Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1664751

ABSTRACT

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Subject(s)
Anticoagulants/pharmacology , Aptamers, Nucleotide/pharmacology , Blood Coagulation/drug effects , Factor V/antagonists & inhibitors , Factor Va/antagonists & inhibitors , Amino Acid Sequence , Anticoagulants/chemistry , Anticoagulants/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Base Pairing , Binding Sites , COVID-19/blood , COVID-19/drug therapy , Cell Membrane/chemistry , Cell Membrane/metabolism , Factor V/chemistry , Factor V/genetics , Factor V/metabolism , Factor Va/chemistry , Factor Va/genetics , Factor Va/metabolism , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Humans , Immune Sera/chemistry , Immune Sera/metabolism , Models, Molecular , Nucleic Acid Conformation , Protamines , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , SELEX Aptamer Technique , Substrate Specificity
2.
Signal Transduct Target Ther ; 7(1): 23, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1655541
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1650946

ABSTRACT

The development of small-molecules targeting different components of SARS-CoV-2 is a key strategy to complement antibody-based treatments and vaccination campaigns in managing the COVID-19 pandemic. Here, we show that two thiol-based chemical probes that act as reducing agents, P2119 and P2165, inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, the angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity to the reduction of key disulfides, specifically by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol-reducing moiety pointed directly toward Cys432. These collective findings establish the vulnerability of human coronaviruses to thiol-based chemical probes and lay the groundwork for developing compounds of this class, as a strategy to inhibit the SARS-CoV-2 infection by shifting the spike glycoprotein redox scaffold.


Subject(s)
Amino Alcohols/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/pharmacology , Phenyl Ethers/pharmacology , Receptors, Virus/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Sulfhydryl Compounds/pharmacology , Allosteric Regulation , Amino Alcohols/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Cell Line , Disulfides/antagonists & inhibitors , Disulfides/chemistry , Disulfides/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Oxidation-Reduction , Phenyl Ethers/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Sulfhydryl Compounds/chemistry
4.
J Mol Model ; 27(11): 323, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1525539

ABSTRACT

The world has face the COVID-19 pandemic which has already caused millions of death. Due to the urgency in fighting the virus, we study five residues of free amino acids present in the structure of the SARS-CoV-2 spike protein (S). We investigated the spontaneous interaction between amino acids and silver ions (Ag+), considering these ions as a virucide chemical agent for SARS-CoV-2. The amino acid-Ag+ systems were investigated in a gaseous medium and a simulated water environment was described with a continuum model (PCM) the calculations were performed within the framework of density functional theory (DFT). Calculations related to the occupied orbitals of higher energy showed that Ag+ has a tendency to interact with the nitrile groups (-NH). The negative values of the Gibbs free energies show that the interaction process between amino acids-Ag+ in both media occurs spontaneously. There is a decrease in Gibbs free energy from the amino acid-Ag+ interactions immersed in a water solvation simulator.


Subject(s)
Amino Acids/chemistry , Antiviral Agents/chemistry , Density Functional Theory , Silver/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acids/metabolism , Antiviral Agents/metabolism , Binding Sites , Cations, Monovalent , Gene Expression , Humans , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Silver/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Static Electricity , Thermodynamics
5.
Infect Genet Evol ; 97: 105153, 2022 01.
Article in English | MEDLINE | ID: covidwho-1521407

ABSTRACT

Amid the ongoing COVID-19 pandemic, it has become increasingly important to monitor the mutations that arise in the SARS-CoV-2 virus, to prepare public health strategies and guide the further development of vaccines and therapeutics. The spike (S) protein and the proteins comprising the RNA-Dependent RNA Polymerase (RdRP) are key vaccine and drug targets, respectively, making mutation surveillance of these proteins of great importance. Full protein sequences were downloaded from the GISAID database, aligned, and the variants identified. 437,006 unique viral genomes were analyzed. Polymorphisms in the protein sequence were investigated and examined longitudinally to identify sequence and strain variants appearing between January 5th, 2020 and January 16th, 2021. A structural analysis was also performed to investigate mutations in the receptor binding domain and the N-terminal domain of the spike protein. Within the spike protein, there were 766 unique mutations observed in the N-terminal domain and 360 in the receptor binding domain. Four residues that directly contact ACE2 were mutated in more than 100 sequences, including positions K417, Y453, S494, and N501. Within the furin cleavage site of the spike protein, a high degree of conservation was observed, but the P681H mutation was observed in 10.47% of sequences analyzed. Within the RNA dependent RNA polymerase complex proteins, 327 unique mutations were observed in Nsp8, 166 unique mutations were observed in Nsp7, and 1157 unique mutations were observed in Nsp12. Only 4 sequences analyzed contained mutations in the 9 residues that directly interact with the therapeutic Remdesivir, suggesting limited mutations in drug interacting residues. The identification of new variants emphasizes the need for further study on the effects of the mutations and the implications of increased prevalence, particularly for vaccine or therapeutic efficacy.


Subject(s)
COVID-19/epidemiology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Genome, Viral , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Africa/epidemiology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Asia/epidemiology , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Databases, Factual , Epidemiological Monitoring , Europe/epidemiology , Evolution, Molecular , Furin/genetics , Furin/metabolism , Gene Expression , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , United States/epidemiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
6.
Infect Genet Evol ; 97: 105128, 2022 01.
Article in English | MEDLINE | ID: covidwho-1500148

ABSTRACT

The scientific community has been releasing whole genomic sequences of SARS-CoV-2 to facilitate the investigation of molecular features and evolutionary history. We retrieved 36 genomes of 18 prevalent countries of Asia, Europe and America for genomic diversity and mutational analysis. Besides, we studied mutations in the RBD regions of Spike (S) proteins to analyze the drug efficiency against these mutations. In this research, phylogenenetic analysis, evolutionary modeling, substitution pattern analysis, molecular docking, dynamics simulation, etc. were performed. The genomic sequences showed >99% similarity with the reference sequence of China.TN93 + G was predicted as a best nucleotide substitution model. It was revealed that effective transition from the co-existing SARS genome to the SARS-CoV-2 and a noticeable positive selection in the SARS-CoV-2 genomes occurred. Moreover, three mutations in RBD domain, Val/ Phe367, Val/ Leu 382 and Ala/ Val522, were discovered in the genomes from Netherland, Bangladesh and the USA, respectively. Molecular docking and dynamics study showed RBD with mutation Val/Leu382 had the lowest binding affinity with remdesivir. In conclusion, the SARS-CoV-2 genomes are similar, but multiple degrees of transitions and transversions occurred. The mutations cause a significant conformational change, which are needed to be investigated during drug and vaccine development.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemistry , COVID-19/epidemiology , Genome, Viral , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Amino Acid Substitution , Antiviral Agents/pharmacology , Bangladesh/epidemiology , Binding Sites , COVID-19/drug therapy , COVID-19/virology , China/epidemiology , Evolution, Molecular , Gene Expression , Humans , Likelihood Functions , Molecular Docking Simulation , Molecular Dynamics Simulation , Netherlands/epidemiology , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , United States/epidemiology
7.
J Virol ; 95(16): e0061721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486509

ABSTRACT

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , COVID-19/transmission , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Gene Expression , Host-Pathogen Interactions/genetics , Humans , Kinetics , Molecular Dynamics Simulation , Phenylalanine/chemistry , Phenylalanine/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Valine/chemistry , Valine/metabolism , Virulence , Virus Attachment
8.
J Mol Model ; 27(11): 323, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1465873

ABSTRACT

The world has face the COVID-19 pandemic which has already caused millions of death. Due to the urgency in fighting the virus, we study five residues of free amino acids present in the structure of the SARS-CoV-2 spike protein (S). We investigated the spontaneous interaction between amino acids and silver ions (Ag+), considering these ions as a virucide chemical agent for SARS-CoV-2. The amino acid-Ag+ systems were investigated in a gaseous medium and a simulated water environment was described with a continuum model (PCM) the calculations were performed within the framework of density functional theory (DFT). Calculations related to the occupied orbitals of higher energy showed that Ag+ has a tendency to interact with the nitrile groups (-NH). The negative values of the Gibbs free energies show that the interaction process between amino acids-Ag+ in both media occurs spontaneously. There is a decrease in Gibbs free energy from the amino acid-Ag+ interactions immersed in a water solvation simulator.


Subject(s)
Amino Acids/chemistry , Antiviral Agents/chemistry , Density Functional Theory , Silver/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acids/metabolism , Antiviral Agents/metabolism , Binding Sites , Cations, Monovalent , Gene Expression , Humans , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Silver/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Static Electricity , Thermodynamics
9.
Curr Top Med Chem ; 21(16): 1429-1438, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1468281

ABSTRACT

As a part of the efforts to quickly develop pharmaceutical treatments for COVID-19 through repurposing existing drugs, some researchers around the world have combined the recently released crystal structure of SARS-CoV-2 Mpro in complex with a covalently bonded inhibitor with virtual screening procedures employing molecular docking approaches. In this context, protease inhibitors (PIs) clinically available and currently used to treat infectious diseases, particularly viral ones, are relevant sources of promising drug candidates to inhibit the SARS-CoV-2 Mpro, a key viral enzyme involved in crucial events during its life cycle. In the present perspective, we summarized the published studies showing the promising use of HIV and HCV PIs as potential repurposing drugs against the SARS-CoV-2 Mpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus M Proteins/antagonists & inhibitors , Drug Repositioning , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Binding Sites , COVID-19/virology , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Humans , Kinetics , Models, Molecular , Molecular Targeted Therapy , Protease Inhibitors/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Randomized Controlled Trials as Topic , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Thermodynamics
10.
Mol Syst Biol ; 17(9): e10079, 2021 09.
Article in English | MEDLINE | ID: covidwho-1406892

ABSTRACT

We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Host-Pathogen Interactions/genetics , Protein Processing, Post-Translational , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Transport Systems, Neutral/chemistry , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Computational Biology/methods , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Models, Molecular , Molecular Mimicry , Neuropilin-1/chemistry , Neuropilin-1/genetics , Neuropilin-1/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping/methods , Protein Multimerization , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viroporin Proteins/chemistry , Viroporin Proteins/genetics , Viroporin Proteins/metabolism , Virus Replication
11.
Nat Commun ; 12(1): 5407, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1406389

ABSTRACT

Most of the ongoing projects aimed at the development of specific therapies and vaccines against COVID-19 use the SARS-CoV-2 spike (S) protein as the main target. The binding of the spike protein with the ACE2 receptor (ACE2) of the host cell constitutes the first and key step for virus entry. During this process, the receptor binding domain (RBD) of the S protein plays an essential role, since it contains the receptor binding motif (RBM), responsible for the docking to the receptor. So far, mostly biochemical methods are being tested in order to prevent binding of the virus to ACE2. Here we show, with the help of atomistic simulations, that external electric fields of easily achievable and moderate strengths can dramatically destabilise the S protein, inducing long-lasting structural damage. One striking field-induced conformational change occurs at the level of the recognition loop L3 of the RBD where two parallel beta sheets, believed to be responsible for a high affinity to ACE2, undergo a change into an unstructured coil, which exhibits almost no binding possibilities to the ACE2 receptor. We also show that these severe structural changes upon electric-field application also occur in the mutant RBDs corresponding to the variants of concern (VOC) B.1.1.7 (UK), B.1.351 (South Africa) and P.1 (Brazil). Remarkably, while the structural flexibility of S allows the virus to improve its probability of entering the cell, it is also the origin of the surprising vulnerability of S upon application of electric fields of strengths at least two orders of magnitude smaller than those required for damaging most proteins. Our findings suggest the existence of a clean physical method to weaken the SARS-CoV-2 virus without further biochemical processing. Moreover, the effect could be used for infection prevention purposes and also to develop technologies for in-vitro structural manipulation of S. Since the method is largely unspecific, it can be suitable for application to other mutations in S, to other proteins of SARS-CoV-2 and in general to membrane proteins of other virus types.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Protein Binding/drug effects , Protein Conformation , Protein Conformation, beta-Strand , Receptors, Virus/metabolism , Virus Internalization/drug effects
12.
J Med Virol ; 93(9): 5350-5357, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1384240

ABSTRACT

PARP14 and PARP9 play a key role in macrophage immune regulation. SARS-CoV-2 is an emerging viral disease that triggers hyper-inflammation known as a cytokine storm. In this study, using in silico tools, we hypothesize about the immunological phenomena of molecular mimicry between SARS-CoV-2 Nsp3 and the human PARP14 and PARP9. The results showed an epitope of SARS-CoV-2 Nsp3 protein that contains consensus sequences for both human PARP14 and PARP9 that are antigens for MHC Classes 1 and 2, which can potentially induce an immune response against human PARP14 and PARP9; while its depletion causes a hyper-inflammatory state in SARS-CoV-2 patients.


Subject(s)
COVID-19/immunology , Coronavirus Papain-Like Proteases/chemistry , Cytokine Release Syndrome/immunology , Neoplasm Proteins/chemistry , Poly(ADP-ribose) Polymerases/chemistry , SARS-CoV-2/immunology , Amino Acid Sequence , Binding Sites , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Computer Simulation , Consensus Sequence , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Macrophages/immunology , Macrophages/virology , Molecular Docking Simulation , Molecular Mimicry , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
13.
Molecules ; 25(19)2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-1389458

ABSTRACT

A novel series of some hydrazones bearing thiazole moiety were generated via solvent-drop grinding of thiazole carbohydrazide 2 with various carbonyl compounds. Also, dehydrative-cyclocondensation of 2 with active methylene compounds or anhydrides gave the respective pyarzole or pyrazine derivatives. The structures of the newly synthesized compounds were established based on spectroscopic evidences and their alternative syntheses. Additionally, the anti-viral activity of all the products was tested against SARS-CoV-2 main protease (Mpro) using molecular docking combined with molecular dynamics simulation (MDS). The average binding affinities of the compounds 3a, 3b, and 3c (-8.1 ± 0.33 kcal/mol, -8.0 ± 0.35 kcal/mol, and -8.2 ± 0.21 kcal/mol, respectively) are better than that of the positive control Nelfinavir (-6.9 ± 0.51 kcal/mol). This shows the possibility of these three compounds to effectively bind to SARS-CoV-2 Mpro and hence, contradict the virus lifecycle.


Subject(s)
Antiviral Agents/chemical synthesis , Betacoronavirus/enzymology , Hydrazones/chemical synthesis , Protease Inhibitors/chemical synthesis , Pyrazines/chemical synthesis , Pyrazoles/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Discovery , Humans , Hydrazones/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrazines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2 , Thermodynamics , User-Computer Interface , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
14.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: covidwho-1366850

ABSTRACT

To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/pharmacology , Binding Sites , COVID-19/genetics , COVID-19/virology , Chlorocebus aethiops , Convalescence , Gene Expression , Humans , Immune Evasion , Immune Sera/chemistry , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
15.
Cell Chem Biol ; 29(2): 239-248.e4, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1347527

ABSTRACT

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.


Subject(s)
Acetates/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Membrane Glycoproteins/genetics , Microglia/drug effects , Phenols/pharmacology , Receptors, Immunologic/genetics , Retinoid X Receptors/genetics , Thyroid Hormones/pharmacology , Acetates/chemical synthesis , Animals , Binding Sites , Brain/drug effects , Brain/immunology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Humans , Immunity, Innate , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Models, Molecular , Phenols/chemical synthesis , Phenoxyacetates/pharmacology , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Response Elements , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Signal Transduction
16.
Arch Virol ; 166(9): 2541-2549, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1309045

ABSTRACT

The SARS-CoV-2 spike protein Q677P/H mutation and furin cleavage site (FCS) have been shown to affect cell tropism and virus transmissibility. Here, we analyzed the frequency of Q677P/H and FCS point mutations in 1,144,793 human and 1042 animal spike protein sequences and from those of the emergent variants B.1.1.7, B.1.351, P.1, B.1.429 + B.1.427, and B.1.525, which were deposited in the database of the GISAID Initiative. Different genetic polymorphisms, particularly P681H and A688V, were detected in the FCS, mainly in human isolates, and otherwise, only pangolin and bat sequences had these mutations. Multiple FCS amino acid deletions such as Δ680SPRRA684 and Δ685RSVA688 were only detected in eight and four human isolates, respectively. Surprisingly, deletion of the entire FCS motif as Δ680SPRRARSVA688 and Δ680SPRRARSVAS689 was detected only in three human isolates. On the other hand, analysis of FCS from emergent variants showed no deletions in the FCS except for spike P681del, which was detected in seven B.1.1.7 isolates from the USA. Spike Q677P was detected only once in variant, B.1.1.7, whereas Q677H was detected in all variants, i.e., B.1.1.7 (n = 1938), B.1.351 (n = 28), P.1 (n = 9), B.1.429 + B.1.427 (n = 132), and B.1.525 (n = 1584). Structural modeling predicted that mutations or deletions at or near the FCS significantly alter the cleavage loop structure and would presumably affect furin binding. Taken together, our results show that Q677H and FCS point mutations are prevalent and may have various biological effects on the circulating variants. Therefore, we recommend urgent monitoring and surveillance of the investigated mutations, as well as laboratory assessment of their pathogenicity and transmissibility.


Subject(s)
COVID-19/epidemiology , Furin/metabolism , Polymorphism, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Animals , Binding Sites , COVID-19/transmission , COVID-19/virology , Chiroptera/virology , Epidemiological Monitoring , Eutheria/virology , Evolution, Molecular , Furin/chemistry , Gene Expression , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
17.
Structure ; 29(7): 655-663.e4, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1263379

ABSTRACT

Emerging SARS-CoV-2 strains, B.1.1.7 and B.1.351, from the UK and South Africa, respectively, show decreased neutralization by monoclonal antibodies and convalescent or vaccinee sera raised against the original wild-type virus, and are thus of clinical concern. However, the neutralization potency of two antibodies, 1-57 and 2-7, which target the receptor-binding domain (RBD) of the spike, was unaffected by these emerging strains. Here, we report cryo-EM structures of 1-57 and 2-7 in complex with spike, revealing each of these antibodies to utilize a distinct mechanism to bypass or accommodate RBD mutations. Notably, each antibody represented an immune response with recognition distinct from those of frequent antibody classes. Moreover, many epitope residues recognized by 1-57 and 2-7 were outside hotspots of evolutionary pressure for ACE2 binding and neutralizing antibody escape. We suggest the therapeutic use of antibodies, such as 1-57 and 2-7, which target less prevalent epitopes, could ameliorate issues of monoclonal antibody escape.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Receptors, Virus/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Epitopes/metabolism , Gene Expression , HEK293 Cells , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/genetics , Receptors, Virus/immunology , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
18.
Nat Commun ; 12(1): 3287, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1253936

ABSTRACT

The SARS-CoV-2 nsp16/nsp10 enzyme complex modifies the 2'-OH of the first transcribed nucleotide of the viral mRNA by covalently attaching a methyl group to it. The 2'-O methylation of the first nucleotide converts the status of mRNA cap from Cap-0 to Cap-1, and thus, helps the virus evade immune surveillance in host cells. Here, we report two structures of nsp16/nsp10 representing pre- and post-release states of the RNA product (Cap-1). We observe overall widening of the enzyme upon product formation, and an inward twisting motion in the substrate binding region upon product release. These conformational changes reset the enzyme for the next round of catalysis. The structures also identify a unique binding mode and the importance of a divalent metal ion for 2'-O methylation. We also describe underlying structural basis for the perturbed enzymatic activity of a clinical variant of SARS-CoV-2, and a previous SARS-CoV outbreak strain.


Subject(s)
Magnesium/chemistry , RNA Caps/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Amino Acid Sequence , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Viral , Humans , Magnesium/metabolism , Methylation , Methyltransferases , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA Caps/chemistry , RNA Caps/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/ultrastructure , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/genetics
19.
J Med Virol ; 93(9): 5350-5357, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1206838

ABSTRACT

PARP14 and PARP9 play a key role in macrophage immune regulation. SARS-CoV-2 is an emerging viral disease that triggers hyper-inflammation known as a cytokine storm. In this study, using in silico tools, we hypothesize about the immunological phenomena of molecular mimicry between SARS-CoV-2 Nsp3 and the human PARP14 and PARP9. The results showed an epitope of SARS-CoV-2 Nsp3 protein that contains consensus sequences for both human PARP14 and PARP9 that are antigens for MHC Classes 1 and 2, which can potentially induce an immune response against human PARP14 and PARP9; while its depletion causes a hyper-inflammatory state in SARS-CoV-2 patients.


Subject(s)
COVID-19/immunology , Coronavirus Papain-Like Proteases/chemistry , Cytokine Release Syndrome/immunology , Neoplasm Proteins/chemistry , Poly(ADP-ribose) Polymerases/chemistry , SARS-CoV-2/immunology , Amino Acid Sequence , Binding Sites , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Computer Simulation , Consensus Sequence , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Macrophages/immunology , Macrophages/virology , Molecular Docking Simulation , Molecular Mimicry , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
20.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Article in English | MEDLINE | ID: covidwho-1179919

ABSTRACT

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
Antigens, CD/genetics , Host-Pathogen Interactions/genetics , Interferon Regulatory Factors/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Golgi Apparatus/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/classification , Interferon Regulatory Factors/immunology , Interferon Type I/immunology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization , Virus Release/genetics , Virus Release/immunology , Virus Replication/genetics , Virus Replication/immunology
SELECTION OF CITATIONS
SEARCH DETAIL