Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Eur J Med Chem ; 229: 114046, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1768050

ABSTRACT

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CLpro (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CLpro non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CLpro. We report herein our efforts in the design and synthesis of submicromolar covalent inhibitors when the enzymatic activity of the viral protease was used as a screening platform.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Animals , Drug Design , High-Throughput Screening Assays , Humans , Virus Replication/drug effects
2.
Bioorg Med Chem ; 48: 116412, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1620516

ABSTRACT

Peptides can be inhibitors and substrates of proteases. The present study describes the inhibitor- vs. substrate-like properties of peptidic ligands of dengue protease which were designed to provide insight into their binding modes. Of particular interest was the localization of the cleavable peptide bond and the placement of hydrophobic elements in the binding site. The findings provide clues for the design of covalent inhibitors in which electrophilic functional groups bind to the catalytic serine, and in addition for the development of inhibitors that are less basic than the natural substrate and therefore have an improved pharmacokinetic profile. We observed a tendency of basic elements to favor a substrate-like binding mode, whereas hydrophobic elements decrease or eliminate enzymatic cleavage. This indicates a necessity to include basic elements which closely mimic the natural substrates into covalent inhibitors, posing a challenge from the chemical and pharmacokinetic perspective. However, hydrophobic elements may offer opportunities to develop non-covalent inhibitors with a favorable ADME profile and potentially improved target-binding kinetics.


Subject(s)
Peptide Hydrolases/metabolism , Peptides/pharmacology , Protease Inhibitors/pharmacology , Chromatography, Liquid , Dose-Response Relationship, Drug , HIV/enzymology , Hepacivirus/enzymology , Hydrophobic and Hydrophilic Interactions , Ligands , Mass Spectrometry , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Structure-Activity Relationship , Substrate Specificity
3.
Bioorg Med Chem Lett ; 58: 128526, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1592308

ABSTRACT

The COVID-19 pandemic has drastically impacted global economies and public health. Although vaccine development has been successful, it was not sufficient against more infectious mutant strains including the Delta variant indicating a need for alternative treatment strategies such as small molecular compound development. In this work, a series of SARS-CoV-2 main protease (Mpro) inhibitors were designed and tested based on the active compound from high-throughput diverse compound library screens. The most efficacious compound (16b-3) displayed potent SARS-CoV-2 Mpro inhibition with an IC50 value of 116 nM and selectivity against SARS-CoV-2 Mpro when compared to PLpro and RdRp. This new class of compounds could be used as potential leads for further optimization in anti COVID-19 drug discovery.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Thiazoles/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Thiazoles/chemical synthesis , Thiazoles/chemistry
4.
Bioorg Med Chem ; 49: 116415, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1415233

ABSTRACT

Dengue remains a disease of significant concern, responsible for nearly half of all arthropod-borne disease cases across the globe. Due to the lack of potent and targeted therapeutics, palliative treatment and the adoption of preventive measures remain the only available options. Compounding the problem further, the failure of the only dengue vaccine, Dengvaxia®, also delivered a significant blow to any hopes for the treatment of dengue fever. However, the success of Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV) protease inhibitors in the past have continued to encourage researchers to investigate other viral protease targets. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing and also for being the most conserved domain in the viral genome. During the early days of the COVID-19 pandemic, a few cases of Dengue-COVID 19 co-infection were reported. In this review, we compared the substrate-peptide residue preferences and the residues lining the sub-pockets of the proteases of these two viruses and analyzed the significance of this similarity. Also, we attempted to abridge the developments in anti-dengue drug discovery in the last six years (2015-2020), focusing on critical discoveries that influenced the research.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Dengue Virus/drug effects , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Coronavirus 3C Proteases/metabolism , Dengue Virus/enzymology , Humans , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology
5.
Bioorg Chem ; 116: 105363, 2021 11.
Article in English | MEDLINE | ID: covidwho-1415210

