pose was easy to transfer to the pre-reactivated pose might be efficient reactivators. Then we refined the previous reactivators based on the molecular dynamic simulation results, the resulting compounds L7R3 and L7R5 were proven as much more efficient reactivators for organophosphate inhibited acetylcholinesterase than currently used oximes. This work might provide some insights for constructing reactivators of covalently inhibited targets by using computational methods.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Reactivators/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Reactivators/metabolism , Humans , Kinetics , Molecular Dynamics Simulation , Organophosphorus Compounds/chemistry , Proof of Concept Study , Protein Binding
8.
ACS Appl Mater Interfaces ; 13(35): 41445-41453, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1371587

ABSTRACT

Airborne transmission of exhaled virus can rapidly spread, thereby increasing disease progression from local incidents to pandemics. Due to the COVID-19 pandemic, states and local governments have enforced the use of protective masks in public and work areas to minimize the disease spread. Here, we have leveraged the function of protective face coverings toward COVID-19 diagnosis. We developed a user-friendly, affordable, and wearable collector. This noninvasive platform is integrated into protective masks toward collecting airborne virus in the exhaled breath over the wearing period. A viral sample was sprayed into the collector to model airborne dispersion, and then the enriched pathogen was extracted from the collector for further analytical evaluation. To validate this design, qualitative colorimetric loop-mediated isothermal amplification, quantitative reverse transcription polymerase chain reaction, and antibody-based dot blot assays were performed to detect the presence of SARS-CoV-2. We envision that this platform will facilitate sampling of current SARS-CoV-2 and is potentially broadly applicable to other airborne diseases for future emerging pandemics.


Subject(s)
Breath Tests/instrumentation , COVID-19 Testing/instrumentation , Masks , SARS-CoV-2/isolation & purification , Air Microbiology , Antibodies, Viral/immunology , Breath Tests/methods , COVID-19 Testing/methods , Collodion/chemistry , Colorimetry/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Polycarboxylate Cement/chemistry , Porosity , Proof of Concept Study , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/chemistry , Viral Proteins/analysis , Viral Proteins/immunology
9.
Ann Rheum Dis ; 80(9): 1158-1167, 2021 09.
Article in English | MEDLINE | ID: covidwho-1356912

ABSTRACT

OBJECTIVES: Although causality remains to be established, targeting dysbiosis of the intestinal microbiota by faecal microbiota transplantation (FMT) has been proposed as a novel treatment for inflammatory diseases. In this exploratory, proof-of-concept study, we evaluated the safety and efficacy of FMT in psoriatic arthritis (PsA). METHODS: In this double-blind, parallel-group, placebo-controlled, superiority trial, we randomly allocated (1:1) adults with active peripheral PsA (≥3 swollen joints) despite ongoing treatment with methotrexate to one gastroscopic-guided FMT or sham transplantation into the duodenum. Safety was monitored throughout the trial. The primary efficacy endpoint was the proportion of participants experiencing treatment failure (ie, needing treatment intensification) through 26 weeks. Key secondary endpoints were change in Health Assessment Questionnaire Disability Index (HAQ-DI) and American College of Rheumatology (ACR20) response at week 26. RESULTS: Of 97 screened, 31 (32%) underwent randomisation (15 allocated to FMT) and 30 (97%) completed the 26-week clinical evaluation. No serious adverse events were observed. Treatment failure occurred more frequently in the FMT group than in the sham group (9 (60%) vs 3 (19%); risk ratio, 3.20; 95% CI 1.06 to 9.62; p=0.018). Improvement in HAQ-DI differed between groups (0.07 vs 0.30) by 0.23 points (95% CI 0.02 to 0.44; p=0.031) in favour of sham. There was no difference in the proportion of ACR20 responders between groups (7 of 15 (47%) vs 8 of 16 (50%)). CONCLUSIONS: In this first preliminary, interventional randomised controlled trial of FMT in immune-mediated arthritis, we did not observe any serious adverse events. Overall, FMT appeared to be inferior to sham in treating active peripheral PsA. TRIAL REGISTRATION NUMBER: NCT03058900.


