Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Front Immunol ; 13: 1027122, 2022.
Article in English | MEDLINE | ID: covidwho-2142033

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.


Subject(s)
COVID-19 , Proteomics , Humans , Proteome , SARS-CoV-2 , Biomarkers
2.
EBioMedicine ; 85: 104293, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2116538

ABSTRACT

BACKGROUND: The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS: We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS: Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION: Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION: The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , Proteome , Proteomics
3.
PLoS One ; 17(10): e0276241, 2022.
Article in English | MEDLINE | ID: covidwho-2079762

ABSTRACT

Class I- and Class II-restricted epitopes have been identified across the SARS-CoV-2 structural proteome. Vaccine-induced and post-infection SARS-CoV-2 T-cell responses are associated with COVID-19 recovery and protection, but the precise role of T-cell responses remains unclear, and how post-infection vaccination ('hybrid immunity') further augments this immunity To accomplish these goals, we studied healthy adult healthcare workers who were (a) uninfected and unvaccinated (n = 12), (b) uninfected and vaccinated with Pfizer-BioNTech BNT162b2 vaccine (2 doses n = 177, one dose n = 1) or Moderna mRNA-1273 vaccine (one dose, n = 1), and (c) previously infected with SARS-CoV-2 and vaccinated (BNT162b2, two doses, n = 6, one dose n = 1; mRNA-1273 two doses, n = 1). Infection status was determined by repeated PCR testing of participants. We used FluoroSpot Interferon-gamma (IFN-γ) and Interleukin-2 (IL-2) assays, using subpools of 15-mer peptides covering the S (10 subpools), N (4 subpools) and M (2 subpools) proteins. Responses were expressed as frequencies (percent positive responders) and magnitudes (spot forming cells/106 cytokine-producing peripheral blood mononuclear cells [PBMCs]). Almost all vaccinated participants with no prior infection exhibited IFN-γ, IL-2 and IFN-γ+IL2 responses to S glycoprotein subpools (89%, 93% and 27%, respectively) mainly directed to the S2 subunit and were more robust than responses to the N or M subpools. However, in previously infected and vaccinated participants IFN-γ, IL-2 and IFN-γ+IL2 responses to S subpools (100%, 100%, 88%) were substantially higher than vaccinated participants with no prior infection and were broader and directed against nine of the 10 S glycoprotein subpools spanning the S1 and S2 subunits, and all the N and M subpools. 50% of uninfected and unvaccinated individuals had IFN-γ but not IL2 or IFN-γ+IL2 responses against one S and one M subpools that were not increased after vaccination of uninfected or SARS-CoV-2-infected participants. Summed IFN-γ, IL-2, and IFN-γ+IL2 responses to S correlated with IgG responses to the S glycoprotein. These studies demonstrated that vaccinations with BNT162b2 or mRNA-1273 results in T cell-specific responses primarily against epitopes in the S2 subunit of the S glycoprotein, and that individuals that are vaccinated after SARS-CoV-2 infection develop broader and greater T cell responses to S1 and S2 subunits as well as the N and M proteins.


Subject(s)
COVID-19 , Interferon-gamma , Interleukin-2 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Epitopes , Immunoglobulin G , Interferon-gamma/immunology , Interleukin-2/immunology , Leukocytes, Mononuclear , Proteome , SARS-CoV-2 , Vaccination
4.
PLoS One ; 17(8): e0271870, 2022.
Article in English | MEDLINE | ID: covidwho-2079703

ABSTRACT

Proteome profile changes post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection in different body sites of humans remains an active scientific investigation whose solutions stand a chance of providing more information on what constitutes SARS-CoV-2 pathogenesis. While proteomics has been used to understand SARS-CoV-2 pathogenesis, there are limited data about the status of proteome profile in different human body sites infected by the SARS-CoV-2 virus. To bridge this gap, our study aims to characterize the proteins secreted in urine, bronchoalveolar lavage fluid (BALF), gargle solution, and nasopharyngeal samples and assess the proteome differences in these body samples collected from SARS-CoV-2-positive patients. We downloaded publicly available proteomic data from (https://www.ebi.ac.uk/pride/). The data we downloaded had the following identifiers: (i) PXD019423, n = 3 from Charles Tanford Protein Center in Germany. (ii) IPX0002166000, n = 15 from Beijing Proteome Research Centre, China. (iii) IPX0002429000, n = 5 from Huazhong University of Science and Technology, China, and (iv) PXD022889, n = 18 from Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA. MaxQuant was used for the human peptide spectral matching using human and SARS-CoV-2 proteome database which we downloaded from the UniProt database (access date 13th October 2021). The individuals infected with SARS-CoV-2 viruses displayed a different proteome diversity from the different body sites we investigated. Overally, we identified 1809 proteins across the four sample types we compared. Urine and BALF samples had significantly more abundant SARS-CoV-2 proteins than the other body sites we compared. Urine samples had 257(33.7%) unique proteins, followed by nasopharyngeal with 250(32.8%) unique proteins. Gargle solution and BALF had 38(5%) and 73(9.6%) unique proteins respectively. Urine, gargle solution, nasopharyngeal, and bronchoalveolar lavage fluid samples have different protein diversity in individuals infected with SARS-CoV-2. Moreover, our data also demonstrated that a given body site is characterized by a unique set of proteins in SARS-CoV-2 seropositive individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Bronchoalveolar Lavage Fluid , Humans , Mouthwashes , Proteome , Proteomics
5.
Viruses ; 14(10)2022 10 07.
Article in English | MEDLINE | ID: covidwho-2066560

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in a major health crisis worldwide with its continuously emerging new strains, resulting in new viral variants that drive "waves" of infection. PCR or antigen detection assays have been routinely used to detect clinical infections; however, the emergence of these newer strains has presented challenges in detection. One of the alternatives has been to detect and characterize variant-specific peptide sequences from viral proteins using mass spectrometry (MS)-based methods. MS methods can potentially help in both diagnostics and vaccine development by understanding the dynamic changes in the viral proteome associated with specific strains and infection waves. In this study, we developed an accessible, flexible, and shareable bioinformatics workflow that was implemented in the Galaxy Platform to detect variant-specific peptide sequences from MS data derived from the clinical samples. We demonstrated the utility of the workflow by characterizing published clinical data from across the world during various pandemic waves. Our analysis identified six SARS-CoV-2 variant-specific peptides suitable for confident detection by MS in commonly collected clinical samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Proteome , Peptides , Viral Proteins/genetics
6.
J Proteome Res ; 21(11): 2810-2814, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2050250

ABSTRACT

Combining robust proteomics instrumentation with high-throughput enabling liquid chromatography (LC) systems (e.g., timsTOF Pro and the Evosep One system, respectively) enabled mapping the proteomes of 1000s of samples. Fragpipe is one of the few computational protein identification and quantification frameworks that allows for the time-efficient analysis of such large data sets. However, it requires large amounts of computational power and data storage space that leave even state-of-the-art workstations underpowered when it comes to the analysis of proteomics data sets with 1000s of LC mass spectrometry runs. To address this issue, we developed and optimized a Fragpipe-based analysis strategy for a high-performance computing environment and analyzed 3348 plasma samples (6.4 TB) that were longitudinally collected from hospitalized COVID-19 patients under the auspice of the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study. Our parallelization strategy reduced the total runtime by ∼90% from 116 (theoretical) days to just 9 days in the high-performance computing environment. All code is open-source and can be deployed in any Simple Linux Utility for Resource Management (SLURM) high-performance computing environment, enabling the analysis of large-scale high-throughput proteomics studies.


Subject(s)
COVID-19 , Humans , Chromatography, Liquid/methods , Proteomics/methods , Mass Spectrometry/methods , Proteome/analysis
7.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2034712

ABSTRACT

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteome , COVID-19/drug therapy , Ligands , Drug Design
8.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2032983

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the severe pandemic of acute respiratory disease, coronavirus disease 2019 (COVID-19), experienced in the 21st century. The clinical manifestations range from mild symptoms to abnormal blood coagulation and severe respiratory failure. In severe cases, COVID-19 manifests as a thromboinflammatory disease. Damage to the vascular compartment caused by SARS-CoV-2 has been linked to thrombosis, triggered by an enhanced immune response. The molecular mechanisms underlying endothelial activation have not been fully elucidated. We aimed to identify the proteins correlated to the molecular response of human umbilical vein endothelial cells (HUVECs) after exposure to SARS-CoV-2, which might help to unravel the molecular mechanisms of endothelium activation in COVID-19. In this direction, we exposed HUVECs to SARS-CoV-2 and analyzed the expression of specific cellular receptors, and changes in the proteome of HUVECs at different time points. We identified that HUVECs exhibit non-productive infection without cytopathic effects, in addition to the lack of expression of specific cell receptors known to be essential for SARS-CoV-2 entry into cells. We highlighted the enrichment of the protein SUMOylation pathway and the increase in SUMO2, which was confirmed by orthogonal assays. In conclusion, proteomic analysis revealed that the exposure to SARS-CoV-2 induced oxidative stress and changes in protein abundance and pathways enrichment that resembled endothelial dysfunction.


Subject(s)
Biological Phenomena , COVID-19 , Endothelial Cells , Humans , Proteome , Proteomics , SARS-CoV-2
9.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2010116

ABSTRACT

Over the course of the pandemic, proteomics, being in the frontline of anti-COVID-19 research, has massively contributed to the investigation of molecular pathogenic properties of the virus. However, data on the proteome on anti-SARS-CoV-2 vaccinated individuals remain scarce. This study aimed to identify the serum proteome characteristics of anti-SARS-CoV-2 vaccinated individuals who had previously contracted the virus and comparatively assess them against those of virus-naïve vaccine recipients. Blood samples of n = 252 individuals, out of whom n = 35 had been previously infected, were collected in the "G. Gennimatas" General Hospital of Thessaloniki, from 4 January 2021 to 31 August 2021. All participants received the BNT162b2 mRNA COVID-19 vaccine (Pfizer/BioNTech). A label-free quantitative proteomics LC-MS/MS approach was undertaken, and the identified proteins were analyzed using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes) databases as well as processed by bioinformatics tools. Titers of total RBD-specific IgGs against SARS-CoV-2 were also determined using the SARS-CoV-2 IgG II Quant assay. A total of 47 proteins were significantly differentially expressed, the majority of which were down-regulated in sera of previously infected patients compared to virus-naïve controls. Several pathways were affected supporting the crucial role of the humoral immune response in the protection against SARS-CoV-2 infection provided by COVID-19 vaccination. Overall, our comprehensive proteome profiling analysis contributes novel knowledge of the mechanisms of immune response induced by anti-SARS-CoV-2 vaccination and identified protein signatures reflecting the immune status of vaccine recipients.


Subject(s)
BNT162 Vaccine , COVID-19 , Proteome , Antibodies, Viral , BNT162 Vaccine/immunology , COVID-19/prevention & control , Chromatography, Liquid , Greece , Health Personnel , Humans , SARS-CoV-2 , Tandem Mass Spectrometry
10.
Adv Protein Chem Struct Biol ; 132: 221-242, 2022.
Article in English | MEDLINE | ID: covidwho-2003777

ABSTRACT

Disordered proteins serve a crucial part in many biological processes that go beyond the capabilities of ordered proteins. A large number of virus-encoded proteins have extremely condensed proteomes and genomes, which results in highly disordered proteins. The presence of these IDPs allows them to rapidly adapt to changes in their biological environment and play a significant role in viral replication and down-regulation of host defense mechanisms. Since viruses undergo rapid evolution and have a high rate of mutation and accumulation in their proteome, IDPs' insights into viruses are critical for understanding how viruses hijack cells and cause disease. There are many conformational changes that IDPs can adopt in order to interact with different protein partners and thus stabilize the particular fold and withstand high mutation rates. This chapter explains the molecular mechanism behind viral IDPs, as well as the significance of recent research in the field of IDPs, with the goal of gaining a deeper comprehension of the essential roles and functions played by viral proteins.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Protein Conformation , Proteome/genetics , Viral Proteins
11.
Front Immunol ; 13: 893943, 2022.
Article in English | MEDLINE | ID: covidwho-1993787

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is exerting huge pressure on global healthcare. Understanding of the molecular pathophysiological alterations in COVID-19 patients with different severities during disease is important for effective treatment. In this study, we performed proteomic profiling of 181 serum samples collected at multiple time points from 79 COVID-19 patients with different severity levels (asymptomatic, mild, moderate, and severe/critical) and 27 serum samples from non-COVID-19 control individuals. Dysregulation of immune response and metabolic reprogramming was found in severe/critical COVID-19 patients compared with non-severe/critical patients, whereas asymptomatic patients presented an effective immune response compared with symptomatic COVID-19 patients. Interestingly, the moderate COVID-19 patients were mainly grouped into two distinct clusters using hierarchical cluster analysis, which demonstrates the molecular pathophysiological heterogeneity in COVID-19 patients. Analysis of protein-level alterations during disease progression revealed that proteins involved in complement activation, the coagulation cascade and cholesterol metabolism were restored at the convalescence stage, but the levels of some proteins, such as anti-angiogenesis protein PLGLB1, would not recovered. The higher serum level of PLGLB1 in COVID-19 patients than in control groups was further confirmed by parallel reaction monitoring (PRM). These findings expand our understanding of the pathogenesis and progression of COVID-19 and provide insight into the discovery of potential therapeutic targets and serum biomarkers worth further validation.


Subject(s)
COVID-19 , Humans , Pandemics , Proteome , Proteomics , SARS-CoV-2
12.
Stomatologiia (Mosk) ; 101(4): 34-37, 2022.
Article in Russian | MEDLINE | ID: covidwho-1988653

ABSTRACT

THE AIM OF THE STUDY: Was to perform proteomic saliva assay in order to reveal mechanisms of the oral pathology caused by COVID-19. MATERIALS AND METHODS: Proteomic analysis was performed to compare saliva proteins profile in healthy individuals (10 samples) and patients with COVID-19 (30 samples). RESULTS: The obtained results of the saliva samples study in patients with COVID-19 indicate activation in the oral tissues the pathways of the cell renewal, apoptosis, DNA exchange processes and chromatin remodelling; there are also marked signs of immune response reactivation and immunostimulation. CONCLUSION: Of all the proteins presented, the saliva of patients with COVID-19 33 proteins have an intersection with GO-annotated proteins of inflammation and epithelial cornification.


Subject(s)
COVID-19 , Proteomics , Humans , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Saliva/chemistry
13.
Front Cell Infect Microbiol ; 12: 926352, 2022.
Article in English | MEDLINE | ID: covidwho-1987473

ABSTRACT

Background: Extracellular vesicles (EVs) are a valuable source of biomarkers and display the pathophysiological status of various diseases. In COVID-19, EVs have been explored in several studies for their ability to reflect molecular changes caused by SARS-CoV-2. Here we provide insights into the roles of EVs in pathological processes associated with the progression and severity of COVID-19. Methods: In this study, we used a label-free shotgun proteomic approach to identify and quantify alterations in EV protein abundance in severe COVID-19 patients. We isolated plasma extracellular vesicles from healthy donors and patients with severe COVID-19 by size exclusion chromatography (SEC). Then, flow cytometry was performed to assess the origin of EVs and to investigate the presence of circulating procoagulant EVs in COVID-19 patients. A total protein extraction was performed, and samples were analyzed by nLC-MS/MS in a Q-Exactive HF-X. Finally, computational analysis was applied to signify biological processes related to disease pathogenesis. Results: We report significant changes in the proteome of EVs from patients with severe COVID-19. Flow cytometry experiments indicated an increase in total circulating EVs and with tissue factor (TF) dependent procoagulant activity. Differentially expressed proteins in the disease groups were associated with complement and coagulation cascades, platelet degranulation, and acute inflammatory response. Conclusions: The proteomic data reinforce the changes in the proteome of extracellular vesicles from patients infected with SARS-CoV-2 and suggest a role for EVs in severe COVID-19.


Subject(s)
COVID-19 , Extracellular Vesicles , Extracellular Vesicles/metabolism , Humans , Proteome/metabolism , Proteomics/methods , SARS-CoV-2 , Tandem Mass Spectrometry
14.
Adv Protein Chem Struct Biol ; 131: 311-339, 2022.
Article in English | MEDLINE | ID: covidwho-1959234

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in late 2019 in Wuhan, China, and has proven to be highly pathogenic, making it a global public health threat. The immediate need to understand the mechanisms and impact of the virus made omics techniques stand out, as they can offer a holistic and comprehensive view of thousands of molecules in a single experiment. Mastering bioinformatics tools to process, analyze, integrate, and interpret omics data is a powerful knowledge to enrich results. We present a robust and open access computational pipeline for extracting information from quantitative proteomics and transcriptomics public data. We present the entire pipeline from raw data to differentially expressed genes. We explore processes and pathways related to mapped transcripts and proteins. A pipeline is presented to integrate and compare proteomics and transcriptomics data using also packages available in the Bioconductor and providing the codes used. Cholesterol metabolism, immune system activity, ECM, and proteasomal degradation pathways increased in infected patients. Leukocyte activation profile was overrepresented in both proteomics and transcriptomics data. Finally, we found a panel of proteins and transcripts regulated in the same direction in the lung transcriptome and plasma proteome that distinguish healthy and infected individuals. This panel of markers was confirmed in another cohort of patients, thus validating the robustness and functionality of the tools presented.


Subject(s)
COVID-19 , COVID-19/genetics , Computational Biology , Humans , Proteome/metabolism , Proteomics/methods , SARS-CoV-2/genetics
15.
Comput Biol Med ; 147: 105708, 2022 08.
Article in English | MEDLINE | ID: covidwho-1944684

ABSTRACT

The prolonged transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in the human population has led to demographic divergence and the emergence of several location-specific clusters of viral strains. Although the effect of mutation(s) on severity and survival of the virus is still unclear, it is evident that certain sites in the viral proteome are more/less prone to mutations. In fact, millions of SARS-CoV-2 sequences collected all over the world have provided us a unique opportunity to understand viral protein mutations and develop novel computational approaches to predict mutational patterns. In this study, we have classified the mutation sites into low and high mutability classes based on viral isolates count containing mutations. The physicochemical features and structural analysis of the SARS-CoV-2 proteins showed that features including residue type, surface accessibility, residue bulkiness, stability and sequence conservation at the mutation site were able to classify the low and high mutability sites. We further developed machine learning models using above-mentioned features, to predict low and high mutability sites at different selection thresholds (ranging 5-30% of topmost and bottommost mutated sites) and observed the improvement in performance as the selection threshold is reduced (prediction accuracy ranging from 65 to 77%). The analysis will be useful for early detection of variants of concern for the SARS-CoV-2, which can also be applied to other existing and emerging viruses for another pandemic prevention.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Genome, Viral , Humans , Mutation/genetics , Pandemics , Proteome/genetics , SARS-CoV-2/genetics
16.
Elife ; 112022 07 04.
Article in English | MEDLINE | ID: covidwho-1924603

ABSTRACT

T cells play a critical role in the adaptive immune response, recognizing peptide antigens presented on the cell surface by major histocompatibility complex (MHC) proteins. While assessing peptides for MHC binding is an important component of probing these interactions, traditional assays for testing peptides of interest for MHC binding are limited in throughput. Here, we present a yeast display-based platform for assessing the binding of tens of thousands of user-defined peptides in a high-throughput manner. We apply this approach to assess a tiled library covering the SARS-CoV-2 proteome and four dengue virus serotypes for binding to human class II MHCs, including HLA-DR401, -DR402, and -DR404. While the peptide datasets show broad agreement with previously described MHC-binding motifs, they additionally reveal experimentally validated computational false positives and false negatives. We therefore present this approach as able to complement current experimental datasets and computational predictions. Further, our yeast display approach underlines design considerations for epitope identification experiments and serves as a framework for examining relationships between viral conservation and MHC binding, which can be used to identify potentially high-interest peptide binders from viral proteins. These results demonstrate the utility of our approach to determine peptide-MHC binding interactions in a manner that can supplement and potentially enhance current algorithm-based approaches.


Subject(s)
COVID-19 , Saccharomyces cerevisiae , Humans , Peptides/metabolism , Protein Binding , Proteome/metabolism , SARS-CoV-2 , Saccharomyces cerevisiae/metabolism
17.
Metallomics ; 14(7)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1908868

ABSTRACT

Zinc is an essential element for human health. Among its many functions, zinc(II) modulates the immune response to infections and, at high concentrations or in the presence of ionophores, inhibits the replication of various RNA viruses. Structural biology studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed that zinc(II) is the most common metal ion that binds to viral proteins. However, the number of zinc(II)-binding sites identified by experimental methods is far from exhaustive, as metal ions may be lost during protein purification protocols. To better define the zinc(II)-binding proteome of coronavirus, we leveraged the wealth of deposited structural data and state-of-the-art bioinformatics methods. Through this in silico approach, 15 experimental zinc(II) sites were identified and a further 22 were predicted in Spike, open reading frame (ORF)3a/d, ORF8, and several nonstructural proteins, highlighting an essential role of zinc(II) in viral replication. Furthermore, the structural relationships between viral and eukaryotic sites (typically zinc fingers) indicate that SARS-CoV-2 can compete with human proteins for zinc(II) binding. Given the double-edged effect of zinc(II) ions, both essential and toxic to coronavirus, only the complete elucidation of the structural and regulatory zinc(II)-binding sites can guide selective antiviral strategies based on zinc supplementation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteome , Viral Proteins , Zinc
18.
Sci Rep ; 12(1): 10879, 2022 06 27.
Article in English | MEDLINE | ID: covidwho-1908289

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2), is usually associated with a wide variety of clinical presentations from asymptomatic to severe cases. The use of saliva as a diagnostic and monitoring fluid has gained importance since it can be used to investigate the immune response and to direct quantification of antibodies against COVID-19. Additionally, the use of proteomics in saliva has allowed to increase  our understanding of the underlying pathophysiology of diseases, bringing new perspectives on diagnostics, monitoring, and treatment. In this work, we compared the salivary proteome of 10 patients with COVID-19, (five patients with mild and five patients with severe COVID-19) and ten control healthy patients. Through the application of proteomics, we have identified 30 proteins whose abundance levels differed between the COVID-19 groups and the control group. Two of these proteins (TGM3 and carbonic anhydrase-CA6) were validated by the measurement of gGT and TEA respectively, in 98 additional saliva samples separated into two groups: (1) COVID-19 group, integrated by 66 patients who tested positive for COVID-19 (2) control group, composed of 32 healthy individuals who did not show any sign of disease for at least four weeks and were negative for COVID-19 in RT-PCR. In the proteomic study there were observed upregulations in CAZA1, ACTN4, and ANXA4, which are proteins related to the protective response against the virus disturbance, and the upregulation of TGM3, that is correlated to the oxidative damage in pulmonary tissue. We also showed the downregulation in cystatins and CA6 that can be involved in the sensory response to stimulus and possibly related to the presence of anosmia and dysgeusia during the COVID-19. Additionally, the presence of FGB in patients with severe COVID-19 but not in mild COVID-19 patients could indicate a higher viral aggregation and activation in these cases. In conclusion, the salivary proteome in patients with COVID-19 showed changes in proteins related to the protective response to viral infection, and the altered sensory taste perception that occur during the disease. Moreover, gGT and TEA could be potential biomarkers of respiratory complications that can occurs during COVID 19 although further larger studies should be made to corroborate this.


Subject(s)
COVID-19 , Humans , Proteome , Proteomics , SARS-CoV-2 , Saliva , Transglutaminases
19.
Sci Rep ; 12(1): 640, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1900548

ABSTRACT

COVID-19 pathophysiology is currently not fully understood, reliable prognostic factors remain elusive, and few specific therapeutic strategies have been proposed. In this scenario, availability of biomarkers is a priority. MS-based Proteomics techniques were used to profile the proteome of 81 plasma samples extracted in four consecutive days from 23 hospitalized COVID-19 associated pneumonia patients. Samples from 10 subjects that reached a critical condition during their hospital stay and 10 matched non-severe controls were drawn before the administration of any COVID-19 specific treatment and used to identify potential biomarkers of COVID-19 prognosis. Additionally, we compared the proteome of five patients before and after glucocorticoids and tocilizumab treatment, to assess the changes induced by the therapy on our selected candidates. Forty-two proteins were differentially expressed between patients' evolution groups at 10% FDR. Twelve proteins showed lower levels in critical patients (fold-changes 1.20-3.58), of which OAS3 and COG5 found their expression increased after COVID-19 specific therapy. Most of the 30 proteins over-expressed in critical patients (fold-changes 1.17-4.43) were linked to inflammation, coagulation, lipids metabolism, complement or immunoglobulins, and a third of them decreased their expression after treatment. We propose a set of candidate proteins for biomarkers of COVID-19 prognosis at the time of hospital admission. The study design employed is distinctive from previous works and aimed to optimize the chances of the candidates to be validated in confirmatory studies and, eventually, to play a useful role in the clinical practice.


Subject(s)
Blood Proteins , COVID-19/blood , COVID-19/diagnosis , Hospitalization , Aged , Aged, 80 and over , Biomarkers/blood , Disease Progression , Female , Humans , Male , Mass Spectrometry , Middle Aged , Prospective Studies , Proteome
20.
Angiogenesis ; 25(4): 503-515, 2022 11.
Article in English | MEDLINE | ID: covidwho-1899208

ABSTRACT

AIMS: Although coronavirus disease 2019 (COVID-19) and bacterial sepsis are distinct conditions, both are known to trigger endothelial dysfunction with corresponding microcirculatory impairment. The purpose of this study was to compare microvascular injury patterns and proteomic signatures in COVID-19 and bacterial sepsis patients. METHODS AND RESULTS: This multi-center, observational study included 22 hospitalized adult COVID-19 patients, 43 hospitalized bacterial sepsis patients, and 10 healthy controls from 4 hospitals. Microcirculation and glycocalyx dimensions were quantified via intravital sublingual microscopy. Plasma proteins were measured using targeted proteomics (Olink). Coregulation and cluster analysis of plasma proteins was performed using a training-set and confirmed in a test-set. An independent external cohort of 219 COVID-19 patients was used for validation and outcome analysis. Microcirculation and plasma proteome analysis found substantial overlap between COVID-19 and bacterial sepsis. Severity, but not disease entity explained most data variation. Unsupervised correlation analysis identified two main coregulated plasma protein signatures in both diseases that strictly counteract each other. They were associated with microvascular dysfunction and several established markers of clinical severity. The signatures were used to derive new composite biomarkers of microvascular injury that allow to predict 28-day mortality or/and intubation (area under the curve 0.90, p < 0.0001) in COVID-19. CONCLUSION: Our data imply a common biological host response of microvascular injury in both bacterial sepsis and COVID-19. A distinct plasma signature correlates with endothelial health and improved outcomes, while a counteracting response is associated with glycocalyx breakdown and high mortality. Microvascular health biomarkers are powerful predictors of clinical outcomes.


Subject(s)
COVID-19 , Sepsis , Adult , Biomarkers/metabolism , Humans , Microcirculation , Proteome , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL