Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Commun Biol ; 4(1): 1240, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493232

ABSTRACT

Circular tandem repeat proteins ('cTRPs') are de novo designed protein scaffolds (in this and prior studies, based on antiparallel two-helix bundles) that contain repeated protein sequences and structural motifs and form closed circular structures. They can display significant stability and solubility, a wide range of sizes, and are useful as protein display particles for biotechnology applications. However, cTRPs also demonstrate inefficient self-assembly from smaller subunits. In this study, we describe a new generation of cTRPs, with longer repeats and increased interaction surfaces, which enhanced the self-assembly of two significantly different sizes of homotrimeric constructs. Finally, we demonstrated functionalization of these constructs with (1) a hexameric array of peptide-binding SH2 domains, and (2) a trimeric array of anti-SARS CoV-2 VHH domains. The latter proved capable of sub-nanomolar binding affinities towards the viral receptor binding domain and potent viral neutralization function.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Protein Engineering/methods , Proteins/chemistry , Proteins/metabolism , SARS-CoV-2/metabolism , Tandem Repeat Sequences , Amino Acid Sequence , COVID-19/virology , Computer Simulation , Crystallization , HEK293 Cells , Humans , Models, Molecular , Neutralization Tests , Protein Binding , Protein Domains , Protein Folding , Protein Structure, Secondary , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
2.
Soft Matter ; 17(42): 9772-9785, 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1469997

ABSTRACT

A coarse-grained force field for molecular dynamics simulations of the native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by mapping the bonds and angles for 20 amino acids onto target distributions obtained from fully atomistic simulations in explicit solvent. A dual-basin potential is introduced for stabilizing backbone angles, to cover a wide spectrum of protein secondary structures. The backbone dihedral potential enables folding of the protein from an unfolded initial state to the folded native structure. The proposed force field is validated by evaluating the structural properties of several model peptides and proteins including the SARS-CoV-2 fusion peptide, consisting of α-helices, ß-sheets, loops and turns. Detailed comparisons with fully atomistic simulations are carried out to assess the ability of the proposed force field to stabilize the different secondary structures present in proteins. The compact conformations of the native states were evident from the radius of gyration and the high intensity peaks of the root mean square deviation histograms, which were found to be within 0.4 nm. The Ramachandran-like energy landscape on the phase space of backbone angles (θ) and dihedrals (ϕ) effectively captured the conformational phase space of α-helices at ∼(ϕ = 50°,θ = 90°) and ß-strands at ∼(ϕ = ±180°,θ = 90-120°). Furthermore, the residue-residue native contacts were also well reproduced by the proposed DPD model. The applicability of the model to multidomain complexes was assessed using lysozyme and a large α-helical bacterial pore-forming toxin, cytolysin A. Our study illustrates that the proposed force field is generic, and can potentially be extended for efficient in silico investigations of membrane bound polypeptides and proteins using DPD simulations.


Subject(s)
COVID-19 , Humans , Molecular Dynamics Simulation , Protein Structure, Secondary , Proteins , SARS-CoV-2
3.
Biomol NMR Assign ; 15(2): 255-260, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453890

ABSTRACT

The nucleoprotein (N) from SARS-CoV-2 is an essential cofactor of the viral replication transcription complex and as such represents an important target for viral inhibition. It has also been shown to colocalize to the transcriptase-replicase complex, where many copies of N decorate the viral genome, thereby protecting it from the host immune system. N has also been shown to phase separate upon interaction with viral RNA. N is a 419 amino acid multidomain protein, comprising two folded, RNA-binding and dimerization domains spanning residues 45-175 and 264-365 respectively. The remaining 164 amino acids are predicted to be intrinsically disordered, but there is currently no atomic resolution information describing their behaviour. Here we assign the backbone resonances of the first two intrinsically disordered domains (N1, spanning residues 1-44 and N3, spanning residues 176-263). Our assignment provides the basis for the identification of inhibitors and functional and interaction studies of this essential protein.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Nucleoproteins/chemistry , SARS-CoV-2 , Viral Proteins/chemistry , Models, Molecular , Protein Domains , Protein Structure, Secondary
4.
Int J Biol Macromol ; 147: 513-520, 2020 Mar 15.
Article in English | MEDLINE | ID: covidwho-1454163

ABSTRACT

The alternative splicing is a mechanism increasing the number of expressed proteins and a variety of these functions. We uncovered the protein domains most frequently lacked or occurred in the splice variants. Proteins presented by several isoforms participate in such processes as transcription regulation, immune response, etc. Our results displayed the association of alternative splicing with branched regulatory pathways. By considering the published data on the protein proteins encoded by the 18th human chromosome, we noted that alternative products display the differences in several functional features, such as phosphorylation, subcellular location, ligand specificity, protein-protein interactions, etc. The investigation of alternative variants referred to the protein kinase domain was performed by comparing the alternative sequences with 3D structures. It was shown that large enough insertions/deletions could be compatible with the kinase fold if they match between the conserved secondary structures. Using the 3D data on human proteins, we showed that conformational flexibility could accommodate fold alterations in splice variants. The investigations of structural and functional differences in splice isoforms are required to understand how to distinguish the isoforms expressed as functioning proteins from the non-realized transcripts. These studies allow filling the gap between genomic and proteomic data.


Subject(s)
Alternative Splicing , Chromosomes, Human, Pair 18 , Databases, Protein , RNA-Binding Proteins , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 18/metabolism , Humans , Protein Structure, Secondary , Proteomics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
Sci Rep ; 11(1): 18851, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434149

ABSTRACT

In this pandemic SARS-CoV-2 crisis, any attempt to contain and eliminate the virus will also stop its spread and consequently decrease the risk of severe illness and death. While ozone treatment has been suggested as an effective disinfection process, no precise mechanism of action has been previously reported. This study aimed to further investigate the effect of ozone treatment on SARS-CoV-2. Therefore, virus collected from nasopharyngeal and oropharyngeal swab and sputum samples from symptomatic patients was exposed to ozone for different exposure times. The virus morphology and structure were monitored and analyzed through Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Atomic Absorption Spectroscopy (AAS), and ATR-FTIR. The obtained results showed that ozone treatment not only unsettles the virus morphology but also alters the virus proteins' structure and conformation through amino acid disturbance and Zn ion release from the virus non-structural proteins. These results could provide a clearer pathway for virus elimination and therapeutics preparation.


Subject(s)
COVID-19/drug therapy , Ozone/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Humans , Microscopy, Electron, Transmission , Protein Structure, Secondary/drug effects , Protein Structure, Tertiary/drug effects , SARS-CoV-2/ultrastructure , Time Factors , Viral Envelope/chemistry , Viral Envelope/drug effects , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Zinc/chemistry , Zinc/metabolism
6.
BMC Bioinformatics ; 22(1): 428, 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1405916

ABSTRACT

BACKGROUND: RNA regulates a variety of biological functions by interacting with other molecules. The ligand often binds in the RNA pocket to trigger structural changes or functions. Thus, it is essential to explore and visualize the RNA pocket to elucidate the structural and recognition mechanism for the RNA-ligand complex formation. RESULTS: In this work, we developed one user-friendly bioinformatics tool, RPocket. This database provides geometrical size, centroid, shape, secondary structure element for RNA pocket, RNA-ligand interaction information, and functional sites. We extracted 240 RNA pockets from 94 non-redundant RNA-ligand complex structures. We developed RPDescriptor to calculate the pocket geometrical property quantitatively. The geometrical information was then subjected to RNA-ligand binding analysis by incorporating the sequence, secondary structure, and geometrical combinations. This new approach takes advantage of both the atom-level precision of the structure and the nucleotide-level tertiary interactions. The results show that the higher-level topological pattern indeed improves the tertiary structure prediction. We also proposed a potential mechanism for RNA-ligand complex formation. The electrostatic interactions are responsible for long-range recognition, while the Van der Waals and hydrophobic contacts for short-range binding and optimization. These interaction pairs can be considered as distance constraints to guide complex structural modeling and drug design. CONCLUSION: RPocket database would facilitate RNA-ligand engineering to regulate the complex formation for biological or medical applications. RPocket is available at http://zhaoserver.com.cn/RPocket/RPocket.html .


Subject(s)
Computational Biology , RNA , Binding Sites , Ligands , Protein Structure, Secondary , RNA/genetics
7.
Biomol NMR Assign ; 15(1): 219-227, 2021 04.
Article in English | MEDLINE | ID: covidwho-1384623

ABSTRACT

The nucleocapsid protein N from SARS-CoV-2 is one of the most highly expressed proteins by the virus and plays a number of important roles in the transcription and assembly of the virion within the infected host cell. It is expected to be characterized by a highly dynamic and heterogeneous structure as can be inferred by bioinformatics analyses as well as from the data available for the homologous protein from SARS-CoV. The two globular domains of the protein (NTD and CTD) have been investigated while no high-resolution information is available yet for the flexible regions of the protein. We focus here on the 1-248 construct which comprises two disordered fragments (IDR1 and IDR2) in addition to the N-terminal globular domain (NTD) and report the sequence-specific assignment of the two disordered regions, a step forward towards the complete characterization of the whole protein.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Carbon Isotopes , Computational Biology , Hydrogen , Nitrogen Isotopes , Phosphoproteins/chemistry , Protein Binding , Protein Domains , Protein Structure, Secondary
8.
Biomol NMR Assign ; 15(1): 165-171, 2021 04.
Article in English | MEDLINE | ID: covidwho-1384622

ABSTRACT

SARS-CoV-2 RNA, nsP3c (non-structural Protein3c) spans the sequence of the so-called SARS Unique Domains (SUDs), first observed in SARS-CoV. Although the function of this viral protein is not fully elucidated, it is believed that it is crucial for the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral "components" with the host cell; thus, it is essential for the entire viral life cycle. The first two SUDs, the so-called SUD-N (the N-terminal domain) and SUD-M (domain following SUD-N) domains, exhibit topological and conformational features that resemble the nsP3b macro (or "X") domain. Indeed, they are all folded in a three-layer α/ß/α sandwich structure, as revealed through crystallographic structural investigation of SARS-CoV SUDs, and they have been attributed to different substrate selectivity as they selectively bind to oligonucleotides. On the other hand, the C-terminal SUD (SUD-C) exhibit much lower sequence similarities compared to the SUD-N & SUD-M, as reported in previous crystallographic and NMR studies of SARS-CoV. In the absence of the 3D structures of SARS-CoV-2, we report herein the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-M and SUD-C proteins, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will set the base for further understanding at the atomic-level conformational dynamics of these proteins and will allow the effective screening of a large number of small molecules as binders with potential biological impact on their function.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Carbon Isotopes , Hydrogen , Nitrogen Isotopes , Protein Binding , Protein Domains , Protein Structure, Secondary
9.
Biomol NMR Assign ; 15(1): 85-89, 2021 04.
Article in English | MEDLINE | ID: covidwho-1384621

ABSTRACT

Among the proteins encoded by the SARS-CoV-2 RNA, nsP3 (non-structural Protein3) is the largest multi-domain protein. Its role is multifaceted and important for the viral life cycle. Nonetheless, regarding the specific role of each domain there are many aspects of their function that have to be investigated. SARS Unique Domains (SUDs), constitute the nsP3c region of the nsP3, and were observed for the first time in SARS-CoV. Two of them, namely SUD-N (the first SUD) and the SUD-M (sequential to SUD-N), exhibit structural homology with nsP3b ("X" or macro domain); indeed all of them are folded in a three-layer α/ß/α sandwich. On the contrary, they do not exhibit functional similarities, like ADP-ribose binding properties and ADP-ribose hydrolase activity. There are reports that suggest that these two SUDs may exhibit a binding selectivity towards G-oligonucleotides, a feature which may contribute to the characterization of their role in the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral "components" with the host cell. While the structures of these domains of SARS-CoV-2 have not been determined yet, SUDs interaction with oligonucleotides and/or RNA molecules may provide a platform for drug discovery. Here, we report the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-N protein, and the NMR chemical shift-based prediction of the secondary structure elements. These data may be exploited for its 3D structure determination and the screening of chemical compounds libraries, which may alter SUD-N function.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Carbon Isotopes , Drug Design , Hydrogen , Nitrogen Isotopes , Oligonucleotides/chemistry , Protein Domains , Protein Structure, Secondary , Virus Replication
10.
Int J Biol Macromol ; 188: 391-403, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1347646

ABSTRACT

One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/isolation & purification , Liquid-Liquid Extraction/methods , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/isolation & purification , Intrinsically Disordered Proteins/metabolism , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Protein Aggregates , Protein Structure, Quaternary , Protein Structure, Secondary
11.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1040-1049, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1341166

ABSTRACT

The ß-link is a composite protein motif consisting of a G1ß ß-bulge and a type II ß-turn, and is generally found at the end of two adjacent strands of antiparallel ß-sheet. The 1,2-positions of the ß-bulge are also the 3,4-positions of the ß-turn, with the result that the N-terminal portion of the polypeptide chain is orientated at right angles to the ß-sheet. Here, it is reported that the ß-link is frequently found in certain protein folds of the SCOPe structural classification at specific locations where it connects a ß-sheet to another area of a protein. It is found at locations where it connects one ß-sheet to another in the ß-sandwich and related structures, and in small (four-, five- or six-stranded) ß-barrels, where it connects two ß-strands through the polypeptide chain that crosses an open end of the barrel. It is not found in larger (eight-stranded or more) ß-barrels that are straightforward ß-meanders. In some cases it initiates a connection between a single ß-sheet and an α-helix. The ß-link also provides a framework for catalysis in serine proteases, where the catalytic serine is part of a conserved ß-link, and in cysteine proteases, including Mpro of human SARS-CoV-2, in which two residues of the active site are located in a conserved ß-link.


Subject(s)
Protein Structure, Secondary , Serine Proteases/chemistry , Amino Acid Motifs , Animals , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Cysteine Proteases/chemistry , Cysteine Proteases/metabolism , Databases, Protein , Humans , Hydrogen Bonding , Models, Molecular , SARS-CoV-2/chemistry , SARS-CoV-2/enzymology , Serine Proteases/metabolism , Structural Homology, Protein
12.
Biomed Pharmacother ; 141: 111888, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1293595

ABSTRACT

Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Curcumin/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Curcumin/metabolism , Curcumin/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Structure, Secondary
13.
Eur Rev Med Pharmacol Sci ; 25(12): 4405-4412, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1296351

ABSTRACT

SARS-CoV-2 are enveloped RNA viruses that belong to the family Coronaviridae of genus Beta coronavirus, responsible for the COVID-19 pandemic. The mutation rate is high among RNA viruses and in particular, coronavirus replication is error prone with an estimated mutation rate of 4x10-4 nucleotide substitutions per site per year. Variants of SARS-CoV-2 have been reported from various countries like United Kingdom, South Africa, Denmark, Brazil and India. These variants evolved due to mutations in spike gene of SARS-CoV-2. The most concerning variants are Variant of Concern (VOC) 202012/01 from United Kingdom and B.1.617 variant of India. Other variants include B.1.351 lineages, cluster 5/SARS-CoV-2 variant of Denmark, 501.V2 variant/SARS-CoV-2 variant of South Africa, lineage B.1.1.248/lineage P.1 of Brazil. Mutations in S protein may result in changes in the transmissibility and virulence of SARS-CoV-2. To date, alterations in virulence or pathogenicity have been reported among the variants from many parts of the globe. In our opinion, since the S protein is significantly altered, the suitability of existing vaccine specifically targeting the S protein of SARS-CoV-2 variants is a major concern. The mutations in SARS-CoV-2 are a continuous and evolving process that may result in the transformation of naïve SARS-CoV-2 into totally new subsets of antigenically different SARS-CoV-2 viruses over a period of time.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Mutation/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , COVID-19/transmission , Humans , India/epidemiology , Protein Structure, Secondary , SARS-CoV-2/chemistry , United Kingdom/epidemiology , Virulence/genetics
14.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1284759

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades a human cell via human angiotensin-converting enzyme 2 (hACE2) as the entry, causing the severe coronavirus disease (COVID-19). The interactions between hACE2 and the spike glycoprotein (S protein) of SARS-CoV-2 hold the key to understanding the molecular mechanism to develop treatment and vaccines, yet the dynamic nature of these interactions in fluctuating surroundings is very challenging to probe by those structure determination techniques requiring the structures of samples to be fixed. Here we demonstrate, by a proof-of-concept simulation of infrared (IR) spectra of S protein and hACE2, that time-resolved spectroscopy may monitor the real-time structural information of the protein-protein complexes of interest, with the help of machine learning. Our machine learning protocol is able to identify fine changes in IR spectra associated with variation of the secondary structures of S protein of the coronavirus. Further, it is three to four orders of magnitude faster than conventional quantum chemistry calculations. We expect our machine learning protocol would accelerate the development of real-time spectroscopy study of protein dynamics.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Machine Learning , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Humans , Kinetics , Protein Binding , Protein Structure, Secondary , Spectrophotometry, Infrared , Spike Glycoprotein, Coronavirus/chemistry
15.
Nat Commun ; 12(1): 2735, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1241460

ABSTRACT

Inflammasomes are filamentous signaling platforms integral to innate immunity. Currently, little is known about how these structurally similar filaments recognize and distinguish one another. A cryo-EM structure of the AIM2PYD filament reveals that the architecture of the upstream filament is essentially identical to that of the adaptor ASCPYD filament. In silico simulations using Rosetta and molecular dynamics followed by biochemical and cellular experiments consistently demonstrate that individual filaments assemble bidirectionally. By contrast, the recognition between AIM2 and ASC requires at least one to be oligomeric and occurs in a head-to-tail manner. Using in silico mutagenesis as a guide, we also identify specific axial and lateral interfaces that dictate the recognition and distinction between AIM2 and ASC filaments. Together, the results here provide a robust framework for delineating the signaling specificity and order of inflammasomes.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , DNA-Binding Proteins/metabolism , Immunity, Innate/physiology , Inflammasomes/metabolism , CARD Signaling Adaptor Proteins/genetics , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation/genetics , Protein Structure, Secondary , Signal Transduction/physiology
16.
Biomed Res Int ; 2021: 6696012, 2021.
Article in English | MEDLINE | ID: covidwho-1255651

ABSTRACT

A global pandemic has emerged following the appearance of the new severe acute respiratory virus whose official name is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strongly affecting the health sector as well as the world economy. Indeed, following the emergence of this new virus, despite the existence of a few approved and known effective vaccines at the time of writing this original study, a sense of urgency has emerged worldwide to discover new technical tools and new drugs as soon as possible. In this context, many studies and researches are currently underway to develop new tools and therapies against SARS CoV-2 and other viruses, using different approaches. The 3-chymotrypsin (3CL) protease, which is directly involved in the cotranslational and posttranslational modifications of viral polyproteins essential for the existence and replication of the virus in the host, is one of the coronavirus target proteins that has been the subject of these extensive studies. Currently, the majority of these studies are aimed at repurposing already known and clinically approved drugs against this new virus, but this approach is not really successful. Recently, different studies have successfully demonstrated the effectiveness of artificial intelligence-based techniques to understand existing chemical spaces and generate new small molecules that are both effective and efficient. In this framework and for our study, we combined a generative recurrent neural network model with transfer learning methods and active learning-based algorithms to design novel small molecules capable of effectively inhibiting the 3CL protease in human cells. We then analyze these small molecules to find the correct binding site that matches the structure of the 3CL protease of our target virus as well as other analyses performed in this study. Based on these screening results, some molecules have achieved a good binding score close to -18 kcal/mol, which we can consider as good potential candidates for further synthesis and testing against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Biological Products/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Neural Networks, Computer , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Small Molecule Libraries/chemistry , Antiviral Agents/classification , Antiviral Agents/pharmacology , Biological Products/classification , Biological Products/pharmacology , COVID-19/drug therapy , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Design , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Protease Inhibitors/classification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Small Molecule Libraries/classification , Small Molecule Libraries/pharmacology , Substrate Specificity , Thermodynamics
17.
Biophys Chem ; 276: 106610, 2021 09.
Article in English | MEDLINE | ID: covidwho-1252522

ABSTRACT

In the new millennium, the outbreak of new coronavirus has happened three times: SARS-CoV, MERS-CoV, and SARS-CoV-2. Unfortunately, we still have no pharmaceutical weapons against the diseases caused by these viruses. The pandemic of SARS-CoV-2 reminds us the urgency to search new drugs with totally different mechanism that may target the weaknesses specific to coronaviruses. Herein, we disclose a computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram, a 70-year-old anti-alcoholism drug, and predict a multiple-target mechanism. A preliminary list of promising TOS drug candidates targeting the two thiol proteases of SARS-CoV-2 are proposed upon virtual screening of 32,143 disulfides.


Subject(s)
Alcohol Deterrents/chemistry , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Disulfiram/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Alcohol Deterrents/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/metabolism , Disulfiram/pharmacology , Drug Repositioning , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Oxidation-Reduction , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Quantum Theory , SARS-CoV-2/enzymology , Substrate Specificity , Thermodynamics
18.
J Pharmacol Sci ; 147(1): 62-71, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1240460

ABSTRACT

Owing to the urgent need for therapeutic interventions against the SARS-coronavirus 2 (SARS-CoV-2) pandemic, we employed an in silico approach to evaluate the SARS-CoV-2 inhibitory potential of newly synthesized imidazoles. The inhibitory potentials of the compounds against SARS-CoV-2 drug targets - main protease (Mpro), spike protein (Spro) and RNA-dependent RNA polymerase (RdRp) were investigated through molecular docking analysis. The binding free energy of the protein-ligand complexes were estimated, pharmacophore models were generated and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds were determined. The compounds displayed various levels of binding affinities for the SARS-CoV-2 drug targets. Bisimidazole C2 scored highest against all the targets, with its aromatic rings including the two imidazole groups contributing to the binding. Among the phenyl-substituted 1H-imidazoles, C9 scored highest against all targets. C11 scored highest against Spro and C12 against Mpro and RdRp among the thiophene-imidazoles. The compounds interacted with HIS 41 - CYS 145 and GLU 288 - ASP 289 - GLU 290 of Mpro, ASN 501 of Spro receptor binding motif and some active site amino acids of RdRp. These novel imidazole compounds could be further developed as drug candidates against SARS-CoV-2 following lead optimization and experimental studies.


Subject(s)
Computational Biology/methods , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Molecular Docking Simulation/methods , SARS-CoV-2/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
19.
Molecules ; 26(9)2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1238919

ABSTRACT

The CB1 cannabinoid receptor (CB1R) contains one of the longest N termini among class A G protein-coupled receptors. Mutagenesis studies suggest that the allosteric binding site of cannabidiol (CBD) involves residues from the N terminal domain. In order to study the allosteric binding of CBD to CB1R we modeled the whole N-terminus of this receptor using the replica exchange molecular dynamics with solute tempering (REST2) approach. Then, the obtained structures of CB1R with the N terminus were used for ligand docking. A natural cannabinoid receptor agonist, Δ9-THC, was docked to the orthosteric site and a negative allosteric modulator, CBD, to the allosteric site positioned between extracellular ends of helices TM1 and TM2. The molecular dynamics simulations were then performed for CB1R with ligands: (i) CBD together with THC, and (ii) THC-only. Analyses of the differences in the residue-residue interaction patterns between those two cases allowed us to elucidate the allosteric network responsible for the modulation of the CB1R by CBD. In addition, we identified the changes in the orthosteric binding mode of Δ9-THC, as well as the changes in its binding energy, caused by the CBD allosteric binding. We have also found that the presence of a complete N-terminal domain is essential for a stable binding of CBD in the allosteric site of CB1R as well as for the allosteric-orthosteric coupling mechanism.


Subject(s)
Cannabidiol/metabolism , Receptor, Cannabinoid, CB1/metabolism , Allosteric Regulation/physiology , Allosteric Site , Animals , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary , Receptor, Cannabinoid, CB1/chemistry
20.
Methods Mol Biol ; 2256: 217-236, 2021.
Article in English | MEDLINE | ID: covidwho-1235682

ABSTRACT

Viruses have evolved to interact with their hosts. Some viruses such as human papilloma virus, dengue virus, SARS-CoV, or influenza virus encode proteins including a PBM that interact with cellular proteins containing PDZ domains. There are more than 400 cellular protein isoforms with these domains in the human genome, indicating that viral PBMs have a high potential to influence the behavior of the cell. In this review we analyze the most relevant cellular processes known to be affected by viral PBM-cellular PDZ interactions including the establishment of cell-cell interactions and cell polarity, the regulation of cell survival and apoptosis and the activation of the immune system. Special attention has been provided to coronavirus PBM conservation throughout evolution and to the role of the PBMs of human coronaviruses SARS-CoV and MERS-CoV in pathogenesis.


Subject(s)
Cell Adhesion Molecules/metabolism , Host-Pathogen Interactions , Viral Proteins/metabolism , Virus Diseases/metabolism , Viruses/metabolism , Apoptosis/physiology , Cell Proliferation/physiology , Humans , PDZ Domains , Protein Binding , Protein Structure, Secondary , Virus Diseases/virology , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...