ABSTRACT
Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in maintaining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the pathogenesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug-drug interactions and adverse effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.
Subject(s)
COVID-19 Drug Treatment , COVID-19/physiopathology , Factor Xa Inhibitors/pharmacology , Factor Xa Inhibitors/therapeutic use , Blood Coagulation/drug effects , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/physiopathology , Cytokines/biosynthesis , Drug Interactions , Factor Xa/metabolism , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/pharmacokinetics , Half-Life , Humans , Inflammation Mediators/metabolism , Metabolic Clearance Rate , Multiple Organ Failure/physiopathology , Multiple Organ Failure/prevention & control , Pandemics , Protein Binding/physiology , SARS-CoV-2 , Severity of Illness IndexABSTRACT
Severe acute respiratory syndrome virus 2 (SARS-CoV-2) belongs to the single-stranded positive-sense RNA family. The virus contains a large genome that encodes four structural proteins, small envelope (E), matrix (M), nucleocapsid phosphoprotein (N), spike (S), and 16 nonstructural proteins (nsp1-16) that together, ensure replication of the virus in the host cell. Among these proteins, the interactions of N and Nsp3 are essential that links the viral genome for processing. The N proteins reside at CoV RNA synthesis sites known as the replication-transcription complexes (RTCs). The N-terminal of N has RNA-binding domain (N-NTD), capturing the RNA genome while the C-terminal domain (N-CTD) anchors the viral Nsp3, a component of RTCs. Although the structural information has been recently released, the residues involved in contacts between N-CTD with Nsp3 are still unknown. To find the residues involved in interactions between two proteins, three-dimensional structures of both proteins were retrieved and docked using HADDOCK. Residues at N-CTD were detected in interaction with L499, R500, K501, V502, P503, T504, D505, N506, Y507, I508, T509, K529, K530K532, S533 of Nsp3 and N-NTD to synthesize SARS-CoV-2 RNA. The interaction between Nsp3 and CTD of N protein may be a potential drug target. The current study provides information for better understanding the interaction between N protein and Nsp3 that could be a possible target for future inhibitors.
Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Papain-Like Proteases/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Computer Simulation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Papain-Like Proteases/genetics , Crystallography, X-Ray , Drug Design , Genome, Viral , Humans , Molecular Docking Simulation , Nucleocapsid/metabolism , Protein Binding/physiology , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/genetics , COVID-19 Drug TreatmentABSTRACT
Boffito et al. recalled the critical importance to correctly interpret protein binding. Changes of lopinavir pharmacokinetics in coronavirus disease 2019 (COVID-19) are a perfect illustration. Indeed, several studies described that total lopinavir plasma concentrations were considerably higher in patients with severe COVID-19 than those reported in patients with HIV. These findings have led to a reduction of the dose of lopinavir in some patients, hypothesizing an inhibitory effect of inflammation on lopinavir metabolism. Unfortunately, changes in plasma protein binding were never investigated. We performed a retrospective cohort study. Data were collected from the medical records of patients hospitalized for COVID-19 treated with lopinavir/ritonavir in intensive care units or infectious disease departments of Toulouse University Hospital (France). Total and unbound concentrations of lopinavir, C reactive protein, albumin, and alpha-1-acid glycoprotein (AAG) levels were measured during routine care on the same samples. In patients with COVID-19, increased total lopinavir concentration is the result of an increased AAG-bound lopinavir concentration, whereas the unbound concentration remains constant, and insufficient to reduce the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral load. Although international guidelines have recently recommended against using lopinavir/ritonavir to treat severe COVID-19, the description of lopinavir pharmacokinetics changes in COVID-19 is a textbook case of the high risk of misinterpretation of a total drug exposure when changes in protein binding are not taken into consideration.
Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , Lopinavir/pharmacokinetics , Plasma/physiology , Protein Binding/physiology , Aged , Albumins/metabolism , Antiviral Agents/therapeutic use , C-Reactive Protein/metabolism , Female , Glycoproteins/metabolism , Humans , Lopinavir/therapeutic use , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Viral LoadABSTRACT
MOTIVATION: Beside socio-economic issues, coronavirus pandemic COVID-19, the infectious disease caused by the newly discovered coronavirus SARS-CoV-2, has caused a deep impact in the scientific community, that has considerably increased its effort to discover the infection strategies of the new virus. Among the extensive and crucial research that has been carried out in the last months, the analysis of the virus-host relationship plays an important role in drug discovery. Virus-host protein-protein interactions are the active agents in virus replication, and the analysis of virus-host protein-protein interaction networks is fundamental to the study of the virus-host relationship. RESULTS: We have adapted and implemented a recent integer linear programming model for protein-protein interaction network alignment to virus-host networks, and obtained a consensus alignment of the SARS-CoV-1 and SARS-CoV-2 virus-host protein-protein interaction networks. Despite the lack of shared human proteins in these virus-host networks, and the low number of preserved virus-host interactions, the consensus alignment revealed aligned human proteins that share a function related to viral infection, as well as human proteins of high functional similarity that interact with SARS-CoV-1 and SARS-CoV-2 proteins, whose alignment would preserve these virus-host interactions.
Subject(s)
Host Microbial Interactions/physiology , Protein Interaction Maps/physiology , SARS-CoV-2/metabolism , COVID-19/virology , Coronavirus/metabolism , Coronavirus Infections/virology , Humans , Models, Theoretical , Pandemics , Pneumonia, Viral/virology , Programming, Linear , Protein Binding/physiology , Proteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/physiologyABSTRACT
Cell entry, the fundamental step in cross-species transmission of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), is initiated by the recognition of the host cell angiotensin-converting enzyme-2 (ACE2) receptor by the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. To date, several peptides have been proposed against SARS-CoV-2 both as inhibitor agents or as detection tools that can also be attached to the surfaces of nanoparticle carriers. But owing to their natural amino acid sequences, such peptides cannot be considered as efficient therapeutic candidates from a biostability point of view. This discussion demonstrates the design strategy of synthetic nonprotein amino acid substituted peptides with enhanced biostability and binding affinity, the implication of which can make those peptides potential therapeutic agents for inhibition and simple detection tools.
Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Design , Peptide Fragments/therapeutic use , Pneumonia, Viral/drug therapy , Amino Acid Sequence , Antiviral Agents/metabolism , Betacoronavirus/drug effects , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Humans , Pandemics , Peptide Fragments/genetics , Peptide Fragments/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , Protein Binding/physiology , SARS-CoV-2 , Sequence Analysis, Protein/methodsABSTRACT
SARS-CoV-2 disease (COVID-19) has affected over 22 million patients worldwide as of August 2020. As the medical community seeks better understanding of the underlying pathophysiology of COVID-19, several theories have been proposed. One widely shared theory suggests that SARS-CoV-2 proteins directly interact with human hemoglobin (Hb) and facilitate removal of iron from the heme prosthetic group, leading to the loss of functional hemoglobin and accumulation of iron. Herein, we refute this theory. We compared clinical data from 21 critically ill COVID-19 patients to 21 non-COVID-19 ARDS patient controls, generating hemoglobin-oxygen dissociation curves from venous blood gases. This curve generated from the COVID-19 cohort matched the idealized oxygen-hemoglobin dissociation curve well (Pearson correlation, R2 = 0.97, P.
Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Hemoglobins/metabolism , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Adult , Aged , COVID-19 , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Protein Binding/physiology , SARS-CoV-2ABSTRACT
We show that waveguide sensors can enable a quantitative characterization of coronavirus spike glycoprotein-host-receptor binding-the process whereby coronaviruses enter human cells, causing disease. We demonstrate that such sensors can help quantify and eventually understand kinetic and thermodynamic properties of viruses that control their affinity to targeted cells, which is known to significantly vary in the course of virus evolution, e.g., from SARS-CoV to SARS-CoV-2, making the development of virus-specific drugs and vaccine difficult. With the binding rate constants and thermodynamic parameters as suggested by the latest SARS-CoV-2 research, optical sensors of SARS-CoV-2 spike protein-receptor binding may be within sight.
Subject(s)
Betacoronavirus , Biosensing Techniques , Coronavirus Infections , Optics and Photonics/instrumentation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19 , Humans , Protein Binding/physiology , SARS-CoV-2ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta coronavirus that uses the human angiotensin-converting enzyme 2 (ACE2) receptor as a point of entry. The present review discusses the origin and structure of the virus and its mechanism of cell entry followed by the therapeutic potentials of strategies directed towards SARS-CoV2-ACE2 binding, the renin-angiotensin system, and the kinin-kallikrein system. SARS-CoV2-ACE2 binding-directed approaches mainly consist of targeting receptor binding domain, ACE2 blockers, soluble ACE2, and host protease inhibitors. In conclusion, blocking or manipulating the SARS-CoV2-ACE2 binding interface perhaps offers the best tactic against the virus that should be treated as a fundamental subject of future research.
Subject(s)
Betacoronavirus/physiology , Coronavirus Infections , Drug Discovery/methods , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protein Binding/drug effects , Protein Binding/physiology , Receptors, Virus/metabolism , SARS-CoV-2ABSTRACT
Severe acute respiratory syndrome coronavirus (SARS-CoV), an enveloped virus with a positive-sense single-stranded RNA genome, facilitates the host cell entry through intricate interactions with proteins and lipids of the cell membrane. The detailed molecular mechanism involves binding to the host cell receptor and fusion at the plasma membrane or after being trafficked to late endosomes under favorable environmental conditions. A crucial event in the process is the proteolytic cleavage of the viral spike protein by the host's endogenous proteases that releases the fusion peptide enabling fusion with the host cellular membrane system. The present review details the mechanism of viral fusion with the host and highlights the therapeutic options that prevent SARS-CoV-2 entry in humans.