Subject(s)
Arthritis, Psoriatic/therapy , Dysbiosis/therapy , Fecal Microbiota Transplantation/methods , Adult , Antirheumatic Agents/therapeutic use , Arthritis, Psoriatic/microbiology , Female , Humans , Male , Methotrexate/therapeutic use , Middle Aged , Proof of Concept Study , Treatment Outcome
10.
Antiviral Res ; 194: 105162, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347485

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected over 200 million people throughout the world as of August 2021. There are currently no approved treatments providing high chance of recovery from a severe case of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, and the beneficial effect of Remdesivir and passive immunization therapies may only be seen when administered early on disease onset. The emergence of variants is also raising concerns regarding the efficacy of antibody therapies, antivirals, and vaccines. Therefore, there is still a need to develop new antivirals. Here, we investigated the suitability of primary human epithelial cells from the trachea/bronchia (NHBE) and small airway (SAEC) as lung models of SARS-CoV-2 infection to determine, whether the microbicide polyphenylene carboxymethylene (PPCM) has antiviral activity against SARS-CoV-2. Both NHBE and SAEC expressed proteins required for virus entry in lung epithelial cells. However, these cells were only low to moderately permissive to SARS-CoV-2 as titers increased at best by 2.5 log10 during an 8-day kinetic. Levels of replication in SAEC, unlike in NHBE, were consistent with data from other studies using human normal tissues or air-liquid interface cultures, suggesting that SAEC may be more relevant to use than NHBE for drug screening. PPCM EC50 against SARS-CoV-2 was between 32 and 132 µg/ml with a selectivity index between 12 and 41, depending on the cell type and the infective dose used. PPCM doses were consistent with those previously showing effect against other human viruses. Finally, PPCM antiviral effect observed in SAEC was in line with reduction of inflammatory markers observed overly expressed in severe COVID-19 patients. Altogether, our data support the fact that PPCM should be further evaluated in vivo for toxicity and antiviral activity against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/virology , Polymers/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , COVID-19/prevention & control , COVID-19/transmission , Epithelial Cells/drug effects , Humans , Lung/cytology , Lung/virology , Polymers/chemistry , Proof of Concept Study , SARS-CoV-2/genetics , Virus Internalization/drug effects , Virus Replication/drug effects
11.
ACS Appl Mater Interfaces ; 13(26): 30295-30305, 2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1337092

ABSTRACT

As viruses have been threatening global public health, fast diagnosis has been critical to effective disease management and control. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is now widely used as the gold standard for detecting viruses. Although a multiplex assay is essential for identifying virus types and subtypes, the poor multiplicity of RT-qPCR makes it laborious and time-consuming. In this paper, we describe the development of a multiplex RT-qPCR platform with hydrogel microparticles acting as independent reactors in a single reaction. To build target-specific particles, target-specific primers and probes are integrated into the particles in the form of noncovalent composites with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). The thermal release characteristics of DNA, primer, and probe from the composites of primer-BNNT and probe-CNT allow primer and probe to be stored in particles during particle production and to be delivered into the reaction. In addition, BNNT did not absorb but preserved the fluorescent signal, while CNT protected the fluorophore of the probe from the free radicals present during particle production. Bicompartmental primer-incorporated network (bcPIN) particles were designed to harness the distinctive properties of two nanomaterials. The bcPIN particles showed a high RT-qPCR efficiency of over 90% and effective suppression of non-specific reactions. 16-plex RT-qPCR has been achieved simply by recruiting differently coded bcPIN particles for each target. As a proof of concept, multiplex one-step RT-qPCR was successfully demonstrated with a simple reaction protocol.


Subject(s)
Hydrogels/chemistry , Multiplex Polymerase Chain Reaction/methods , Nanotubes, Carbon/chemistry , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Boron Compounds/chemistry , Coronavirus/chemistry , DNA Primers/chemistry , DNA, Single-Stranded/chemistry , Fluorescent Dyes/chemistry , Graphite/chemistry , Influenza A virus/chemistry , Newcastle disease virus/chemistry , Proof of Concept Study , RNA, Viral/chemistry , Virus Diseases/diagnosis
12.
J Am Chem Soc ; 143(31): 12315-12327, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1331364

ABSTRACT

Efficient viral or nonviral delivery of nucleic acids is the key step of genetic nanomedicine. Both viral and synthetic vectors have been successfully employed for genetic delivery with recent examples being DNA, adenoviral, and mRNA-based Covid-19 vaccines. Viral vectors can be target specific and very efficient but can also mediate severe immune response, cell toxicity, and mutations. Four-component lipid nanoparticles (LNPs) containing ionizable lipids, phospholipids, cholesterol for mechanical properties, and PEG-conjugated lipid for stability represent the current leading nonviral vectors for mRNA. However, the segregation of the neutral ionizable lipid as droplets in the core of the LNP, the "PEG dilemma", and the stability at only very low temperatures limit their efficiency. Here, we report the development of a one-component multifunctional ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA that exhibits high activity at a low concentration of ionizable amines organized in a sequence-defined arrangement. Six libraries containing 54 sequence-defined IAJDs were synthesized by an accelerated modular-orthogonal methodology and coassembled with mRNA into dendrimersome nanoparticles (DNPs) by a simple injection method rather than by the complex microfluidic technology often used for LNPs. Forty four (81%) showed activity in vitro and 31 (57%) in vivo. Some, exhibiting organ specificity, are stable at 5 °C and demonstrated higher transfection efficiency than positive control experiments in vitro and in vivo. Aside from practical applications, this proof of concept will help elucidate the mechanisms of packaging and release of mRNA from DNPs as a function of ionizable amine concentration, their sequence, and constitutional isomerism of IAJDs.


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , RNA, Messenger/metabolism , Surface-Active Agents/chemistry , Animals , Dendrimers/chemical synthesis , Drug Carriers/chemical synthesis , Drug Liberation , Female , HEK293 Cells , Humans , Male , Mice , Proof of Concept Study , Surface-Active Agents/chemical synthesis
13.
J Am Chem Soc ; 143(30): 11544-11553, 2021 08 04.
Article in English | MEDLINE | ID: covidwho-1319014

ABSTRACT

Exponential molecular amplification such as the polymerase chain reaction is a powerful tool that allows ultrasensitive biodetection. Here, we report a new exponential amplification strategy based on photoredox autocatalysis, where eosin Y, a photocatalyst, amplifies itself by activating a nonfluorescent eosin Y derivative (EYH3-) under green light. The deactivated photocatalyst is stable and rapidly activated under low-intensity light, making the eosin Y amplification suitable for resource-limited settings. Through steady-state kinetic studies and reaction modeling, we found that EYH3- is either oxidized to eosin Y via one-electron oxidation by triplet eosin Y and subsequent 1e-/H+ transfer, or activated by singlet oxygen with the risk of degradation. By reducing the rate of the EYH3- degradation, we successfully improved EYH3--to-eosin Y recovery, achieving efficient autocatalytic eosin Y amplification. Additionally, to demonstrate its flexibility in output signals, we coupled the eosin Y amplification with photoinduced chromogenic polymerization, enabling sensitive visual detection of analytes. Finally, we applied the exponential amplification methods in developing bioassays for detection of biomarkers including SARS-CoV-2 nucleocapsid protein, an antigen used in the diagnosis of COVID-19.


Subject(s)
Coronavirus Nucleocapsid Proteins/analysis , Eosine Yellowish-(YS)/analogs & derivatives , Spectrometry, Fluorescence/methods , 3,3'-Diaminobenzidine/chemistry , Biomarkers/chemistry , Catalysis/radiation effects , Eosine Yellowish-(YS)/chemical synthesis , Eosine Yellowish-(YS)/radiation effects , Fluorescence , Light , Limit of Detection , Oxidation-Reduction/radiation effects , Phosphoproteins/analysis , Polyethylene Glycols/chemistry , Polymerization , Proof of Concept Study , SARS-CoV-2/chemistry
14.
Pharmacol Res ; 158: 104950, 2020 08.
Article in English | MEDLINE | ID: covidwho-1318942

ABSTRACT

Patients affected by severe coronavirus induced disease-2019 (Covid-19) often experience hypoxemia due to alveolar involvement and endothelial dysfunction, which leads to the formation of micro thrombi in the pulmonary capillary vessels. Both hypoxemia and a prothrombotic diathesis have been associated with more severe disease and increased risk of death. To date, specific indications to treat this condition are lacking. This was a single center, investigator initiated, compassionate use, proof of concept, case control, phase IIb study (NCT04368377) conducted in the Intermediate Respiratory Care Unit of L. Sacco University Hospital in Milano, Italy. Our objective was to explore the effects of the administration of anti-platelet therapy on arterial oxygenation and clinical outcomes in patients with severe Covid-19 with hypercoagulability. We enrolled five consecutive patients with laboratory confirmed SARS-CoV-2 infection, severe respiratory failure requiring helmet continuous positive airway pressure (CPAP), bilateral pulmonary infiltrates and a pro-thrombotic state identified as a D-dimer > 3 times the upper limit of normal. Five patients matched for age, D-dimer value and SOFA score formed the control group. Beyond standard of care, treated patients received 25 µg/Kg/body weight tirofiban as bolus infusion, followed by a continuous infusion of 0.15 µg/Kg/body weight per minute for 48 hours. Before tirofiban, patients received acetylsalicylic acid 250 mg infusion and oral clopidogrel 300 mg; both were continued at a dose of 75 mg daily for 30 days. Fondaparinux2.5 mg/day sub-cutaneous was given for the duration of the hospital stay. All controls were receiving prophylactic or therapeutic dose heparin, according to local standard operating procedures. Treated patients consistently experienced a mean (SD) reduction in A-a O2 gradient of -32.6 mmHg (61.9, P = 0.154), -52.4 mmHg (59.4, P = 0.016) and -151.1 mmHg (56.6, P = 0.011; P = 0.047 vs. controls) at 24, 48 hours and 7 days after treatment. PaO2/FiO2 ratio increased by 52 mmHg (50, P = 0.172), 64 mmHg (47, P = 0.040) and 112 mmHg (51, P = 0.036) after 24, 48 hours and 7 days, respectively. All patients but one were successfully weaned from CPAP after 3 days. This was not true for the control group. No major adverse events were observed. Antiplatelet therapy might be effective in improving the ventilation/perfusion ratio in Covid-19 patients with severe respiratory failure. The effects might be sustained by the prevention and interference on forming clots in lung capillary vessels and by modulating megakaryocytes' function and platelet adhesion. Randomized clinical trials are urgently needed to confirm these results.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Hypoxia/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , Thrombophilia/drug therapy , Aged , Aspirin/therapeutic use , COVID-19 , Clopidogrel/therapeutic use , Compassionate Use Trials , Coronavirus Infections/complications , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Hypoxia/complications , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Proof of Concept Study , SARS-CoV-2 , Thrombophilia/blood , Thrombophilia/complications , Tirofiban/therapeutic use
15.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311202

ABSTRACT

BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.


Subject(s)
COVID-19/etiology , COVID-19/physiopathology , Haptoglobins/physiology , Intestinal Mucosa/physiopathology , Protein Precursors/physiology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/physiopathology , Adolescent , Antigens, Viral/blood , Biomarkers/blood , COVID-19/virology , Case-Control Studies , Child , Child, Preschool , Female , Haptoglobins/antagonists & inhibitors , Humans , Infant , Infant, Newborn , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Male , Oligopeptides/pharmacology , Permeability/drug effects , Proof of Concept Study , Protein Precursors/antagonists & inhibitors , Protein Precursors/blood , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/virology , Young Adult
16.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: covidwho-1301236

ABSTRACT

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


Subject(s)
Bacteriophages/genetics , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Programs , Administration, Inhalation , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Dependovirus/genetics , Drug Storage , Female , Immunization Programs/methods , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Proof of Concept Study , Temperature
17.
PLoS One ; 16(6): e0252121, 2021.
Article in English | MEDLINE | ID: covidwho-1256036

ABSTRACT

Rapid diagnosis is key to curtailing the Covid-19 pandemic. One path to such rapid diagnosis may rely on identifying volatile organic compounds (VOCs) emitted by the infected body, or in other words, identifying the smell of the infection. Consistent with this rationale, dogs can use their nose to identify Covid-19 patients. Given the scale of the pandemic, however, animal deployment is a challenging solution. In contrast, electronic noses (eNoses) are machines aimed at mimicking animal olfaction, and these can be deployed at scale. To test the hypothesis that SARS CoV-2 infection is associated with a body-odor detectable by an eNose, we placed a generic eNose in-line at a drive-through testing station. We applied a deep learning classifier to the eNose measurements, and achieved real-time detection of SARS CoV-2 infection at a level significantly better than chance, for both symptomatic and non-symptomatic participants. This proof of concept with a generic eNose implies that an optimized eNose may allow effective real-time diagnosis, which would provide for extensive relief in the Covid-19 pandemic.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/genetics , Volatile Organic Compounds/analysis , Adult , Deep Learning , Electronic Nose/trends , Female , Humans , Israel/epidemiology , Male , Middle Aged , Pandemics , Proof of Concept Study , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
18.
Angew Chem Int Ed Engl ; 60(31): 17102-17107, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1245354

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Saliva/chemistry , Animals , Chlorocebus aethiops , Cohort Studies , Discriminant Analysis , Humans , Least-Squares Analysis , Monte Carlo Method , Point-of-Care Testing , Proof of Concept Study , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling , Spectrophotometry, Infrared , Vero Cells
19.
J Med Internet Res ; 23(6): e27132, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1242264

ABSTRACT

BACKGROUND: Perinatal mental health symptoms commonly remain underdiagnosed and undertreated in maternity care settings in the United Kingdom, with outbreaks of disease, like the COVID-19 pandemic, further disrupting access to adequate mental health support. Digital technologies may offer an innovative way to support the mental health needs of women and their families throughout the perinatal period, as well as assist midwives in the recognition of perinatal mental health concerns. However, little is known about the acceptability and perceived benefits and barriers to using such technologies. OBJECTIVE: The aim of this study was to conduct a mixed methods evaluation of the current state of perinatal mental health care provision in the United Kingdom, as well as users' (women and partners) and midwives' interest in using a digital mental health assessment throughout the perinatal period. METHODS: Women, partners, and midwives were recruited to participate in the study, which entailed completing an online survey. Quantitative data were explored using descriptive statistics. Open-ended response data were first investigated using thematic analysis. Resultant themes were then mapped onto the components of the Capability, Opportunity, and Motivation Behavior model and summarized using descriptive statistics. RESULTS: A total of 829 women, 103 partners, and 90 midwives participated in the study. The provision of adequate perinatal mental health care support was limited, with experiences varying significantly across respondents. There was a strong interest in using a digital mental health assessment to screen, diagnose, and triage perinatal mental health concerns, particularly among women and midwives. The majority of respondents (n=781, 76.42%) expressed that they would feel comfortable or very comfortable using or recommending a digital mental health assessment. The majority of women and partners showed a preference for in-person consultations (n=417, 44.74%), followed by a blended care approach (ie, both in-person and online consultations) (n=362, 38.84%), with fewer participants preferring online-only consultations (n=120, 12.88%). Identified benefits and barriers mainly related to physical opportunity (eg, accessibility), psychological capability (eg, cognitive skills), and automatic motivation (eg, emotions). CONCLUSIONS: This study provides proof-of-concept support for the development and implementation of a digital mental health assessment to inform clinical decision making in the assessment of perinatal mental health concerns in the United Kingdom.


Subject(s)
Maternal Health Services , Mental Disorders/diagnosis , Perinatal Care/methods , Pregnancy Complications/diagnosis , Proof of Concept Study , Adult , Clinical Decision-Making , Female , Humans , Mental Health , Midwifery , Parturition , Pregnancy , Surveys and Questionnaires , United Kingdom
20.
Nutrients ; 13(5)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234788

ABSTRACT

The aim of this observational study was investigating the possible correlation between adherence to the Mediterranean diet (MeD) and SARS-COV-2 infection rates and severity among healthcare professionals (HCPs). An online self-administrated questionnaire (evaluating both MeD adherence and dietary habits) was filled out by HCPs working in Piedmont (Northern Italy) from 15 January to 28 February 2021. Out of the 1206 questionnaires collected, 900 were considered reliable and analyzed. Individuals who reported the SARS-COV-2 infection (n = 148) showed a significantly lower MeD score, with a lower adherence in fruit, vegetables, cereals, and olive oil consumption. In a logistic regression model, the risk of infection was inversely associated with the MeD score (OR = 0.88; 95% CI 0.81-0.97) and the consumption of cereals (OR = 0.64; 0.45-0.90). Asymptomatic individuals with SARS-COV-2 infection reported a lower intake of saturated fats than symptomatic; individuals requiring hospitalization were significantly older and reported worse dietary habits than both asymptomatic and symptomatic individuals. After combining all symptomatic individuals together, age (OR = 1.05; 1.01-1.09) and saturated fats intake (OR = 1.09; 1.01-1.17) were associated with the infection severity. HCPs who reported a SARS-COV-2 infection showed a significantly lower MeD score and cereal consumption. The infection severity was directly associated with higher age and saturated fat intake.


Subject(s)
COVID-19/epidemiology , Diet, Mediterranean , SARS-CoV-2 , Surveys and Questionnaires , Adult , Age Factors , Aged , Female , Humans , Male , Middle Aged , Proof of Concept Study , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...