Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nat Biotechnol ; 40(9): 1328-1329, 2022 09.
Article in English | MEDLINE | ID: covidwho-2050418
2.
Biol Chem ; 403(10): 969-982, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2029808

ABSTRACT

TMPRSS13 is a member of the type II transmembrane serine protease (TTSP) family. Here we characterize a novel post-translational mechanism important for TMPRSS13 function: proteolytic cleavage within the extracellular TMPRSS13 stem region located between the transmembrane domain and the first site of N-linked glycosylation at asparagine (N)-250 in the scavenger receptor cysteine rich (SRCR) domain. Importantly, the catalytic competence of TMPRSS13 is essential for stem region cleavage, suggesting an autonomous mechanism of action. Site-directed mutagenesis of the 10 basic amino acids (four arginine and six lysine residues) in this region abrogated zymogen activation and catalytic activity of TMPRSS13, as well as phosphorylation, cell surface expression, and shedding. Mutation analysis of individual arginine residues identified R223, a residue located between the low-density lipoprotein receptor class A domain and the SRCR domain, as important for stem region cleavage. Mutation of R223 causes a reduction in the aforementioned functional processing steps of TMPRSS13. These data provide further insight into the roles of different post-translational modifications as regulators of the function and localization of TMPRSS13. Additionally, the data suggest the presence of complex interconnected regulatory mechanisms that may serve to ensure the proper levels of cell-surface and pericellular TMPRSS13-mediated proteolysis under homeostatic conditions.


Subject(s)
Membrane Proteins , Protein Processing, Post-Translational , Arginine/metabolism , Enzyme Precursors/metabolism , Membrane Proteins/metabolism , Proteolysis
3.
Nature ; 609(7927): 582-589, 2022 09.
Article in English | MEDLINE | ID: covidwho-2016756

ABSTRACT

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Subject(s)
Gastrointestinal Microbiome , Intestine, Large , Symbiosis , Trypsin , Administration, Oral , Animals , Bacterial Secretion Systems , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , COVID-19/complications , Citrobacter rodentium/immunology , Diarrhea/complications , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Immunoglobulin A/metabolism , Intestine, Large/metabolism , Intestine, Large/microbiology , Mice , Murine hepatitis virus/metabolism , Murine hepatitis virus/pathogenicity , Proteolysis , SARS-CoV-2/pathogenicity , Trypsin/metabolism , Virus Internalization
4.
J Virol ; 96(17): e0074122, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992937

ABSTRACT

Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.


Subject(s)
Coronavirus Infections , Host Microbial Interactions , Middle East Respiratory Syndrome Coronavirus , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitination , Viral Proteins , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cytokines/immunology , Humans , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Targeted Therapy , Proteasome Endopeptidase Complex/metabolism , SARS Virus , SARS-CoV-2 , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication
5.
J Virol ; 96(16): e0084122, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1973794

ABSTRACT

Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.


Subject(s)
Exoribonucleases , Genetic Fitness , Murine hepatitis virus , Proteolysis , RNA, Viral , Viral Nonstructural Proteins , Viral Replicase Complex Proteins , Animals , Exoribonucleases/genetics , Exoribonucleases/metabolism , Mice , Murine hepatitis virus/enzymology , Murine hepatitis virus/genetics , Murine hepatitis virus/growth & development , Murine hepatitis virus/physiology , Mutation , Polyproteins/chemistry , Polyproteins/genetics , Polyproteins/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Recombination, Genetic , Transcription, Genetic , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Replicase Complex Proteins/chemistry , Viral Replicase Complex Proteins/genetics , Viral Replicase Complex Proteins/metabolism , Virus Replication
6.
Front Biosci (Landmark Ed) ; 27(7): 217, 2022 07 11.
Article in English | MEDLINE | ID: covidwho-1965058

ABSTRACT

BACKGROUND: SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is enveloped by four structural proteins. The entry of the virus into the host cells is mediated by spike protein binding to the angiotensin converting enzyme 2 (ACE2) and proteolytic cleavage by transmembrane protease serine 2 (TMPRSS2). In this study, we analyzed the expression of the ACE2 receptor and TMPRSS2 in cases under investigation for SARS-CoV-2 infection. METHODS: The study was carried out using the viral transport medium of consecutive nasopharyngeal swabs from 300 people under examination for SARS-CoV-2 infection. All samples underwent the SARS-CoV-2 transcriptase-mediated amplification assay (Procleix® SARS-CoV-2) to detect the virus. Immunocytochemistry was used in each sample to detect the presence of the SARS-CoV-2 nucleoprotein, the ACE2 receptor, and TMPRSS2. RESULTS: An immunocytochemical study with monoclonal antibody against SARS-CoV-2 viral nucleoprotein showed positivity in squamous cells. ACE2 were not detected in the squamous cells obtained from the nasopharyngeal samples. CONCLUSIONS: SARS-CoV-2 predominantly localizes to squamous cells in cytology samples of patients with positive transcriptase-mediated amplification SARS-CoV-2 assay results. The immunocytochemical negativity for ACE2 evidenced in the present study could be related to the cellular heterogeneity present in the nasopharyngeal smear samples and could be related to variations at the genomic level. Our results suggest that SARS-CoV-2 might be present in the nasopharyngeal region because viral cell junctions are weaker. This facilitates viral concentration, infective capacity and migration to specific organs, where SARS-CoV-2 infects target cells by binding to their receptors and then entering.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , COVID-19/diagnosis , Humans , Nasopharynx/metabolism , Proteolysis , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
7.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1960628

ABSTRACT

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Subject(s)
COVID-19 , Furin , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Motifs/genetics , Animals , COVID-19/virology , Chlorocebus aethiops , Furin/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication/genetics
8.
Biomed Khim ; 68(3): 157-176, 2022 Jun.
Article in Russian | MEDLINE | ID: covidwho-1918221

ABSTRACT

The SARS-CoV-2 pandemia had stimulated the numerous publications emergence on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), primarily when it was found that high mortality in some regions corresponded to the regions with deficient α1-PI alleles. By analogy with the last century's data, when the root cause of the α1-antitrypsin, genetic deficiency leading to the elastase activation in pulmonary emphysema, was proven. It is evident that proteolysis hyperactivation in COVID-19 may be associated with α1-PI impaired functions. The purpose of this review is to systematize scientific data, critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a target in therapy. This review describes the proteinase-dependent stages of a viral infection: the reception and virus penetration into the cell, the plasma aldosterone-angiotensin-renin, kinins, blood clotting systems imbalance. The ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases role in the virus tropism, proteolytic cascades activation in blood, and the COVID-19-dependent complications is presented. The analysis of scientific reports on the α1-PI implementation in the SARS-CoV-2-induced inflammation, the links with the infection severity, and comorbidities were carried out. Particular attention is paid to the acquired α1-PI deficiency in assessing the patients with the proteolysis overactivation and chronic non-inflammatory diseases that are accompanied by the risk factors for the comorbidities progression, and the long-term consequences of COVID-19 initiation. Analyzed data on the search and proteases inhibitory drugs usage in the bronchopulmonary cardiovascular pathologies therapy are essential. It becomes evident the antiviral, anti-inflammatory, anticoagulant, anti-apoptotic effect of α1-PI. The prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders are presented.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , COVID-19/drug therapy , Humans , Pancreatic Elastase , Peptide Hydrolases , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protease Inhibitors , Proteolysis , SARS-CoV-2
9.
PLoS Pathog ; 18(5): e1010471, 2022 05.
Article in English | MEDLINE | ID: covidwho-1833668

ABSTRACT

The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.


Subject(s)
COVID-19 , Interferon Type I , Orthomyxoviridae Infections , Humans , Interleukin-6/metabolism , Macrophages/metabolism , Proteolysis
10.
Ann N Y Acad Sci ; 1510(1): 79-99, 2022 04.
Article in English | MEDLINE | ID: covidwho-1822055

ABSTRACT

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Autophagy/physiology , Humans , Organelles , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis , Ubiquitin/metabolism
11.
Proc Natl Acad Sci U S A ; 119(16): e2117142119, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1774040

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key enzyme, which extensively digests CoV replicase polyproteins essential for viral replication and transcription, making it an attractive target for antiviral drug development. However, the molecular mechanism of how Mpro of SARS-CoV-2 digests replicase polyproteins, releasing the nonstructural proteins (nsps), and its substrate specificity remain largely unknown. Here, we determine the high-resolution structures of SARS-CoV-2 Mpro in its resting state, precleavage state, and postcleavage state, constituting a full cycle of substrate cleavage. The structures show the delicate conformational changes that occur during polyprotein processing. Further, we solve the structures of the SARS-CoV-2 Mpro mutant (H41A) in complex with six native cleavage substrates from replicase polyproteins, and demonstrate that SARS-CoV-2 Mpro can recognize sequences as long as 10 residues but only have special selectivity for four subsites. These structural data provide a basis to develop potent new inhibitors against SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases , Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Polyproteins/chemistry , Protein Conformation , Proteolysis , SARS-CoV-2/enzymology , Substrate Specificity/genetics
12.
Int J Mol Sci ; 23(5)2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-1732066

ABSTRACT

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Enoxaparin/pharmacology , Furin/antagonists & inhibitors , Spermine/analogs & derivatives , Zeaxanthins/pharmacology , Amino Acid Chloromethyl Ketones/chemistry , Amino Acid Chloromethyl Ketones/metabolism , COVID-19/transmission , COVID-19/virology , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Enoxaparin/chemistry , Enoxaparin/metabolism , Furin/chemistry , Furin/metabolism , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Structure , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Proteolysis , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spermine/chemistry , Spermine/metabolism , Spermine/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Virus Replication , Zeaxanthins/chemistry , Zeaxanthins/metabolism
13.
Microbiol Spectr ; 10(1): e0236421, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1703367

ABSTRACT

The COVID-19 causing coronavirus (SARS-CoV-2) remains a public health threat worldwide. SARS-CoV-2 enters human lung cells via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). Notably, the cleavage of the spike by the host cell protease furin in virus-producing cells is critical for subsequent spike-driven entry into lung cells. Thus, effective targeted therapies blocking the spike cleavage and activation in viral producing cells may provide an alternate strategy to break the viral transmission cycle and to overcome disease pathology. Here we engineered and described an antibody-based targeted strategy, which directly competes with the furin mediated proteolytic activation of the spike in virus-producing cells. The described approach involves engineering competitive furin substrate residues in the IgG1 Fc-extended flexible linker domain of SARS-CoV-2 spike targeting antibodies. Considering the site of spike furin cleavage and SARS-CoV-2 egress remains uncertain, the experimental strategy pursued here revealed novel mechanistic insights into proteolytic processing of the spike protein, which suggest that processing does not occur in the constitutive secretory pathway. Furthermore, our results show blockade of furin-mediated cleavage of the spike protein for membrane fusion activation and virus host-cell entry function. These findings provide an alternate insight of targeting applicability to SARS-CoV-2 and the future coronaviridae family members, exploiting the host protease system to gain cellular entry and subsequent chain of infections. IMPORTANCE Since its emergence in December 2019, COVID-19 has remained a global economic and health threat. Although RNA and DNA vector-based vaccines induced antibody response and immunological memory have proven highly effective against hospitalization and mortality, their long-term efficacy remains unknown against continuously evolving SARS-CoV-2 variants. As host cell-enriched furin-mediated cleavage of SARS-CoV-2 spike protein is critical for viral entry and chain of the infection cycle, the solution described here of an antibody Fc-conjugated furin competing peptide is significant. In a scenario where spike mutational drifts do not interfere with the Fc-conjugated antibody's epitope, the proposed furin competing strategy confers a broad-spectrum targeting design to impede the production of efficiently transmissible SARS-CoV-2 viral particles. In addition, the proposed approach is plug-and-play against other potentially deadly viruses that exploit secretory pathway independent host protease machinery to gain cellular entry and subsequent transmissions to host cells.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/enzymology , COVID-19/virology , Furin/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , COVID-19/genetics , Furin/genetics , Host-Pathogen Interactions , Humans , Proteolysis , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
14.
Arch Pharm (Weinheim) ; 355(5): e2100467, 2022 May.
Article in English | MEDLINE | ID: covidwho-1680268

ABSTRACT

Although the androgen receptor (AR) is a validated target for the treatment of prostate cancer, resistance to antiandrogens necessitates the development of new therapeutic modalities. Exploiting the ubiquitin-proteasome system with proteolysis-targeting chimeras (PROTACs) has become a practical approach to degrade specific proteins and thus to extend the portfolio of small molecules used for the treatment of a broader spectrum of diseases. Herein, we present three subgroups of enzalutamide-based PROTACs in which only the exit vector was modified. By recruiting cereblon, we were able to demonstrate the potent degradation of AR in lung cancer cells. Furthermore, the initial evaluation enabled the design of an optimized PROTAC with a rigid linker that degraded AR with a DC50 value in the nanomolar range. These results provide novel AR-directed PROTACs and a clear rationale for further investigating AR involvement in lung cancer models.


Subject(s)
Lung Neoplasms , Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Proteolysis , Receptors, Androgen/metabolism , Structure-Activity Relationship , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism
15.
Future Med Chem ; 14(7): 459-462, 2022 04.
Article in English | MEDLINE | ID: covidwho-1675018
16.
Cells ; 11(3)2022 01 27.
Article in English | MEDLINE | ID: covidwho-1662647

ABSTRACT

In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.


Subject(s)
Aspartic Acid Proteases/metabolism , Bacterial Proteins/metabolism , Cryptococcus neoformans/enzymology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Aspartic Acid Proteases/genetics , Bacterial Proteins/genetics , Binding Sites , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Cryptococcus neoformans/genetics , Fluorescent Dyes/chemistry , Furin/genetics , Furin/metabolism , Humans , Pandemics , Peptides/chemistry , Peptides/metabolism , Proteolysis , SARS-CoV-2/physiology
17.
Chembiochem ; 23(2): e202100514, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1653182

ABSTRACT

In addition to a membrane anchor, the transmembrane domain (TMD) of single-pass transmembrane proteins (SPTMPs) recently has shown essential roles in the cross-membrane activity or receptor assembly/clustering. However, these small TMD peptides are generally hydrophobic and dynamic, difficult to be expressed and purified. Here, we have integrated the power of TrpLE fusion protein and a sequence-specific nickel-assisted cleavage (SNAC)-tag to produce small TMD peptides in a highly efficient way under mild conditions, which uses Ni2+ as the cleavage reagent, avoiding the usage of toxic cyanogen bromide (CNBr). Furthermore, this method simplifies the downstream protein purification and reconstitution. Two representative TMDs, including the Spike-TMD from severe acute respiratory syndrome coronavirus 2 (SARS2), were successfully produced with high-quality nuclear magnetic resonance (NMR) spectra. Therefore, our study provides a more efficient and practical approach for general structural characterization of the small TM proteins.


Subject(s)
Nickel/chemistry , Peptides/metabolism , Recombinant Fusion Proteins/metabolism , COVID-19/pathology , COVID-19/virology , Catalysis , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/isolation & purification , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
Angew Chem Int Ed Engl ; 61(9): e202112995, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1633678

ABSTRACT

The transmission of SARS-CoV-2 coronavirus has led to the COVID-19 pandemic. Nucleic acid testing while specific has limitations for mass surveillance. One alternative is the main protease (Mpro ) due to its functional importance in mediating the viral life cycle. Here, we describe a combination of modular substrate and gold colloids to detect Mpro via visual readout. The strategy involves zwitterionic peptide that carries opposite charges at the C-/N-terminus to exploit the specific recognition by Mpro . Autolytic cleavage releases a positively charged moiety that assembles the nanoparticles with rapid color changes (t<10 min). We determine a limit of detection for Mpro in breath condensate matrices <10 nM. We further assayed ten COVID-negative subjects and found no false-positive result. In the light of simplicity, our test for viral protease is not limited to an equipped laboratory, but also is amenable to integrating as portable point-of-care devices including those on face-coverings.


Subject(s)
COVID-19/diagnosis , Coronavirus 3C Proteases/metabolism , Peptides/metabolism , SARS-CoV-2/metabolism , Biomarkers/metabolism , Breath Tests , COVID-19/virology , Colorimetry/methods , Humans , Limit of Detection , Proteolysis
19.
J Immunol ; 208(4): 979-990, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1631932

ABSTRACT

Calprotectin is released by activated neutrophils along with myeloperoxidase (MPO) and proteases. It plays numerous roles in inflammation and infection, and is used as an inflammatory biomarker. However, calprotectin is readily oxidized by MPO-derived hypohalous acids to form covalent dimers of its S100A8 and S100A9 subunits. The dimers are susceptible to degradation by proteases. We show that detection of human calprotectin by ELISA declines markedly because of its oxidation by hypochlorous acid and subsequent degradation. Also, proteolysis liberates specific peptides from oxidized calprotectin that is present at inflammatory sites. We identified six calprotectin-derived peptides by mass spectrometry and detected them in the bronchoalveolar lavage fluid of children with cystic fibrosis (CF). We assessed the peptides as biomarkers of neutrophilic inflammation and infection. The content of the calprotectin peptide ILVI was related to calprotectin (r = 0.72, p = 0.01, n = 10). Four of the peptides were correlated with the concentration of MPO (r > 0.7, p ≤ 0.01, n = 21), while three were higher (p < 0.05) in neutrophil elastase-positive (n = 14) than -negative samples (n = 7). Also, five of the peptides were higher (p < 0.05) in the bronchoalveolar lavage fluid from children with CF with infections (n = 21) than from non-CF children without infections (n = 6). The specific peptides liberated from calprotectin will signal uncontrolled activity of proteases and MPO during inflammation. They may prove useful in tracking inflammation in respiratory diseases dominated by neutrophils, including coronavirus disease 2019.


Subject(s)
Bronchoalveolar Lavage Fluid/immunology , Cystic Fibrosis/immunology , Inflammation/immunology , Leukocyte L1 Antigen Complex/metabolism , Neutrophils/immunology , Peptides/metabolism , Respiratory System/metabolism , Child , Child, Preschool , Cystic Fibrosis/diagnosis , Female , Humans , Inflammation/diagnosis , Leukocyte L1 Antigen Complex/genetics , Leukocyte L1 Antigen Complex/immunology , Male , Neutrophil Activation , Oxidation-Reduction , Peptides/genetics , Peptides/immunology , Proteolysis
20.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1626013

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in tremendous loss worldwide. Although viral spike (S) protein binding of angiotensin-converting enzyme 2 (ACE2) has been established, the functional consequences of the initial receptor binding and the stepwise fusion process are not clear. By utilizing a cell-cell fusion system, in complement with a pseudoviral infection model, we found that the spike engagement of ACE2 primed the generation of S2' fragments in target cells, a key proteolytic event coupled with spike-mediated membrane fusion. Mutagenesis of an S2' cleavage site at the arginine (R) 815, but not an S2 cleavage site at arginine 685, was sufficient to prevent subsequent syncytia formation and infection in a variety of cell lines and primary cells isolated from human ACE2 knock-in mice. The requirement for S2' cleavage at the R815 site was also broadly shared by other SARS-CoV-2 spike variants, such as the Alpha, Beta, and Delta variants of concern. Thus, our study highlights an essential role for host receptor engagement and the key residue of spike for proteolytic activation, and uncovers a targetable mechanism for host cell infection by SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Membrane Fusion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions , Humans , Mice , Protein Binding , Proteolysis , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL