Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 357
Filter
1.
Eur J Med Chem ; 244: 114857, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2130694

ABSTRACT

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.


Subject(s)
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animals , Humans , Coronavirus 3C Proteases , Vero Cells , COVID-19/drug therapy , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Molecular Docking Simulation
2.
Eur J Med Chem ; 244: 114853, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2130693

ABSTRACT

SARS-CoV-2 caused worldwide the current outbreak called COVID-19. Despite multiple countermeasures implemented, there is an urgent global need for new potent and efficient antiviral drugs against this pathogen. In this context, the main protease (Mpro) of SARS-CoV-2 is an essential viral enzyme and plays a pivotal role in viral replication and transcription. Its specific cleavage of polypeptides after a glutamine residue has been considered as a key element to design novel antiviral drugs. Herein, we reported the design, synthesis and structure-activity relationships of novel α-ketoamides as covalent reversible inhibitors of Mpro, exploiting the PADAM oxidation route. The reported compounds showed µM to nM activities in enzymatic and in the antiviral cell-based assays against SARS-CoV-2 Mpro. In order to assess inhibitors' binding mode, two co-crystal structures of SARS-CoV-2 Mpro in complex with our inhibitors were solved, which confirmed the covalent binding of the keto amide moiety to the catalytic Cys145 residue of Mpro. Finally, in order to interrogate potential broad-spectrum properties, we assessed a selection of compounds against MERS Mpro where they showed nM inhibitory potency, thus highlighting their potential as broad-spectrum coronavirus inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , COVID-19/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , Cysteine Endopeptidases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
3.
J Chem Phys ; 157(18): 185101, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2119368

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is an essential enzyme for the replication of the virus causing the COVID-19 pandemic. Because there is no known homologue in humans, it has been proposed as a primary target for antiviral drug development. Here, we explore the potential of five acrylamide-based molecules as possible covalent inhibitors, leading to target MPro by docking, followed by polarizable molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. All calculations involving a classical potential were calculated with the AMOEBABIO18 polarizable force field, while electronic structure calculations were performed within the framework of density functional theory. Selected docking poses for each of the five compounds were used for MD simulations, which suggest only one of the tested leads remains bound in a catalytically active orientation. The QM/MM results for the covalent attachment of the promising lead to the catalytic serine suggest that this process is thermodynamically feasible but kinetically unlikely. Overall, our results are consistent with the low labeling percentages determined experimentally and may be useful for further development of acrylamide-based leads.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Coronavirus 3C Proteases , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Acrylamide , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Molecular Docking Simulation
4.
PLoS One ; 17(11): e0277328, 2022.
Article in English | MEDLINE | ID: covidwho-2119171

ABSTRACT

A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/drug therapy , Drug Repositioning , Polyproteins , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Molecular Docking Simulation
5.
J Am Chem Soc ; 144(46): 21035-21045, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2117370

ABSTRACT

Given the current impact of SARS-CoV2 and COVID-19 on human health and the global economy, the development of direct acting antivirals is of paramount importance. Main protease (MPro), a cysteine protease that cleaves the viral polyprotein, is essential for viral replication. Therefore, MPro is a novel therapeutic target. We identified two novel MPro inhibitors, D-FFRCMKyne and D-FFCitCMKyne, that covalently modify the active site cysteine (C145) and determined cocrystal structures. Medicinal chemistry efforts led to SM141 and SM142, which adopt a unique binding mode within the MPro active site. Notably, these inhibitors do not inhibit the other cysteine protease, papain-like protease (PLPro), involved in the life cycle of SARS-CoV2. SM141 and SM142 block SARS-CoV2 replication in hACE2 expressing A549 cells with IC50 values of 8.2 and 14.7 nM. Detailed studies indicate that these compounds also inhibit cathepsin L (CatL), which cleaves the viral S protein to promote viral entry into host cells. Detailed biochemical, proteomic, and knockdown studies indicate that the antiviral activity of SM141 and SM142 results from the dual inhibition of MPro and CatL. Notably, intranasal and intraperitoneal administration of SM141 and SM142 lead to reduced viral replication, viral loads in the lung, and enhanced survival in SARS-CoV2 infected K18-ACE2 transgenic mice. In total, these data indicate that SM141 and SM142 represent promising scaffolds on which to develop antiviral drugs against SARS-CoV2.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Animals , Mice , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cathepsin L/chemistry , Cathepsin L/metabolism , RNA, Viral , SARS-CoV-2 , COVID-19/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Peptide Hydrolases , Proteomics , Viral Nonstructural Proteins/chemistry , Molecular Docking Simulation
6.
Eur J Med Chem ; 244: 114803, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2104848

ABSTRACT

SARS-CoV-2 3CL protease is one of the key targets for drug development against COVID-19. Most known SARS-CoV-2 3CL protease inhibitors act by covalently binding to the active site cysteine. Yet, computational screens against this enzyme were mainly focused on non-covalent inhibitor discovery. Here, we developed a deep learning-based stepwise strategy for selective covalent inhibitor screen. We used a deep learning framework that integrated a directed message passing neural network with a feed-forward neural network to construct two different classifiers for either covalent or non-covalent inhibition activity prediction. These two classifiers were trained on the covalent and non-covalent 3CL protease inhibitors dataset, respectively, which achieved high prediction accuracy. We then successively applied the covalent inhibitor model and the non-covalent inhibitor model to screen a chemical library containing compounds with covalent warheads of cysteine. We experimentally tested the inhibition activity of 32 top-ranking compounds and 12 of them were active, among which 6 showed IC50 values less than 12 µM and the strongest one inhibited SARS-CoV-2 3CL protease with an IC50 of 1.4 µM. Further investigation demonstrated that 5 of the 6 active compounds showed typical covalent inhibition behavior with time-dependent activity. These new covalent inhibitors provide novel scaffolds for developing highly active SARS-CoV-2 3CL covalent inhibitors.


Subject(s)
COVID-19 , Deep Learning , Humans , SARS-CoV-2 , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Coronavirus 3C Proteases , COVID-19/drug therapy , Cysteine , Antiviral Agents/pharmacology
7.
Biochemistry ; 61(22): 2495-2505, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2096611

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is essential for viral replication and has been the focus of many drug discovery efforts since the start of the COVID-19 pandemic. Nirmatrelvir (NTV) is an inhibitor of SARS-CoV-2 Mpro that is used in the combination drug Paxlovid for the treatment of mild to moderate COVID-19. However, with increased use of NTV across the globe, there is a possibility that future SARS-CoV-2 lineages will evolve resistance to NTV. Early prediction and monitoring of resistance mutations could allow for measures to slow the spread of resistance and for the development of new compounds with activity against resistant strains. In this work, we have used in silico mutational scanning and inhibitor docking of Mpro to identify potential resistance mutations. Subsequent in vitro experiments revealed five mutations (N142L, E166M, Q189E, Q189I, and Q192T) that reduce the potency of NTV and of a previously identified non-covalent cyclic peptide inhibitor of Mpro. The E166M mutation reduced the half-maximal inhibitory concentration (IC50) of NTV 24-fold and 118-fold for the non-covalent peptide inhibitor. Our findings inform the ongoing genomic surveillance of emerging SARS-CoV-2 lineages.


Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , Drug Resistance, Viral , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/drug therapy , COVID-19/virology , Molecular Docking Simulation , Mutation , Pandemics , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Drug Resistance, Viral/genetics , Coronavirus 3C Proteases/antagonists & inhibitors
8.
Antiviral Res ; 208: 105458, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095047

ABSTRACT

Severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) pose a threat to global public health. The 3C-like main protease (Mpro), which presents structural similarity with the active site domain of enterovirus 3C protease, is one of the best-characterized drug targets of these viruses. Here we studied the antiviral activity of the orally bioavailable enterovirus protease inhibitor AG7404 against SARS-CoV-1 and SARS-CoV-2 from a structural, biochemical, and cellular perspective, comparing it with the related molecule rupintrivir (AG7800). Crystallographic structures of AG7404 in complex with SARS-CoV-1 Mpro and SARS-CoV-2 Mpro and of rupintrivir in complex with SARS-CoV-2 Mpro were solved, revealing that all protein residues interacting with the inhibitors are conserved between the two proteins. A detailed analysis of protein-inhibitor interactions indicates that AG7404 has a better fit to the active site of the target protease than rupintrivir. This observation was further confirmed by biochemical FRET assays showing IC50 values of 47 µM and 101 µM for AG7404 and rupintrivir, respectively, in the case of SARS-CoV-2 Mpro. Equivalent IC50 values for SARS-CoV-1 also revealed greater inhibitory capacity of AG7404, with a value of 29 µM vs. 66 µM for rupintrivir. Finally, the antiviral activity of the two inhibitors against SARS-CoV-2 was confirmed in a human cell culture model of SARS-CoV-2 infection, although rupintrivir showed a higher potency and selectivity index in this assay.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , COVID-19/drug therapy , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation
9.
Sci Rep ; 12(1): 17984, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2087304

ABSTRACT

Parallel cascade selection molecular dynamics-based ligand binding-path sampling (LB-PaCS-MD) was combined with fragment molecular orbital (FMO) calculations to reveal the ligand path from an aqueous solution to the SARS-CoV-2 main protease (Mpro) active site and to customise a ligand-binding pocket suitable for delivering a potent inhibitor. Rubraxanthone exhibited mixed-inhibition antiviral activity against SARS-CoV-2 Mpro, relatively low cytotoxicity, and high cellular inhibition. However, the atomic inhibition mechanism remains ambiguous. LB-PaCS-MD/FMO is a hybrid ligand-binding evaluation method elucidating how rubraxanthone interacts with SARS-CoV-2 Mpro. In the first step, LB-PaCS-MD, which is regarded as a flexible docking, efficiently samples a set of ligand-binding pathways. After that, a reasonable docking pose of LB-PaCS-MD is evaluated by the FMO calculation to elucidate a set of protein-ligand interactions, enabling one to know the binding affinity of a specified ligand with respect to a target protein. A possible conformation was proposed for rubraxanthone binding to the SARS-CoV-2 Mpro active site, and allosteric inhibition was elucidated by combining blind docking with k-means clustering. The interaction profile, key binding residues, and considerable interaction were elucidated for rubraxanthone binding to both Mpro sites. Integrated LB-PaCS-MD/FMO provided a more reasonable complex structure for ligand binding at the SARS-CoV-2 Mpro active site, which is vital for discovering and designing antiviral drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ligands , Protease Inhibitors/chemistry , COVID-19/drug therapy , Viral Nonstructural Proteins/metabolism , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation
10.
Molecules ; 27(20)2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2071650

ABSTRACT

COVID-19 can cause different neurological symptoms in some people, including smell, inability to taste, dizziness, confusion, delirium, seizures, stroke, etc. Owing to the issue of vaccine effectiveness, update and coverage, we still need one or more diversified strategies as the backstop to manage illness. Characterizing the structural basis of ligand recognition in the main protease (Mpro) of SARS-CoV-2 will facilitate its rational design and development of potential drug candidates with high affinity and selectivity against COVID-19. Up to date, covalent-, non-covalent inhibitors and allosteric modulators have been reported to bind to different active sites of Mpro. In the present work, we applied the molecular dynamics (MD) simulations to systematically characterize the potential binding features of catalytic active site and allosteric binding sites in Mpro using a dataset of 163 3D structures of Mpro-inhibitor complexes, in which our results are consistent with the current studies. In addition, umbrella sampling (US) simulations were used to explore the dissociation processes of substrate pathway and allosteric pathway. All the information provided new insights into the protein features of Mpro and will facilitate its rational drug design for COVID-19.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , SARS-CoV-2 , COVID-19/drug therapy , Ligands , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Coronavirus 3C Proteases , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
11.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071505

ABSTRACT

In this article, 34 anticoagulant drugs were screened in silico against the main protease (Mpro) of SARS-CoV-2 using molecular docking tools. Idraparinux, fondaparinux, eptifibatide, heparin, and ticagrelor demonstrated the highest binding affinities towards SARS-CoV-2 Mpro. A molecular dynamics study at 200 ns was also carried out for the most promising anticoagulants to provide insights into the dynamic and thermodynamic properties of promising compounds. Moreover, a quantum mechanical study was also conducted which helped us to attest to some of the molecular docking and dynamics findings. A biological evaluation (in vitro) of the most promising compounds was also performed by carrying out the MTT cytotoxicity assay and the crystal violet assay in order to assess inhibitory concentration 50 (IC50). It is worth noting that ticagrelor displayed the highest intrinsic potential for the inhibition of SARS-CoV-2 with an IC50 value of 5.60 µM and a safety index of 25.33. In addition, fondaparinux sodium and dabigatran showed promising inhibitory activities with IC50 values of 8.60 and 9.40 µM, respectively, and demonstrated safety indexes of 17.60 and 15.10, respectively. Moreover, the inhibitory potential of the SARS-CoV-2 Mpro enzyme was investigated by utilizing the SARS-CoV-2 Mpro assay and using tipranavir as a reference standard. Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained for fondaparinux sodium with an IC50 value of 2.36 µM, surpassing the reference tipranavir (IC50 = 7.38 µM) by more than three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for dabigatran with an IC50 value of 10.59 µM. Finally, an SAR was discussed, counting on the findings of both in vitro and in silico approaches.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/drug therapy , Molecular Docking Simulation , Coronavirus 3C Proteases , Molecular Dynamics Simulation , Fondaparinux , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Dabigatran , Ticagrelor , Eptifibatide , Gentian Violet , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Heparin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
12.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2071502

ABSTRACT

The chymotrypsin-like cysteine protease (3CLpro, also known as main protease-Mpro) and papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as the main targets for screening potential synthetic inhibitors for posterior in vitro evaluation of the most promising compounds. In this sense, the present work reports for the first time the evaluation of the interaction between Mpro/PLpro with a series of 17 porphyrin analogues-corrole (C1), meso-aryl-corrole (C2), and 15 fluorinated-meso-aryl-corrole derivatives (C3-C17) via molecular docking calculations. The impact of fluorine atoms on meso-aryl-corrole structure was also evaluated in terms of binding affinity and physical-chemical properties by two-dimensional quantitative structure-activity relationship (2D-QSAR). The presence of phenyl moieties increased the binding capacity of corrole for both proteases and depending on the position of fluorine atoms might impact positively or negatively the binding capacity. For Mpro the para-fluorine atoms might decrease drastically the binding capacity, while for PLpro there was a certain increase in the binding affinity of fluorinated-corroles with the increase of fluorine atoms into meso-aryl-corrole structure mainly from tri-fluorinated insertions. The 2D-QSAR models indicated two separated regions of higher and lower affinity for Mpro:C1-C17 based on dual electronic parameters (σI and σR), as well as one model was obtained with a correlation between the docking score value of Mpro:C2-C17 and the corresponding 13C nuclear magnetic resonance (NMR) chemical shifts of the sp2 carbon atoms (δC-1 and δC-2) of C2-C17. Overall, the fluorinated-meso-aryl-corrole derivatives showed favorable in silico parameters as potential synthetic compounds for future in vitro assays on the inhibition of SARS-CoV-2 replication.


Subject(s)
COVID-19 , Porphyrins , Antiviral Agents/pharmacology , COVID-19/drug therapy , Carbon , Chymotrypsin , Coronavirus 3C Proteases , Fluorine , Humans , Molecular Docking Simulation , Papain , Peptide Hydrolases , Porphyrins/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , SARS-CoV-2
13.
Molecules ; 27(19)2022 Oct 09.
Article in English | MEDLINE | ID: covidwho-2066287

ABSTRACT

The main protease enzyme (Mpro) of SARS-CoV-2 is one of the most promising targets for COVID-19 treatment. Accordingly, in this work, a structure-based virtual screening of 3.8 million ligand libraries was carried out. After rigorous filtering, docking, and post screening assessments, 78 compounds were selected for biological evaluation, 3 of which showed promising inhibition of the Mpro enzyme. The obtained hits (CB03, GR04, and GR20) had reasonable potencies with Ki values in the medium to high micromolar range. Interestingly, while our most potent hit, GR20, was suggested to act via a reversible covalent mechanism, GR04 was confirmed as a noncompetitive inhibitor that seems to be one of a kind when compared to the other allosteric inhibitors discovered so far. Moreover, all three compounds have small sizes (~300 Da) with interesting fittings in their relevant binding sites, and they possess lead-like characteristics that can introduce them as very attractive candidates for the future development of COVID-19 treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Catalytic Domain , Coronavirus 3C Proteases , Humans , Ligands , Molecular Docking Simulation , Protease Inhibitors/chemistry
14.
J Med Chem ; 65(20): 13852-13865, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2062145

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 3C-like protease (3CLpro) is a promising target for COVID-19 treatment. Here, we report a new class of covalent inhibitors of 3CLpro that possess chlorofluoroacetamide (CFA) as a cysteine-reactive warhead. Based on an aza-peptide scaffold, we synthesized a series of CFA derivatives in enantiopure form and evaluated their biochemical efficiency. The data revealed that 8a (YH-6) with the R configuration at the CFA unit strongly blocks SARS-CoV-2 replication in infected cells, and its potency is comparable to that of nirmatrelvir. X-ray structural analysis showed that YH-6 formed a covalent bond with Cys145 at the catalytic center of 3CLpro. The strong antiviral activity and favorable pharmacokinetic properties of YH-6 suggest its potential as a lead compound for the treatment of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Coronavirus 3C Proteases , COVID-19/drug therapy , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Cysteine , Cysteine Endopeptidases/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptides/chemistry
15.
J Mol Model ; 28(11): 354, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2059878

ABSTRACT

The papain-like protease (PLpro) from SARS-CoV-2 is an important target for the development of antivirals against COVID-19. The safe drug disulfiram (DSF) presents antiviral activity inhibiting PLpro in vitro, and it is under clinical trial studies, indicating to be a promising anti-COVID-19 drug. In this work, we aimed to understand the mechanism of PLpro inhibition by DSF and verify if DSF metabolites and derivatives could be potential inhibitors too. Molecular docking, DFT, and ADMET techniques were applied. The carbamoylation of the active site cysteine residue by DSF metabolite (DETC-MeSO) is kinetically and thermodynamically favorable (ΔG‡ = 3.15 and ΔG = - 12.10 kcal mol-1, respectively). Our results strongly suggest that the sulfoxide metabolites from DSF are promising covalent inhibitors of PLpro and should be tested in in vitro and in vivo assays to confirm their antiviral action.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Clinical Trials as Topic , Computational Chemistry , Cysteine , Disulfiram/metabolism , Disulfiram/pharmacology , Humans , Molecular Docking Simulation , Papain , Peptide Hydrolases , Protease Inhibitors/chemistry , Sulfoxides
16.
J Mol Model ; 28(11): 345, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2059876

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a novel strain of coronavirus first reported in December 2019 which rapidly spread throughout the world and was subsequently declared a pandemic by the World Health Organization (WHO) in March 2020. Although vaccines, as well as treatments, have been rapidly developed and deployed, these are still spread thin, especially in the developing world. There is also a continuing threat of the emergence of mutated variants which may not be as responsive to available vaccines and drugs. Accessible and affordable sources of antiviral drugs against SARS-CoV-2 offer wider options for the clinical treatment of populations at risk for severe COVID-19. Using in silico methods, this study identified potential inhibitors against the SARS-CoV-2 main protease (Mpro), the protease directly responsible for the activation of the viral replication enzyme, from a consolidated database of 1516 Philippine natural products. Molecular docking experiments, along with in silico ADME predictions, determined top ligands from this database with the highest potential inhibitory effects against Mpro. Molecular dynamic trajectories of the apo and diosmetin-7-O-b-D-glucopyranoside (DG) in complex with the protein predicted potential mechanisms of action for the ligand-by separating the Cys145-His41 catalytic dyad and by influencing the protein network through key intra-signaling residues within the Mpro binding site. These findings show the inhibitory potential of DG against the SARS-CoV-2 Mpro, and further validation is recommended through in vitro or in vivo experimentation.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Philippines , Protease Inhibitors/chemistry , SARS-CoV-2 , Viral Nonstructural Proteins
17.
Future Med Chem ; 14(21): 1541-1559, 2022 11.
Article in English | MEDLINE | ID: covidwho-2055773

ABSTRACT

Background: In the recent COVID-19 pandemic, SARS-CoV-2 infection spread worldwide. The 3C-like protease (3CLpro) is a promising drug target for SARS-CoV-2. Results: We constructed a deep learning-based convolutional neural network-quantitative structure-activity relationship (CNN-QSAR) model and deployed it on various databases to predict the biological activity of 3CLpro inhibitors. Subsequently, molecular docking analysis, molecular dynamics simulations and binding free energy calculations were performed to validate the predicted inhibitory activity against 3CLpro of SARS-CoV-2. The model showed mean squared error = 0.114, mean absolute error = 0.24 and predicted R2 = 0.84 for the test dataset. Diosmin showed good binding affinity and stability over the course of the simulations. Conclusion: The results suggest that the proposed CNN-QSAR model can be an efficient method for hit prediction and a new way to identify hit compounds against 3CLpro of SARS-CoV-2.


Subject(s)
COVID-19 , Deep Learning , Humans , SARS-CoV-2 , Quantitative Structure-Activity Relationship , Coronavirus 3C Proteases , Pandemics , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Molecular Dynamics Simulation , Antiviral Agents/pharmacology
18.
J Med Chem ; 65(19): 13328-13342, 2022 10 13.
Article in English | MEDLINE | ID: covidwho-2050247

ABSTRACT

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic. The main protease (Mpro, 3CLpro) of SARS-CoV-2 is a key enzyme that processes polyproteins translated from the viral RNA. Mpro is therefore an attractive target for the design of inhibitors that block viral replication. We report the diastereomeric resolution of the previously designed SARS-CoV-2 Mpro α-ketoamide inhibitor 13b. The pure (S,S,S)-diastereomer, 13b-K, displays an IC50 of 120 nM against the Mpro and EC50 values of 0.8-3.4 µM for antiviral activity in different cell types. Crystal structures have been elucidated for the Mpro complexes with each of the major diastereomers, the active (S,S,S)-13b (13b-K), and the nearly inactive (R,S,S)-13b (13b-H); results for the latter reveal a novel binding mode. Pharmacokinetic studies show good levels of 13b-K after inhalative as well as after peroral administration. The active inhibitor (13b-K) is a promising candidate for further development as an antiviral treatment for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Pandemics , Polyproteins , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , RNA, Viral , Viral Nonstructural Proteins/metabolism
19.
J Med Chem ; 65(19): 12500-12534, 2022 10 13.
Article in English | MEDLINE | ID: covidwho-2050246

ABSTRACT

The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.


Subject(s)
COVID-19 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Structure-Activity Relationship , Viral Nonstructural Proteins
20.
Int J Biol Macromol ; 222(Pt A): 1015-1026, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2049273

ABSTRACT

Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 µM and CC50 of 61.3 ± 0.1 µM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.


Subject(s)
Biflavonoids , COVID-19 , Humans , SARS-CoV-2 , Coronavirus 3C Proteases , Biflavonoids/pharmacology , Peptide Hydrolases , COVID-19/drug therapy , Antiviral Agents/chemistry , Protease Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL