Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
STAR Protoc ; 3(2): 101254, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1783844

ABSTRACT

The present protocol describes the computational design of the SARS-CoV-2 receptor binding motif (RBD) to identify mutations that can potentially improve binding affinity for the human ACE2 (hACE2) receptor. We focus on four positions located at the interface with the hACE2 receptor in the RBD:hACE2 complex. We conduct the design with a high-throughput computational protein design (CPD) program, Proteus, incorporating an adaptive Monte Carlo (MC) protocol that promotes the selection of sequences with good binding affinities. For complete details on the use and execution of this protocol, please refer to Polydorides and Archontis (2021).


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , SARS-CoV-2 , Humans , Protein Binding/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Molecules ; 27(7)2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1776293

ABSTRACT

The SARS-CoV-2 virus, since its appearance in 2019, has caused millions of cases and deaths. To date, there is no effective treatment or a vaccine that is fully protective. Despite the efforts made by governments and health institutions around the globe to control its propagation, the evolution of the virus has accelerated, diverging into hundreds of variants. However, not all of them are variants of concern (VoC's). VoC's have appeared in different regions and throughout the two years of the pandemic they have spread around the world. Specifically, in South America, the gamma variant (previously known as P.1) appeared in early 2021, bringing with it a second wave of infections. This variant contains the N501Y, E484K and K417T mutations in the receptor binding domain (RBD) of the spike protein. Although these mutations have been described experimentally, there is still no clarity regarding their role in the stabilization of the complex with the human angiotensin converting enzyme 2 (hACE-2) receptor. In this article we dissect the influence of mutations on the interaction with the hACE-2 receptor using molecular dynamics and estimations of binding affinity through a screened version of the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) and interaction entropy. Our results indicate that mutations E484K and K417T compensate each other in terms of binding affinity, while the mutation N501Y promotes a more convoluted effect. This effect consists in the adoption of a cis configuration in the backbone of residue Y495 within the RBD, which in turn promotes polar interactions with the hACE-2 receptor. These results not only correlate with experimental observations and complement previous knowledge, but also expose new features associated with the specific contribution of concerned mutations. Additionally, we propose a recipe to assess the residue-specific contribution to the interaction entropy.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipates , Angiotensin-Converting Enzyme 2/genetics , Humans , Molecular Dynamics Simulation , Mutation , Protein Binding/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Succinates
3.
J Med Virol ; 94(4): 1738-1744, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1718408

ABSTRACT

As the latest identified novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC), the influence of Omicron on our globe grows promptly. Compared with the last VOC (Delta variant), more mutations were identified, which may address the characteristics of Omicron. Considering these crucial mutations and their implications including an increase in transmissibility, COVID-19 severity, and reduction of efficacy of currently available diagnostics, vaccines, and therapeutics, Omicron has been classified as one of the VOC. Notably, 15 of these mutations reside in the receptor-binding domain of spike glycoprotein, which may alter transmissibility, infectivity, neutralizing antibody escape, and vaccine breakthrough cases of COVID-19. Therefore, our present study characterizes the mutational hotspots of the Omicron variant in comparison with the Delta variant of SARS-CoV-2. Furthermore, detailed information was analyzed to characterize the global perspective of Omicron, including transmission dynamic, effect on testing, and immunity, which shall promote the progress of the clinical application and basic research. Collectively, our data suggest that due to continuous variation in the spike glycoprotein sequences, the use of coronavirus-specific attachment inhibitors may not be the current choice of therapy for emerging SARS-CoV-2 VOCs. Hence, we need to proceed with a sense of urgency in this matter.


Subject(s)
SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , Humans , Immune Evasion/genetics , Mutation , Phylogeny , Prevalence , Protein Binding/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination , Virus Attachment
4.
Nat Commun ; 13(1): 871, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692611

ABSTRACT

The SARS-CoV-2 Delta variant is currently the dominant circulating strain in the world. Uncovering the structural basis of the enhanced transmission and altered immune sensitivity of Delta is particularly important. Here we present cryo-EM structures revealing two conformational states of Delta spike and S/ACE2 complex in four states. Our cryo-EM analysis suggests that RBD destabilizations lead to population shift towards the more RBD-up and S1 destabilized fusion-prone state, beneficial for engagement with ACE2 and shedding of S1. Noteworthy, we find the Delta T478K substitution plays a vital role in stabilizing and reshaping the RBM loop473-490, enhancing interaction with ACE2. Collectively, increased propensity for more RBD-up states and the affinity-enhancing T478K substitution together contribute to increased ACE2 binding, providing structural basis of rapid spread of Delta. Moreover, we identify a previously generated MAb 8D3 as a cross-variant broadly neutralizing antibody and reveal that 8D3 binding induces a large K478 side-chain orientation change, suggesting 8D3 may use an "induced-fit" mechanism to tolerate Delta T478K mutation. We also find that all five RBD-targeting MAbs tested remain effective on Delta, suggesting that Delta well preserves the neutralizing antigenic landscape in RBD. Our findings shed new lights on the pathogenicity and antibody neutralization of Delta.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , COVID-19/transmission , Protein Domains/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/genetics , Antibodies, Viral/immunology , Binding Sites , Broadly Neutralizing Antibodies/immunology , Cryoelectron Microscopy , Humans , Immunoglobulin Fab Fragments/immunology , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
5.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1578079

ABSTRACT

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Subject(s)
Mammals/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , Cell Line , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , Humans , Mammals/immunology , Protein Binding/genetics , Protein Binding/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
6.
Nat Commun ; 12(1): 3172, 2021 05 26.
Article in English | MEDLINE | ID: covidwho-1550281

ABSTRACT

Secreted class 3 semaphorins (Sema3s) form tripartite complexes with the plexin receptor and neuropilin coreceptor, which are both transmembrane proteins that together mediate semaphorin signal for neuronal axon guidance and other processes. Despite extensive investigations, the overall architecture of and the molecular interactions in the Sema3/plexin/neuropilin complex are incompletely understood. Here we present the cryo-EM structure of a near intact extracellular region complex of Sema3A, PlexinA4 and Neuropilin 1 (Nrp1) at 3.7 Å resolution. The structure shows a large symmetric 2:2:2 assembly in which each subunit makes multiple interactions with others. The two PlexinA4 molecules in the complex do not interact directly, but their membrane proximal regions are close to each other and poised to promote the formation of the intracellular active dimer for signaling. The structure reveals a previously unknown interface between the a2b1b2 module in Nrp1 and the Sema domain of Sema3A. This interaction places the a2b1b2 module at the top of the complex, far away from the plasma membrane where the transmembrane regions of Nrp1 and PlexinA4 embed. As a result, the region following the a2b1b2 module in Nrp1 must span a large distance to allow the connection to the transmembrane region, suggesting an essential role for the long non-conserved linkers and the MAM domain in neuropilin in the semaphorin/plexin/neuropilin complex.


Subject(s)
Nerve Tissue Proteins/ultrastructure , Neuropilin-1/ultrastructure , Receptors, Cell Surface/ultrastructure , Semaphorin-3A/ultrastructure , Animals , COS Cells , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/isolation & purification , Nerve Tissue Proteins/metabolism , Neuropilin-1/genetics , Neuropilin-1/isolation & purification , Neuropilin-1/metabolism , Protein Binding/genetics , Protein Domains/genetics , Protein Multimerization/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/isolation & purification , Receptors, Cell Surface/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Semaphorin-3A/genetics , Semaphorin-3A/isolation & purification , Semaphorin-3A/metabolism
7.
Signal Transduct Target Ther ; 6(1): 396, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1517609

ABSTRACT

Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Glycosylation , Humans , Peptidyl-Dipeptidase A/genetics , Protein Binding/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Envelope Proteins/genetics , Viral Matrix Proteins/genetics
8.
Viruses ; 13(10)2021 10 13.
Article in English | MEDLINE | ID: covidwho-1481011

ABSTRACT

Human noroviruses are a common pathogen causing acute gastroenteritis worldwide. Among all norovirus genotypes, GII.3 is particularly prevalent in the pediatric population. Here we report the identification of two distinct blockade antibody epitopes on the GII.3 capsid. We generated a panel of monoclonal antibodies (mAbs) from mice immunized with virus-like particle (VLP) of a GII.3 cluster 3 strain. Two of these mAbs, namely 8C7 and 8D1, specifically bound the parental GII.3 VLP but not VLPs of GII.4, GII.17, or GI.1. In addition, 8C7 and 8D1 efficiently blocked GII.3 VLP binding with its ligand, histo-blood group antigens (HBGA). These data demonstrate that 8C7 and 8D1 are GII.3-specific blockade antibodies. By using a series of chimeric VLPs, we mapped the epitopes of 8C7 and 8D1 to residues 385-400 and 401-420 of the VP1 capsid protein, respectively. These two blockade antibody epitopes are highly conserved among GII.3 cluster 3 strains. Structural modeling shows that the 8C7 epitope partially overlaps with the HBGA binding site (HBS) while the 8D1 epitope is spatially adjacent to HBS. These findings may enhance our understanding of the immunology and evolution of GII.3 noroviruses.


Subject(s)
Norovirus/genetics , Norovirus/immunology , Amino Acid Sequence , Animals , Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , Blood Group Antigens/genetics , Caliciviridae Infections/genetics , Capsid/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Epitopes/genetics , Epitopes/immunology , Gastroenteritis/virology , Genotype , Humans , Mice , Protein Binding/genetics , Protein Binding/immunology , Protein Domains/genetics
9.
Chembiochem ; 23(7): e202100393, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1479386

ABSTRACT

Specific S477N, N501Y, K417N, K417T, E484K mutations in the receptor binding domain (RBD) of the spike protein in the wild type SARS-COV-2 virus have resulted, among others, in the following variants: B.1.160 (20A or EU2, first reported in continental Europe), B1.1.7 (α or 20I501Y.V1, first reported in the United Kingdom), B.1.351 (ß or 20H/501Y.V2, first reported in South Africa), B.1.1.28.1 (γ or P.1 or 20J/501Y.V3, first reported in Brazil), and B.1.1.28.2 (ζ, or P.2 or 20B/S484K, also first reported in Brazil). From the analysis of a set of bonding descriptors firmly rooted in the formalism of quantum mechanics, including Natural Bond Orbitals (NBO), Quantum Theory of Atoms In Molecules (QTAIM) and highly correlated energies within the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)), and from a set of computed electronic spectral patterns with environmental effects, we show that the new variants improve their ability to recognize available sites to either hydrogen bond or to form salt bridges with residues in the ACE2 receptor of the host cells. This results in significantly improved initial virus⋅⋅⋅cell molecular recognition and attachment at the microscopic level, which trigger the infectious cycle.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Protein Binding/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
10.
Viruses ; 13(10)2021 09 30.
Article in English | MEDLINE | ID: covidwho-1444331

ABSTRACT

Both the SARS-CoV-2 pandemic and emergence of variants of concern have highlighted the need for functional antibody assays to monitor the humoral response over time. Antibodies directed against the spike (S) protein of SARS-CoV-2 are an important component of the neutralizing antibody response. In this work, we report that in a subset of patients-despite a decline in total S-specific antibodies-neutralizing antibody titers remain at a similar level for an average of 98 days in longitudinal sampling of a cohort of 59 Hispanic/Latino patients exposed to SARS-CoV-2. Our data suggest that 100% of seroconverting patients make detectable neutralizing antibody responses which can be quantified by a surrogate viral neutralization test. Examination of sera from ten out of the 59 subjects which received mRNA-based vaccination revealed that both IgG titers and neutralizing activity of sera were higher after vaccination compared to a cohort of 21 SARS-CoV-2 naïve subjects. One dose was sufficient for the induction of a neutralizing antibody, but two doses were necessary to reach 100% surrogate virus neutralization in subjects irrespective of previous SARS-CoV-2 natural infection status. Like the pattern observed after natural infection, the total anti-S antibodies titers declined after the second vaccine dose; however, neutralizing activity remained relatively constant for more than 80 days after the first vaccine dose. Furthermore, our data indicates that-compared with mRNA vaccination-natural infection induces a more robust humoral immune response in unexposed subjects. This work is an important contribution to understanding the natural immune response to the novel coronavirus in a population severely impacted by SARS-CoV-2. Furthermore, by comparing the dynamics of the immune response after the natural infection vs. the vaccination, these findings suggest that functional neutralizing antibody tests are more relevant indicators than the presence or absence of binding antibodies.


Subject(s)
Immunity, Humoral/physiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/physiology , Adult , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/physiopathology , COVID-19 Vaccines/immunology , Female , Follow-Up Studies , Humans , Immunity, Humoral/genetics , Immunity, Humoral/immunology , Male , Middle Aged , Protein Binding/genetics , Protein Domains/genetics , Puerto Rico/epidemiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
11.
Nat Commun ; 12(1): 5654, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440471

ABSTRACT

There is an urgent need for animal models to study SARS-CoV-2 pathogenicity. Here, we generate and characterize a novel mouse-adapted SARS-CoV-2 strain, MASCp36, that causes severe respiratory symptoms, and mortality. Our model exhibits age- and gender-related mortality akin to severe COVID-19. Deep sequencing identified three amino acid substitutions, N501Y, Q493H, and K417N, at the receptor binding domain (RBD) of MASCp36, during in vivo passaging. All three RBD mutations significantly enhance binding affinity to its endogenous receptor, ACE2. Cryo-electron microscopy analysis of human ACE2 (hACE2), or mouse ACE2 (mACE2), in complex with the RBD of MASCp36, at 3.1 to 3.7 Å resolution, reveals the molecular basis for the receptor-binding switch. N501Y and Q493H enhance the binding affinity to hACE2, whereas triple mutations at N501Y/Q493H/K417N decrease affinity and reduce infectivity of MASCp36. Our study provides a platform for studying SARS-CoV-2 pathogenesis, and unveils the molecular mechanism for its rapid adaptation and evolution.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites/genetics , COVID-19/mortality , COVID-19/virology , Disease Models, Animal , Female , Humans , Male , Mice , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/genetics , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics
12.
Sci Rep ; 11(1): 18847, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434148

ABSTRACT

As the SARS-CoV-2 has spread and the pandemic has dragged on, the virus continued to evolve rapidly resulting in the emergence of new highly transmissible variants that can be of public health concern. The evolutionary mechanisms that drove this rapid diversity are not well understood but neutral evolution should open the first insight. The neutral theory of evolution states that most mutations in the nucleic acid sequences are random and they can be fixed or disappear by purifying selection. Herein, we performed a neutrality test to better understand the selective pressures exerted over SARS-CoV-2 spike protein from homologue proteins of Betacoronavirus, as well as to the spikes from human clinical isolates of the virus. Specifically, Tyr and Asn have higher occurrence rates on the Receptor Binding Domain (RBD) and in the overall sequence of spike proteins of Betacoronavirus, whereas His and Arg have lower occurrence rates. The in vivo evolutionary phenomenon of SARS-CoV-2 shows that Glu, Lys, Phe, and Val have the highest probability of occurrence in the emergent viral particles. Amino acids that have higher occurrence than the expected by the neutral control, are favorable and are fixed in the sequence while the ones that have lower occurrence than expected, influence the stability and/or functionality of the protein. Our results show that most unique mutations either for SARS-CoV-2 or its variants of health concern are under selective pressures, which could be related either to the evasion of the immune system, increasing the virus' fitness or altering protein - protein interactions with host proteins. We explored the consequences of those selected mutations in the structure and protein - protein interaction with the receptor. Altogether all these forces have shaped the spike protein and the continually evolving variants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Amino Acids/chemistry , Amino Acids/genetics , Angiotensin-Converting Enzyme 2/chemistry , Betacoronavirus/genetics , Evolution, Molecular , Genetic Drift , Glycosylation , Humans , Models, Theoretical , Mutation , Protein Binding/genetics , Spike Glycoprotein, Coronavirus/chemistry
13.
Cell Rep ; 36(13): 109754, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1401298

ABSTRACT

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/ultrastructure , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , Binding Sites/genetics , COVID-19/genetics , COVID-19/metabolism , Coronavirus Papain-Like Proteases/genetics , HEK293 Cells , Humans , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Binding/genetics , SARS-CoV-2/metabolism , Substrate Specificity/genetics , Ubiquitin/metabolism , Ubiquitins/metabolism , Viral Proteins/metabolism
14.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1387101

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
15.
Protein Expr Purif ; 179: 105802, 2021 03.
Article in English | MEDLINE | ID: covidwho-1386444

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes. Through this investigation, we developed a simplified and robust purification strategy that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA. These improved reagents and processes produce high-quality proteins which are functional in serology assays and can be used to investigate seropositivity to SARS-CoV-2 infection.


Subject(s)
COVID-19/blood , Protein Domains/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/isolation & purification , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Humans , Protein Binding/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics
16.
J Proteome Res ; 19(12): 4844-4856, 2020 12 04.
Article in English | MEDLINE | ID: covidwho-1387125

ABSTRACT

Despite considerable research progress on SARS-CoV-2, the direct zoonotic origin (intermediate host) of the virus remains ambiguous. The most definitive approach to identify the intermediate host would be the detection of SARS-CoV-2-like coronaviruses in wild animals. However, due to the high number of animal species, it is not feasible to screen all the species in the laboratory. Given that binding to ACE2 proteins is the first step for the coronaviruses to invade host cells, we propose a computational pipeline to identify potential intermediate hosts of SARS-CoV-2 by modeling the binding affinity between the Spike receptor-binding domain (RBD) and host ACE2. Using this pipeline, we systematically examined 285 ACE2 variants from mammals, birds, fish, reptiles, and amphibians, and found that the binding energies calculated for the modeled Spike-RBD/ACE2 complex structures correlated closely with the effectiveness of animal infection as determined by multiple experimental data sets. Built on the optimized binding affinity cutoff, we suggest a set of 96 mammals, including 48 experimentally investigated ones, which are permissive to SARS-CoV-2, with candidates from primates, rodents, and carnivores at the highest risk of infection. Overall, this work not only suggests a limited range of potential intermediate SARS-CoV-2 hosts for further experimental investigation, but also, more importantly, it proposes a new structure-based approach to general zoonotic origin and susceptibility analyses that are critical for human infectious disease control and wildlife protection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Binding Sites/genetics , COVID-19/pathology , COVID-19/virology , Host-Pathogen Interactions/genetics , Humans , Mammals/genetics , Mammals/virology , Pandemics , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/pathogenicity , Viral Zoonoses/genetics , Viral Zoonoses/virology
17.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1379976

ABSTRACT

Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational peptide design. It was deduced from empirical observations that peptides consisting of complementary (sense and antisense) amino acids interact with higher probability and affinity than the randomly selected ones. This phenomenon is closely related to the structure of the standard genetic code table, and at the same time, is unrelated to the direction of its codon sequence translation. The concept of complementary peptide interaction is discussed, and its possible applications to diagnostic tests and bioengineering research are summarized. Problems and difficulties that may arise using APT are discussed, and possible solutions are proposed. The methodology was tested on the example of SARS-CoV-2. It is shown that the CABS-dock server accurately predicts the binding of antisense peptides to the SARS-CoV-2 receptor binding domain without requiring predefinition of the binding site. It is concluded that the benefits of APT outweigh the costs of random peptide screening and could lead to considerable savings in time and resources, especially if combined with other computational and immunochemical methods.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Peptides/metabolism , Protein Engineering/methods , Spike Glycoprotein, Coronavirus/isolation & purification , Algorithms , Amino Acid Sequence/genetics , Binding Sites/genetics , COVID-19/blood , COVID-19/virology , Humans , Immunochemistry/methods , Molecular Docking Simulation , Peptides/genetics , Protein Binding/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
18.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374427

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent of the COVID19 pandemic. The SARS-CoV-2 genome encodes for a small accessory protein termed Orf9b, which targets the mitochondrial outer membrane protein TOM70 in infected cells. TOM70 is involved in a signaling cascade that ultimately leads to the induction of type I interferons (IFN-I). This cascade depends on the recruitment of Hsp90-bound proteins to the N-terminal domain of TOM70. Binding of Orf9b to TOM70 decreases the expression of IFN-I; however, the underlying mechanism remains elusive. We show that the binding of Orf9b to TOM70 inhibits the recruitment of Hsp90 and chaperone-associated proteins. We characterized the binding site of Orf9b within the C-terminal domain of TOM70 and found that a serine in position 53 of Orf9b and a glutamate in position 477 of TOM70 are crucial for the association of both proteins. A phosphomimetic variant Orf9bS53E showed drastically reduced binding to TOM70 and did not inhibit Hsp90 recruitment, suggesting that Orf9b-TOM70 complex formation is regulated by phosphorylation. Eventually, we identified the N-terminal TPR domain of TOM70 as a second binding site for Orf9b, which indicates a so far unobserved contribution of chaperones in the mitochondrial targeting of the viral protein.


Subject(s)
COVID-19/transmission , Coronavirus Nucleocapsid Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , SARS-CoV-2/pathogenicity , Animals , Binding Sites/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/isolation & purification , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/isolation & purification , Mutation , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Protein Binding/genetics , Protein Binding/immunology , Protein Domains/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
19.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1367012

ABSTRACT

Accurate prediction of immunogenic peptide recognized by T cell receptor (TCR) can greatly benefit vaccine development and cancer immunotherapy. However, identifying immunogenic peptides accurately is still a huge challenge. Most of the antigen peptides predicted in silico fail to elicit immune responses in vivo without considering TCR as a key factor. This inevitably causes costly and time-consuming experimental validation test for predicted antigens. Therefore, it is necessary to develop novel computational methods for precisely and effectively predicting immunogenic peptide recognized by TCR. Here, we described DLpTCR, a multimodal ensemble deep learning framework for predicting the likelihood of interaction between single/paired chain(s) of TCR and peptide presented by major histocompatibility complex molecules. To investigate the generality and robustness of the proposed model, COVID-19 data and IEDB data were constructed for independent evaluation. The DLpTCR model exhibited high predictive power with area under the curve up to 0.91 on COVID-19 data while predicting the interaction between peptide and single TCR chain. Additionally, the DLpTCR model achieved the overall accuracy of 81.03% on IEDB data while predicting the interaction between peptide and paired TCR chains. The results demonstrate that DLpTCR has the ability to learn general interaction rules and generalize to antigen peptide recognition by TCR. A user-friendly webserver is available at http://jianglab.org.cn/DLpTCR/. Additionally, a stand-alone software package that can be downloaded from https://github.com/jiangBiolab/DLpTCR.


Subject(s)
COVID-19/drug therapy , Epitopes/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Amino Acid Sequence/genetics , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Computer Simulation , Deep Learning , Epitopes/genetics , Humans , Peptides/genetics , Peptides/therapeutic use , Protein Binding/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Software
20.
Mol Cell ; 81(17): 3650-3658.e5, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1356368

ABSTRACT

CRISPR-inspired systems have been extensively developed for applications in genome editing and nucleic acid detection. Here, we introduce a CRISPR-based peptide display technology to facilitate customized, high-throughput in vitro protein interaction studies. We show that bespoke peptide libraries fused to catalytically inactive Cas9 (dCas9) and barcoded with unique single guide RNA (sgRNA) molecules self-assemble from a single mixed pool to programmable positions on a DNA microarray surface for rapid, multiplexed binding assays. We develop dCas9-displayed saturation mutagenesis libraries to characterize antibody-epitope binding for a commercial anti-FLAG monoclonal antibody and human serum antibodies. We also show that our platform can be used for viral epitope mapping and exhibits promise as a multiplexed diagnostics tool. Our CRISPR-based peptide display platform and the principles of complex library self-assembly using dCas9 could be adapted for rapid interrogation of varied customized protein libraries or biological materials assembly using DNA scaffolding.


Subject(s)
Epitopes/genetics , Gene Editing/methods , Peptide Library , RNA, Guide/genetics , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , Epitopes/immunology , Humans , Mutagenesis/genetics , Protein Binding/genetics , Protein Binding/immunology , RNA, Guide/immunology
SELECTION OF CITATIONS
SEARCH DETAIL