ABSTRACT

We have discovered a family of synthetic oxazole-based macrocycles to be active against SARS-CoV-2. The synthesis, pharmacological properties, and docking studies of the compounds are reported in this study. The structure of the new macrocycles was confirmed by NMR spectroscopy and mass spectrometry. Compounds 13, 14, and 15a-c were evaluated for their anti-SARS-CoV-2 activity on SARS-COV-2 (NRC-03-nhCoV) virus in Vero-E6 cells. Isopropyl triester 13 and triacid 14 demonstrated superior inhibitory activities against SARS-CoV-2 compared to carboxamides 15a-c. MTT cytotoxicity assays showed that the CC50 (50% cytotoxicity concentration) of 13, 14, and 15a-c ranged from 159.1 to 741.8 µM and their safety indices ranged from 2.50 to 39.1. Study of the viral inhibition via different mechanisms of action (viral adsorption, replication, or virucidal property) showed that 14 had mild virucidal (60%) and inhibitory effects on virus adsorption (66%) at 20 µM concentrations. Compound 13 displayed several inhibitory effects at three levels, but the potency of its action is primarily virucidal. The inhibitory activity of compounds 13, 14, and 15a-c against the enzyme SARS-CoV-2 Mpro was evaluated. Isopropyl triester 13 had a significant inhibition activity against SARS-CoV-2 Mpro with an IC50 of 2.58 µM. Large substituents on the macrocyclic template significantly reduced the inhibitory effects of the compounds. Study of the docking of the compounds in the SARS CoV-2-Mpro active site showed that the most potent macrocycles 13 and 14 exhibited the best fit and highest affinity for the active site binding pocket. Taken together, the present study shows that the new macrocyclic compounds constitute a new family of SARS CoV-2-Mpro inhibitors that are worth being further optimized and developed.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery , Macrocyclic Compounds/pharmacology , Oxazoles/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Oxazoles/chemical synthesis , Oxazoles/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology
6.
J Med Chem ; 64(19): 14702-14714, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1412442

ABSTRACT

Here, we report the synthesis, structure-activity relationship studies, enzyme inhibition, antiviral activity, and X-ray crystallographic studies of 5-chloropyridinyl indole carboxylate derivatives as a potent class of SARS-CoV-2 chymotrypsin-like protease inhibitors. Compound 1 exhibited a SARS-CoV-2 3CLpro inhibitory IC50 value of 250 nM and an antiviral EC50 value of 2.8 µM in VeroE6 cells. Remdesivir, an RNA-dependent RNA polymerase inhibitor, showed an antiviral EC50 value of 1.2 µM in the same assay. Compound 1 showed comparable antiviral activity with remdesivir in immunocytochemistry assays. Compound 7d with an N-allyl derivative showed the most potent enzyme inhibitory IC50 value of 73 nM. To obtain molecular insight into the binding properties of these molecules, X-ray crystal structures of compounds 2, 7b, and 9d-bound to SARS-CoV 3CLpro were determined, and their binding properties were compared.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Dynamics Simulation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Pyridines/chemistry , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Vero Cells
7.
Molecules ; 25(19)2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-1389458

ABSTRACT

A novel series of some hydrazones bearing thiazole moiety were generated via solvent-drop grinding of thiazole carbohydrazide 2 with various carbonyl compounds. Also, dehydrative-cyclocondensation of 2 with active methylene compounds or anhydrides gave the respective pyarzole or pyrazine derivatives. The structures of the newly synthesized compounds were established based on spectroscopic evidences and their alternative syntheses. Additionally, the anti-viral activity of all the products was tested against SARS-CoV-2 main protease (Mpro) using molecular docking combined with molecular dynamics simulation (MDS). The average binding affinities of the compounds 3a, 3b, and 3c (-8.1 ± 0.33 kcal/mol, -8.0 ± 0.35 kcal/mol, and -8.2 ± 0.21 kcal/mol, respectively) are better than that of the positive control Nelfinavir (-6.9 ± 0.51 kcal/mol). This shows the possibility of these three compounds to effectively bind to SARS-CoV-2 Mpro and hence, contradict the virus lifecycle.


Subject(s)
Antiviral Agents/chemical synthesis , Betacoronavirus/enzymology , Hydrazones/chemical synthesis , Protease Inhibitors/chemical synthesis , Pyrazines/chemical synthesis , Pyrazoles/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Discovery , Humans , Hydrazones/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrazines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2 , Thermodynamics , User-Computer Interface , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
8.
Appl Biochem Biotechnol ; 193(11): 3602-3623, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1330411

ABSTRACT

The novel coronavirus disease that arises in the end of 2019 (COVID-19) in Wuhan, China, has rapidly spread over the globe and was considered as a world pandemic. Currently, various antiviral therapies or vaccines are available, and many researches are ongoing for further treatments. Targeting the coronavirus' main protease (key enzyme: 3CLpro) is growing in importance in anti-SARS-CoV-2 drug discovery process. The present study aims at predicting the antiviral activity of two novel compounds using in silico approaches that might become potential leads against SARS-CoV-2. The 3D structures of the new compounds are elucidated by single-crystal X-ray techniques. The interactions between different units of 4 and 5 were emphasized by analyzing their corresponding Hirshfeld surfaces and ESP plots. NBO and FMO analyses were investigated as well. Molecular docking combined with molecular dynamics simulations (MDs) was performed to investigate the binding modes and molecular interactions of 4 and 5 with the amino acids of coronavirus main protease (6LU7) protein. The best docking scores were obtained for both ligands through the major binding interactions via hydrogen/hydrophobic bonds with the key amino acids in the active site: HIS41, CYS145, MET49, MET165, HIS172, and GLU166 amino acids. A MD simulation study was also performed for 100 ns to validate the stability behavior of the main protease 3CLpro-ligand complexes. The MD simulation study successfully confirmed the stability of the ligands in the binding site as potent anti-SARS-CoV-2 (COVID-19) inhibitors. Additionally, MMPBSA energy of both docked complexes was determined as a validation assay of docking and MD simulations to validate compound conformation and interaction stability with 3CLpro. The synthesized compounds might be helpful in the fight against COVID-19 prior to biological activity confirmation in vitro and in vivo.


Subject(s)
Antiviral Agents/chemistry , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Antiviral Agents/chemical synthesis , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Drug Discovery , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemical synthesis , SARS-CoV-2/chemistry
9.
Molecules ; 26(13)2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1295887

ABSTRACT

A possible inhibitor of proteases, which contains an indole core and an aromatic polar acetylene, was designed and synthesized. This indole derivative has a molecular architecture kindred to biologically relevant species and was obtained through five synthetic steps with an overall yield of 37% from the 2,2'-(phenylazanediyl)di(ethan-1-ol). The indole derivative was evaluated through docking assays using the main protease (SARS-CoV-2-Mpro) as a molecular target, which plays a key role in the replication process of this virus. Additionally, the indole derivative was evaluated as an inhibitor of the enzyme kallikrein 5 (KLK5), which is a serine protease that can be considered as an anticancer drug target.


Subject(s)
Acetylene/chemistry , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Indoles/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , SARS-CoV-2/enzymology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kallikreins/antagonists & inhibitors , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects
10.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1294550

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Protease Inhibitors/therapeutic use , Pyrrolidines/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/pathology , Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Deuterium , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Lung/pathology , Mice , Mice, Transgenic , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Pyrrolidines/chemistry , SARS-CoV-2/enzymology , Sulfonic Acids , Transgenes
11.
J Med Chem ; 64(14): 10047-10058, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1294430

ABSTRACT

A series of nondeuterated and deuterated dipeptidyl aldehyde and masked aldehyde inhibitors that incorporate in their structure a conformationally constrained cyclohexane moiety was synthesized and found to potently inhibit severe acute respiratory syndrome coronavirus-2 3CL protease in biochemical and cell-based assays. Several of the inhibitors were also found to be nanomolar inhibitors of Middle East respiratory syndrome coronavirus 3CL protease. The corresponding latent aldehyde bisulfite adducts were found to be equipotent to the precursor aldehydes. High-resolution cocrystal structures confirmed the mechanism of action and illuminated the structural determinants involved in binding. The spatial disposition of the compounds disclosed herein provides an effective means of accessing new chemical space and optimizing pharmacological activity. The cellular permeability of the identified inhibitors and lack of cytotoxicity warrant their advancement as potential therapeutics for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cyclohexanes/pharmacology , Drug Design , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases/metabolism , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology
12.
Molecules ; 26(9)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1217103

ABSTRACT

The outbreak of SARS-CoV-2 has drastically changed our everyday life and the life of scientists from all over the world. In the last year, the scientific community has faced this worldwide threat using any tool available in order to find an effective response. The recent formulation, production, and ongoing administration of vaccines represent a starting point in the battle against SARS-CoV-2, but they cannot be the only aid available. In this regard, the use of drugs capable to mitigate and fight the virus is a crucial aspect of the pharmacological strategy. Among the plethora of approved drugs, a consistent element is a heterocyclic framework inside its skeleton. Heterocycles have played a pivotal role for decades in the pharmaceutical industry due to their high bioactivity derived from anticancer, antiviral, and anti-inflammatory capabilities. In this context, the development of new performing and sustainable synthetic strategies to obtain heterocyclic molecules has become a key focus of scientists. In this review, we present the recent trends in metal-promoted heterocyclization, and we focus our attention on the construction of heterocycles associated with the skeleton of drugs targeting SARS-CoV-2 coronavirus.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Chemistry Techniques, Synthetic/methods , Heterocyclic Compounds/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/virology , Catalysis , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Metals/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/metabolism
13.
Yakugaku Zasshi ; 141(2): 215-233, 2021.
Article in Japanese | MEDLINE | ID: covidwho-1055838

ABSTRACT

Studies on functional molecules starting from syntheses of cysteine-containing peptides and protein are described. Starting from evaluation of a cysteine specific side-reaction, a specific reaction for disulfide-bond formation was developed. The reaction made it possible to independently construct a disulfide bridge without effecting the existing disulfide bonds, which resulted in a unique approach for the synthesis of human insulin by site-specific disulfide bond formation. In a series of studies on sulfur-containing amino acids, another cysteine related un-natural amino acid, α-methyl cysteine, was used for the total syntheses of natural products containing a unique thiazorine/thiazole ring system. Chloroimidazolidium coupling reagent developed by us was effective for the successive couplings of the α-methyl cysteine residues. Based on these synthetic studies, design and evaluation of protease inhibitors were then studied, since a stereo-specific synthesis of the key structure is crucial to make the inhibitor an effective functional molecule in the interactions with its target protease. As the target proteases, ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) and chymotrypsin-like protease of severe acute respiratory syndrome (SARS 3CL protease) were selected: the former is a crucial enzyme for amyloid ß production and the latter is an essential enzyme for the re-construction of SARS corona virus in host cells. Structure optimization procedure of the respective inhibitors are described based on X-ray crystal structure analyses of the inhibitor-protease complex.


Subject(s)
Amino Acids/chemistry , Peptides/chemical synthesis , Amyloid Precursor Protein Secretases/chemistry , Aspartic Acid Endopeptidases/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Chymases/chemistry , Crystallography, X-Ray , Cysteine , Disulfides/chemistry , Insulin/chemical synthesis , Peptides/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , SARS Virus , Sulfur/chemistry , Thiazoles/chemistry
14.
J Med Chem ; 63(21): 12725-12747, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-872630

ABSTRACT

The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins, which are cleaved at specific sites by a 3C-like cysteine protease (3CLpro) in a post-translational processing step that is critical for coronavirus replication. The 3CLpro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CLpro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4. Preclinical experiments reveal 4 (PF-00835231) as a potent inhibitor of CoV-2 3CLpro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Ketones/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , COVID-19/drug therapy , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Ketones/chemical synthesis , Ketones/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protein Binding , Vero Cells
15.
Bioorg Med Chem ; 28(4): 115273, 2020 02 15.
Article in English | MEDLINE | ID: covidwho-833276

ABSTRACT

An octahydroisochromene scaffold has been introduced into a known SARS 3CL protease inhibitor as a novel hydrophobic core to interact with the S2 pocket of the protease. An alkyl or aryl substituent was also introduced at the 1-position of the octahydroisochromene scaffold and expected to introduce additional interactions with the protease. Sharpless-Katsuki asymmetric epoxidation and Sharpless asymmetric dihydroxylation were employed to construct the octahydroisochromene scaffold. The introductions of the P1 site His-al and the substituent at 1-position was achieved using successive reductive amination reactions. Our initial evaluations of the diastereo-isomeric mixtures (16a-d) revealed that the octahydroisochromene moiety functions as a core hydrophobic scaffold for the S2 pocket of the protease and the substituent at the 1-position may form additional interactions with the protease. The inhibitory activities of the diastereoisomerically-pure inhibitors (3a-d) strongly suggest that a specific stereo-isomer of the octahydroisochromene scaffold, (1S, 3S) 3b, directs the P1 site imidazole, the warhead aldehyde, and substituent at the 1-position of the fused ring to their appropriate pockets in the protease.


Subject(s)
Benzopyrans/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS Virus/enzymology , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Coronavirus 3C Proteases/metabolism , Dose-Response Relationship, Drug , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
16.
Rev Med Virol ; 31(3): e2174, 2021 05.
Article in English | MEDLINE | ID: covidwho-784380

ABSTRACT

The current pandemic of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has quickly emerged as a global health concern with government bodies worldwide taking drastic control measures. Understanding the virology of SARS-CoV-2, its molecular mechanisms, and its pathogenesis are required for a targeted therapeutic approach. In this review, we highlight the current molecular and drug advances that target SARS-CoV-2 at the genome level. We also summarize studies that therapeutically target the host angiotensin-converting enzyme 2 and proteases. Finally, we summarize antibody-mediated therapeutic approaches, as well as recent trends in vaccine development. Hence, the purpose of this study is to investigate different molecular targets in SARS-CoV-2 pathogenesis and their usefulness in developing strategies for drug development.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antibodies, Monoclonal/therapeutic use , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/therapeutic use , Antiviral Agents/chemical synthesis , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Approval , Drug Discovery , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunization, Passive/methods , Protease Inhibitors/chemical synthesis , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/immunology , United States , United States Food and Drug Administration
17.
Mol Divers ; 25(1): 461-471, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-756514

ABSTRACT

During formylation of 2-quinolones by DMF/Et3N mixture, the unexpected 3,3'-methylenebis(4-hydroxyquinolin-2(1H)-ones) were formed. The discussed mechanism was proved as due to the formation of 4-formyl-2-quinolone as intermediate. Reaction of the latter compound with the parent quinolone under the same reaction condition gave also the same product. The structure of the obtained products was elucidated via NMR, IR and mass spectra. X-ray structure analysis proved the anti-form of the obtained compounds, which were stabilized by the formation hydrogen bond. Molecular docking calculations showed that most of the synthesized compounds possessed good binding affinity to the SARS-CoV-2 main protease (Mpro) in comparable to Darunavir.


Subject(s)
Antiviral Agents/chemical synthesis , COVID-19/drug therapy , Protease Inhibitors/chemical synthesis , Quinolones/chemical synthesis , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Darunavir/pharmacology , Humans , Hydrogen Bonding , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Quinolones/pharmacology , SARS-CoV-2/metabolism
18.
Eur J Med Chem ; 206: 112702, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-724946

ABSTRACT

SARS-CoV-2 3C-like protease is the main protease of SARS-CoV-2 and has been considered as one of the key targets for drug discovery against COVID-19. We identified several N-substituted isatin compounds as potent SARS-CoV-2 3C-like protease inhibitors. The three most potent compounds inhibit SARS-CoV-2 3C-like protease with IC50's of 45 nM, 47 nM and 53 nM, respectively. Our study indicates that N-substituted isatin compounds have the potential to be developed as broad-spectrum anti-coronavirus drugs.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Isatin/therapeutic use , Protease Inhibitors/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases , Humans , Isatin/analogs & derivatives , Isatin/chemical synthesis , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , SARS-CoV-2 , Structure-Activity Relationship
19.
J Med Chem ; 63(9): 4562-4578, 2020 05 14.
Article in English | MEDLINE | ID: covidwho-613484

ABSTRACT

The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Enterovirus/drug effects , Lactams/pharmacology , Peptidomimetics/pharmacology , Virus Replication/drug effects , 3C Viral Proteases , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus/enzymology , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Design , Enterovirus/enzymology , Humans , Lactams/chemical synthesis , Lactams/metabolism , Peptidomimetics/chemical synthesis , Peptidomimetics/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Binding , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL