Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: covidwho-1599475

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in tremendous loss worldwide. Although viral spike (S) protein binding of angiotensin-converting enzyme 2 (ACE2) has been established, the functional consequences of the initial receptor binding and the stepwise fusion process are not clear. By utilizing a cell-cell fusion system, in complement with a pseudoviral infection model, we found that the spike engagement of ACE2 primed the generation of S2' fragments in target cells, a key proteolytic event coupled with spike-mediated membrane fusion. Mutagenesis of an S2' cleavage site at the arginine (R) 815, but not an S2 cleavage site at arginine 685, was sufficient to prevent subsequent syncytia formation and infection in a variety of cell lines and primary cells isolated from human ACE2 knock-in mice. The requirement for S2' cleavage at the R815 site was also broadly shared by other SARS-CoV-2 spike variants, such as the Alpha, Beta, and Delta variants of concern. Thus, our study highlights an essential role for host receptor engagement and the key residue of spike for proteolytic activation, and uncovers a targetable mechanism for host cell infection by SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Membrane Fusion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions , Humans , Mice , Protein Binding , Proteolysis , Virus Internalization
2.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: covidwho-1583223

ABSTRACT

Fusion with, and subsequent entry into, the host cell is one of the critical steps in the life cycle of enveloped viruses. For Middle East respiratory syndrome coronavirus (MERS-CoV), the spike (S) protein is the main determinant of viral entry. Proteolytic cleavage of the S protein exposes its fusion peptide (FP), which initiates the process of membrane fusion. Previous studies on the related severe acute respiratory syndrome coronavirus (SARS-CoV) FP have shown that calcium ions (Ca2+) play an important role in fusogenic activity via a Ca2+ binding pocket with conserved glutamic acid (E) and aspartic acid (D) residues. SARS-CoV and MERS-CoV FPs share a high sequence homology, and here, we investigated whether Ca2+ is required for MERS-CoV fusion by screening a mutant array in which E and D residues in the MERS-CoV FP were substituted with neutrally charged alanines (A). Upon verifying mutant cell surface expression and proteolytic cleavage, we tested their ability to mediate pseudoparticle (PP) infection of host cells in modulating Ca2+ environments. Our results demonstrate that intracellular Ca2+ enhances MERS-CoV wild-type (WT) PP infection by approximately 2-fold and that E891 is a crucial residue for Ca2+ interaction. Subsequent electron spin resonance (ESR) experiments revealed that this enhancement could be attributed to Ca2+ increasing MERS-CoV FP fusion-relevant membrane ordering. Intriguingly, isothermal calorimetry showed an approximate 1:1 MERS-CoV FP to Ca2+ ratio, as opposed to an 1:2 SARS-CoV FP to Ca2+ ratio, suggesting significant differences in FP Ca2+ interactions of MERS-CoV and SARS-CoV FP despite their high sequence similarity.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is a major emerging infectious disease with zoonotic potential and has reservoirs in dromedary camels and bats. Since its first outbreak in 2012, the virus has repeatedly transmitted from camels to humans, with 2,468 confirmed cases causing 851 deaths. To date, there are no efficacious drugs and vaccines against MERS-CoV, increasing its potential to cause a public health emergency. In order to develop novel drugs and vaccines, it is important to understand the molecular mechanisms that enable the virus to infect host cells. Our data have found that calcium is an important regulator of viral fusion by interacting with negatively charged residues in the MERS-CoV FP region. This information can guide therapeutic solutions to block this calcium interaction and also repurpose already approved drugs for this use for a fast response to MERS-CoV outbreaks.


Subject(s)
Calcium/metabolism , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Host-Pathogen Interactions , Ions/metabolism , Membrane Fusion , Middle East Respiratory Syndrome Coronavirus/physiology , Virus Internalization , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Chlorocebus aethiops , Humans , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Models, Molecular , Mutation , Protein Binding , Proteolysis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Vero Cells , Virulence , Virus Assembly
3.
Microbiol Spectr ; 9(2): e0090821, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1452921

ABSTRACT

Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability. However, its function in viruses remains poorly understood. Here, we report that the host protein, PABPC4, could be regulated by transcription factor SP1 and broadly inhibits the replication of CoVs, covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. PABPC4 recruited the E3 ubiquitin ligase MARCH8/MARCHF8 to the N protein for ubiquitination. Ubiquitinated N protein was recognized by the cargo receptor NDP52/CALCOCO2, which delivered it to the autolysosomes for degradation, resulting in impaired viral proliferation. In addition to regulating gene expression, these data demonstrate a novel antiviral function of PABPC4, which broadly suppresses CoVs by degrading the N protein via the selective autophagy pathway. This study will shed light on the development of broad anticoronaviral therapies. IMPORTANCE Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, but none of the currently available drugs or vaccines can effectively control these diseases. During viral infection, the host will activate the interferon (IFN) signaling pathways and host restriction factors in maintaining the innate antiviral responses and suppressing viral replication. This study demonstrated that the host protein, PABPC4, interacts with the nucleocapsid (N) proteins from eight CoVs covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family. PABPC4 could be regulated by SP1 and broadly inhibits the replication of CoVs by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. This study significantly increases our understanding of the novel host restriction factor PABPC4 against CoV replication and will help develop novel antiviral strategies.


Subject(s)
Autophagy/physiology , Blood Proteins/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus/growth & development , Poly(A)-Binding Proteins/metabolism , Virus Replication/physiology , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Infectious bronchitis virus/growth & development , Murine hepatitis virus/growth & development , Nuclear Proteins/metabolism , Porcine epidemic diarrhea virus/growth & development , Proteolysis , Sp1 Transcription Factor/metabolism , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vero Cells
4.
Nat Commun ; 12(1): 5553, 2021 09 21.
Article in English | MEDLINE | ID: covidwho-1434104

ABSTRACT

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/drug therapy , Cell Line , Dipeptides/pharmacology , Humans , Mutation , Myosin-Light-Chain Kinase/antagonists & inhibitors , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Proteolysis , Proteomics , RNA, Small Interfering/pharmacology , SARS-CoV-2/genetics , Viral Proteases/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics , src-Family Kinases/metabolism
5.
Molecules ; 26(17)2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1390702

ABSTRACT

Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxidative pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken together, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elastase "super substrates" that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.


Subject(s)
Immunity, Innate , Leukocyte Elastase/metabolism , Methionine/analogs & derivatives , Neutrophils/immunology , Biocatalysis , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Catalytic Domain/genetics , Enzyme Assays , Host-Pathogen Interactions/immunology , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/genetics , Lung/immunology , Lung/pathology , Lung/virology , Methionine/metabolism , Molecular Dynamics Simulation , Neutrophil Infiltration , Neutrophils/enzymology , Oxidation-Reduction/drug effects , Proteolysis/drug effects , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , SARS-CoV-2/immunology , Substrate Specificity/immunology
6.
Elife ; 102021 04 09.
Article in English | MEDLINE | ID: covidwho-1389777

ABSTRACT

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 - that expresses serine proteases - prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.


Subject(s)
Epithelial Cells , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Virus Cultivation/methods , Virus Internalization , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Proteolysis , Respiratory System/cytology , Respiratory System/virology , Serine Proteases/metabolism
7.
Cytokine ; 148: 155697, 2021 12.
Article in English | MEDLINE | ID: covidwho-1385382

ABSTRACT

The prevalence of SARS-CoV-2 is a great threat to global public health. However, the relationship between the viral pathogen SARS-CoV-2 and host innate immunity has not yet been well studied. The genome of SARS-CoV-2 encodes a viral protease called 3C-like protease. This protease is responsible for cleaving viral polyproteins during replication. In this investigation, 293T cells were transfected with SARS-CoV-2 3CL and then infected with Sendai virus (SeV) to induce the RIG-I like receptor (RLR)-based immune pathway. q-PCR, luciferase reporter assays, and western blotting were used for experimental analyses. We found that SARS-CoV-2 3CL significantly downregulated IFN-ß mRNA levels. Upon SeV infection, SARS-CoV-2 3CL inhibited the nuclear translocation of IRF3 and p65 and promoted the degradation of IRF3. This effect of SARS-CoV-2 3CL on type I IFN in the RLR immune pathway opens up novel ideas for future research on SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon-beta/biosynthesis , Proteolysis , DEAD Box Protein 58/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Interferon-beta/genetics , NF-kappa B/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Immunologic/metabolism , Response Elements/genetics , Sendai virus/physiology , Signal Transduction
8.
ACS Chem Biol ; 16(4): 642-650, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1387141

ABSTRACT

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 µM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 µM. There was no toxicity to any of the host cell lines at 10-100 µM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.


Subject(s)
Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Phenylalanine/pharmacology , Piperazines/pharmacology , SARS-CoV-2/drug effects , Tosyl Compounds/pharmacology , Animals , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Humans , Microbial Sensitivity Tests , Protein Domains , Proteolysis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Internalization/drug effects
9.
J Biol Chem ; 295(36): 12686-12696, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-1387615

ABSTRACT

Type II transmembrane serine proteases (TTSPs) are a group of enzymes participating in diverse biological processes. Some members of the TTSP family are implicated in viral infection. TMPRSS11A is a TTSP expressed on the surface of airway epithelial cells, which has been shown to cleave and activate spike proteins of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronaviruses (CoVs). In this study, we examined the mechanism underlying the activation cleavage of TMPRSS11A that converts the one-chain zymogen to a two-chain enzyme. By expression in human embryonic kidney 293, esophageal EC9706, and lung epithelial A549 and 16HBE cells, Western blotting, and site-directed mutagenesis, we found that the activation cleavage of human TMPRSS11A was mediated by autocatalysis. Moreover, we found that TMPRSS11A activation cleavage occurred before the protein reached the cell surface, as indicated by studies with trypsin digestion to remove cell surface proteins, treatment with cell organelle-disturbing agents to block intracellular protein trafficking, and analysis of a soluble form of TMPRSS11A without the transmembrane domain. We also showed that TMPRSS11A was able to cleave the SARS-CoV-2 spike protein. These results reveal an intracellular autocleavage mechanism in TMPRSS11A zymogen activation, which differs from the extracellular zymogen activation reported in other TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation.


Subject(s)
Epithelial Cells/metabolism , Membrane Proteins/metabolism , Proteolysis , Serine Proteases/metabolism , A549 Cells , Cells, Cultured , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Protein Domains , Protein Transport , Respiratory Mucosa/cytology , Serine Proteases/chemistry , Serine Proteases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Trypsin/metabolism
11.
Am J Respir Cell Mol Biol ; 65(3): 300-308, 2021 09.
Article in English | MEDLINE | ID: covidwho-1381187

ABSTRACT

Endothelial dysfunction is implicated in the thrombotic events reported in patients with coronavirus disease (COVID-19), but the underlying molecular mechanisms are unknown. Circulating levels of the coagulation cascade activator PAI-1 are substantially higher in patients with COVID-19 with severe respiratory dysfunction than in patients with bacterial sepsis and acute respiratory distress syndrome. Indeed, the elevation of PAI-1 is recognized as an early marker of endothelial dysfunction. Here, we report that the rSARS-CoV-2-S1 (recombinant severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] viral envelope spike) glycoprotein stimulated robust production of PAI-1 by human pulmonary microvascular endothelial cells (HPMECs). We examined the role of protein degradation in this SARS-CoV-2-S1 induction of PAI-1 and found that the proteasomal degradation inhibitor bortezomib inhibited SARS-CoV-2-S1-mediated changes in PAI-1. Our data further show that bortezomib upregulated KLF2, a shear-stress-regulated transcription factor that suppresses PAI-1 expression. Aging and metabolic disorders are known to increase mortality and morbidity in patients with COVID-19. We therefore examined the role of ZMPSTE24 (zinc metallopeptidase STE24), a metalloprotease with a demonstrated role in host defense against RNA viruses that is decreased in older individuals and in metabolic syndrome, in the induction of PAI-1 in HPMECs by SARS-CoV-2-S1. Indeed, overexpression of ZMPSTE24 blunted enhancement of PAI-1 production in spike protein-exposed HPMECs. In addition, we found that membrane expression of the SARS-CoV-2 entry receptor ACE2 was reduced by ZMPSTE24-mediated cleavage and shedding of the ACE2 ectodomain, leading to accumulation of ACE2 decoy fragments that may bind SARS-CoV-2. These data indicate that decreases in ZMPSTE24 with age and comorbidities may increase vulnerability to vascular endothelial injury by SARS-CoV-2 viruses and that enhanced production of endothelial PAI-1 might play role in prothrombotic events in patients with COVID-19.


Subject(s)
COVID-19/virology , Endothelial Cells/pathology , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Artery/pathology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Aging , COVID-19/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/virology , Humans , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Plasminogen Activator Inhibitor 1/genetics , Proteolysis , Pulmonary Artery/metabolism , Pulmonary Artery/virology , Spike Glycoprotein, Coronavirus/genetics
12.
Cell Mol Life Sci ; 78(21-22): 6735-6744, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1377320

ABSTRACT

Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.


Subject(s)
COVID-19/enzymology , COVID-19/virology , Host Microbial Interactions/physiology , Kallikreins/metabolism , SARS-CoV-2 , Virus Diseases/enzymology , Animals , Asthma/etiology , Coronavirus/genetics , Coronavirus/pathogenicity , Coronavirus/physiology , Host Microbial Interactions/genetics , Humans , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Papillomavirus Infections/enzymology , Papillomavirus Infections/virology , Picornaviridae Infections/complications , Picornaviridae Infections/enzymology , Picornaviridae Infections/virology , Protein Processing, Post-Translational , Proteolysis , Rhinovirus/pathogenicity , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Varicella Zoster Virus Infection/enzymology , Varicella Zoster Virus Infection/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Diseases/virology , Virus Internalization
13.
FASEB J ; 35(9): e21870, 2021 09.
Article in English | MEDLINE | ID: covidwho-1373669

ABSTRACT

COVID-19 is often characterized by dysregulated inflammatory and immune responses. It has been shown that the Traditional Chinese Medicine formulation Qing-Fei-Pai-Du decoction (QFPDD) is effective in the treatment of the disease, especially for patients in the early stage. Our network pharmacology analyses indicated that many inflammation and immune-related molecules were the targets of the active components of QFPDD, which propelled us to examine the effects of the decoction on inflammation. We found in the present study that QFPDD effectively alleviated dextran sulfate sodium-induced intestinal inflammation in mice. It inhibited the production of pro-inflammatory cytokines IL-6 and TNFα, and promoted the expression of anti-inflammatory cytokine IL-10 by macrophagic cells. Further investigations found that QFPDD and one of its active components wogonoside markedly reduced LPS-stimulated phosphorylation of transcription factor ATF2, an important regulator of multiple cytokines expression. Our data revealed that both QFPDD and wogonoside decreased the half-life of ATF2 and promoted its proteasomal degradation. Of note, QFPDD and wogonoside down-regulated deubiquitinating enzyme USP14 along with inducing ATF2 degradation. Inhibition of USP14 with the small molecular inhibitor IU1 also led to the decrease of ATF2 in the cells, indicating that QFPDD and wogonoside may act through regulating USP14 to promote ATF2 degradation. To further assess the importance of ubiquitination in regulating ATF2, we generated mice that were intestinal-specific KLHL5 deficiency, a CUL3-interacting protein participating in substrate recognition of E3s. In these mice, QFPDD mitigated inflammatory reaction in the spleen, but not intestinal inflammation, suggesting CUL3-KLHL5 may function as an E3 for ATF2 degradation.


Subject(s)
Activating Transcription Factor 2/metabolism , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Glucosides/pharmacology , Inflammation/drug therapy , Proteolysis/drug effects , Ubiquitin Thiolesterase/deficiency , Animals , Cell Line , Colitis/chemically induced , Colitis/drug therapy , Cullin Proteins/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Flavanones/therapeutic use , Glucosides/therapeutic use , Inflammation/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitination
14.
Biol Aujourdhui ; 215(1-2): 25-43, 2021.
Article in French | MEDLINE | ID: covidwho-1358361

ABSTRACT

Targeted protein degradation (TPD), discovered twenty years ago through the PROTAC technology, is rapidly developing thanks to the implication of many scientists from industry and academia. PROTAC chimeras are heterobifunctional molecules able to link simultaneously a protein to be degraded and an E3 ubiquitin ligase. This allows the protein ubiquitination and its degradation by 26S proteasome. PROTACs have evolved from small peptide molecules to small non-peptide and orally available molecules. It was shown that PROTACs are capable to degrade proteins considered as "undruggable" i.e. devoid of well-defined pockets and deep grooves possibly occupied by small molecules. Among these "hard to drug" proteins, several can be degraded by PROTACs: scaffold proteins, BAF complex, transcription factors, Ras family proteins. Two PROTACs are clinically tested for breast (ARV471) and prostate (ARV110) cancers. The protein degradation by proteasome is also induced by other types of molecules: molecular glues, hydrophobic tagging (HyT), HaloPROTACs and homo-PROTACs. Other cellular constituents are eligible to induced degradation: RNA-PROTACs for RNA binding proteins and RIBOTACs for degradation of RNA itself (SARS-CoV-2 RNA). TPD has recently moved beyond the proteasome with LYTACs (lysosome targeting chimeras) and MADTACs (macroautophagy degradation targeting chimeras). Several techniques such as screening platforms together with mathematical modeling and computational design are now used to improve the discovery of new efficient PROTACs.


Subject(s)
COVID-19/drug therapy , Drug Design , Molecular Targeted Therapy/methods , Proteolysis , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Autophagy , Catalysis , Humans , Lysosomes/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Protein Stability , Proteolysis/drug effects , RNA/drug effects , RNA-Binding Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacokinetics , Structure-Activity Relationship , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
15.
Adv Exp Med Biol ; 1322: 339-357, 2021.
Article in English | MEDLINE | ID: covidwho-1353665

ABSTRACT

Posttranslational modifications of targeted substrates alter their cellular fate. Ubiquitin is a highly conserved and ubiquitous covalent modifier protein that tags substrates with a single molecule or with a polyubiquitin chain. Monoubiquitination affects trafficking and signaling patterns of modified proteins. In contrast, polyubiquitination, particularly K48-linked polyubiquitination, targets the protein for degradation by the Ubiquitin-Proteasome System (UPS) resulting in a committed fate through irreversible inactivation of substrate. Given the diversity of cellular functions impacted by ubiquitination, it is no surprise that the wily pathogenic viruses have co-opted the UPS in myriad ways to ensure their survival. In this review, I describe viral exploitation of nondegradative ubiquitin signaling pathways to effect entry, replication, and egress. Additionally, viruses also harness the UPS to degrade antiviral cellular host factors. Finally, I describe how we can exploit the same proteolytic machinery to enable PROTACs (Proteolysis-Targeting Chimeras) to degrade essential viral proteins. Successful implementation of this modality will add to the arsenal of emerging antiviral therapies.


Subject(s)
Antiviral Agents , Ubiquitin , Antiviral Agents/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
Arch Virol ; 166(9): 2541-2549, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1309045

ABSTRACT

The SARS-CoV-2 spike protein Q677P/H mutation and furin cleavage site (FCS) have been shown to affect cell tropism and virus transmissibility. Here, we analyzed the frequency of Q677P/H and FCS point mutations in 1,144,793 human and 1042 animal spike protein sequences and from those of the emergent variants B.1.1.7, B.1.351, P.1, B.1.429 + B.1.427, and B.1.525, which were deposited in the database of the GISAID Initiative. Different genetic polymorphisms, particularly P681H and A688V, were detected in the FCS, mainly in human isolates, and otherwise, only pangolin and bat sequences had these mutations. Multiple FCS amino acid deletions such as Δ680SPRRA684 and Δ685RSVA688 were only detected in eight and four human isolates, respectively. Surprisingly, deletion of the entire FCS motif as Δ680SPRRARSVA688 and Δ680SPRRARSVAS689 was detected only in three human isolates. On the other hand, analysis of FCS from emergent variants showed no deletions in the FCS except for spike P681del, which was detected in seven B.1.1.7 isolates from the USA. Spike Q677P was detected only once in variant, B.1.1.7, whereas Q677H was detected in all variants, i.e., B.1.1.7 (n = 1938), B.1.351 (n = 28), P.1 (n = 9), B.1.429 + B.1.427 (n = 132), and B.1.525 (n = 1584). Structural modeling predicted that mutations or deletions at or near the FCS significantly alter the cleavage loop structure and would presumably affect furin binding. Taken together, our results show that Q677H and FCS point mutations are prevalent and may have various biological effects on the circulating variants. Therefore, we recommend urgent monitoring and surveillance of the investigated mutations, as well as laboratory assessment of their pathogenicity and transmissibility.


Subject(s)
COVID-19/epidemiology , Furin/metabolism , Polymorphism, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Sequence , Animals , Binding Sites , COVID-19/transmission , COVID-19/virology , Chiroptera/virology , Epidemiological Monitoring , Eutheria/virology , Evolution, Molecular , Furin/chemistry , Gene Expression , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
17.
Sci Signal ; 14(690)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1299215

ABSTRACT

Inorganic polyphosphates (polyPs) are linear polymers composed of repeated phosphate (PO4 3-) units linked together by multiple high-energy phosphoanhydride bonds. In addition to being a source of energy, polyPs have cytoprotective and antiviral activities. Here, we investigated the antiviral activities of long-chain polyPs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In molecular docking analyses, polyPs interacted with several conserved amino acid residues in angiotensin-converting enzyme 2 (ACE2), the host receptor that facilitates virus entry, and in viral RNA-dependent RNA polymerase (RdRp). ELISA and limited proteolysis assays using nano- LC-MS/MS mapped polyP120 binding to ACE2, and site-directed mutagenesis confirmed interactions between ACE2 and SARS-CoV-2 RdRp and identified the specific amino acid residues involved. PolyP120 enhanced the proteasomal degradation of both ACE2 and RdRp, thus impairing replication of the British B.1.1.7 SARS-CoV-2 variant. We thus tested polyPs for functional interactions with the virus in SARS-CoV-2-infected Vero E6 and Caco2 cells and in primary human nasal epithelial cells. Delivery of a nebulized form of polyP120 reduced the amounts of viral positive-sense genomic and subgenomic RNAs, of RNA transcripts encoding proinflammatory cytokines, and of viral structural proteins, thereby presenting SARS-CoV-2 infection in cells in vitro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Polyphosphates/pharmacology , SARS-CoV-2/drug effects , Administration, Inhalation , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/metabolism , HEK293 Cells , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , In Vitro Techniques , Models, Biological , Molecular Docking Simulation , Nebulizers and Vaporizers , Polyphosphates/administration & dosage , Polyphosphates/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Domains and Motifs , Proteolysis/drug effects , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Signal Transduction/drug effects , Vero Cells , Virus Replication/drug effects
18.
Methods Mol Biol ; 2099: 21-37, 2020.
Article in English | MEDLINE | ID: covidwho-1292545

ABSTRACT

The coronavirus spike envelope glycoprotein is an essential viral component that mediates virus entry events. Biochemical assessment of the spike protein is critical for understanding structure-function relationships and the roles of the protein in the viral life cycle. Coronavirus spike proteins are typically proteolytically processed and activated by host cell enzymes such as trypsin-like proteases, cathepsins, or proprotein-convertases. Analysis of coronavirus spike proteins by western blot allows the visualization and assessment of proteolytic processing by endogenous or exogenous proteases. Here, we present a method based on western blot analysis to investigate spike protein proteolytic cleavage by transient transfection of HEK-293 T cells allowing expression of the spike protein of the highly pathogenic Middle East respiratory syndrome coronavirus in the presence or absence of a cellular trypsin-like transmembrane serine protease, matriptase. Such analysis enables the characterization of cleavage patterns produced by a host protease on a coronavirus spike glycoprotein.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Blotting, Western , Cell Line , Humans , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Protein Processing, Post-Translational , Proteolysis , Serine Endopeptidases/metabolism , Virus Internalization
19.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: covidwho-1271852

ABSTRACT

The 3C-like protease (3CLpro) of nidovirus plays an important role in viral replication and manipulation of host antiviral innate immunity, which makes it an ideal antiviral target. Here, we characterized that porcine torovirus (PToV; family Tobaniviridae, order Nidovirales) 3CLpro autocatalytically releases itself from the viral precursor protein by self-cleavage. Site-directed mutagenesis suggested that PToV 3CLpro, as a serine protease, employed His53 and Ser160 as the active-site residues. Interestingly, unlike most nidovirus 3CLpro, the P1 residue plays a less essential role in N-terminal self-cleavage of PToV 3CLpro Substituting either P1 or P4 residue of substrate alone has little discernible effect on N-terminal cleavage. Notably, replacement of the two residues together completely blocks N-terminal cleavage, suggesting that N-terminal self-cleavage of PToV 3CLpro is synergistically affected by both P1 and P4 residues. Using a cyclized luciferase-based biosensor, we systematically scanned the polyproteins for cleavage sites and identified (FXXQ↓A/S) as the main consensus sequences. Subsequent homology modeling and biochemical experiments suggested that the protease formed putative pockets S1 and S4 between the substrate. Indeed, mutants of both predicted S1 (D159A, H174A) and S4 (P62G/L185G) pockets completely lost the ability of cleavage activity of PToV 3CLpro In conclusion, the characterization of self-processing activities and substrate specificities of PToV 3CLpro will offer helpful information for the mechanism of nidovirus 3C-like proteinase's substrate specificities and the rational development of the antinidovirus drugs.IMPORTANCE Currently, the active-site residues and substrate specificities of 3C-like protease (3CLpro) differ among nidoviruses, and the detailed catalytic mechanism remains largely unknown. Here, porcine torovirus (PToV) 3CLpro cleaves 12 sites in the polyproteins, including its N- and C-terminal self-processing sites. Unlike coronaviruses and arteriviruses, PToV 3CLpro employed His53 and Ser160 as the active-site residues that recognize a glutamine (Gln) at the P1 position. Surprisingly, mutations of P1-Gln impaired the C-terminal self-processing but did not affect N-terminal self-processing. The "noncanonical" substrate specificity for its N-terminal self-processing was attributed to the phenylalanine (Phe) residue at the P4 position in the N-terminal site. Furthermore, a double glycine (neutral) substitution at the putative P4-Phe-binding residues (P62G/L185G) abolished the cleavage activity of PToV 3CLpro suggested the potential hydrophobic force between the PToV 3CLpro and P4-Phe side chains.


Subject(s)
Coronavirus 3C Proteases/metabolism , Protein Processing, Post-Translational , Proteolysis , Torovirus Infections/embryology , Torovirus/enzymology , Animals , Coronavirus 3C Proteases/genetics , HEK293 Cells , Humans , Substrate Specificity , Swine , Torovirus/genetics , Torovirus Infections/genetics
20.
Viruses ; 13(7)2021 06 25.
Article in English | MEDLINE | ID: covidwho-1289022

ABSTRACT

Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by "priming" and/or "activation" steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.


Subject(s)
Gene Expression Regulation, Viral , Proprotein Convertases/metabolism , Virus Diseases/virology , Virus Internalization , Viruses/genetics , Biological Transport , Furin/metabolism , Humans , Proprotein Convertase 9/metabolism , Proprotein Convertases/genetics , Proteolysis , SARS-CoV-2/enzymology , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope/metabolism , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...