ABSTRACT
Severe neurological symptoms are associated with Coronavirus disease 2019 (COVID-19). However, the morphologic features, pathological nature and their potential mechanisms in patient brains have not been revealed despite evidence of neurotropic infection. In this study, neuropathological damages and infiltrating inflammatory cells were quantitatively evaluated by immunohistochemical staining, ultrastructural examination under electron microscopy, and an image threshold method, in postmortem brains from nine critically ill COVID-19 patients and nine age-matched cadavers of healthy individuals. Differentially expressed proteins were identified by quantitative proteomic assays. Histopathological findings included neurophagocytosis, microglia nodules, satellite phenomena, extensive edema, focal hemorrhage, and infarction, as well as infiltrating mononuclear cells. Immunostaining of COVID-19 brains revealed extensive activation of both microglia and astrocytes, severe damage of the blood-brain barrier (BBB) and various degrees of perivascular infiltration by predominantly CD14+/CD16+/CD141+/CCR7+/CD11c+ monocytes and occasionally CD4+/CD8+ T lymphocytes. Quantitative proteomic assays combined with bioinformatics analysis identified upregulated proteins predominantly involved in immune responses, autophagy and cellular metabolism in COVID-19 patient brains compared with control brains. Proteins involved in brain development, neuroprotection, and extracellular matrix proteins of the basement membrane were downregulated, potentially caused by the activation of transforming growth factor ß receptor and vascular endothelial growth factor signaling pathways. Thus, our results define histopathological and molecular profiles of COVID-19-associated monocytic encephalitis (CAME) and suggest potential therapeutic targets.
Subject(s)
COVID-19 , Encephalitis , Humans , Monocytes , COVID-19/genetics , Autopsy , Proteomics , Vascular Endothelial Growth Factor AABSTRACT
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Subject(s)
COVID-19 , Iron , Humans , Iron/metabolism , Lipocalin-2 , Post-Acute COVID-19 Syndrome , Arachidonate 5-Lipoxygenase/metabolism , Proteomics , BiomarkersABSTRACT
SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.
Subject(s)
Bacteriophages , COVID-19 , Viruses , Humans , SARS-CoV-2/genetics , RNA , Bacteriophages/genetics , Amino Acids , Proteomics , Viruses/genetics , Microscopy, FluorescenceABSTRACT
Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1ß, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.
Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , SARS-CoV-2 , Transcriptome , Renin , Proteomics , Proto-Oncogene Proteins c-akt , COVID-19/geneticsABSTRACT
Objective: To describe the clinical-epidemiological features of patients colonized by Candida auris in the largest outbreak in Brazil and to show the biofilm formation capacity of yeast strains. Methods: Clinical yeasts suspected of C. auris isolated from urine and surveillance samples were seeded on chromogenic media at 30°C and Sabouraud agar at 42°C. matrix-assisted laser desorption/ionization-time of flight mass spectometry was used for reliable identification. After proteomic confirmation, the genomic approach and culture on Chromagar Candida Plus media were carried out. Biofilm formation was investigated based on metabolic activity, and the clinical-epidemiological profile of patients was described. Results: A total of 11 C. auris clinical yeasts from nine patients were identified between the end of December 2021 and March 2022. Two clinical yeasts were isolates from urine and nine clinical yeasts were isolates from axillary and inguinal surveillance swabs. No case is related to previous Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, all the yeasts showed a high ability of biofilm formation. Conclusion: C. auris requires great vigilance as its high capacity to colonize and form biofilms contributes to its dissemination. The rapid and precise identification of this species is essential for the management, control, and prevention of infections.
Subject(s)
Antifungal Agents , COVID-19 , Humans , Candida auris , Brazil/epidemiology , Proteomics , SARS-CoV-2 , Biofilms , Microbial Sensitivity TestsABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic has devastated global health. Identifying key host factors essential for SARS-CoV-2 RNA replication is expected to unravel cellular targets for the development of broad-spectrum antiviral drugs which have been quested for the preparedness of future viral outbreaks. Here, we have identified host proteins that associate with nonstructural protein 12 (nsp12), the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 using a mass spectrometry (MS)-based proteomic approach. Among the candidate factors, CDK2 (Cyclin-dependent kinase 2), a member of cyclin-dependent kinases, interacts with nsp12 and causes its phosphorylation at T20, thus facilitating the assembly of the RdRp complex consisting of nsp12, nsp7 and nsp8 and promoting efficient synthesis of viral RNA. The crucial role of CDK2 in viral RdRp function is further supported by our observation that CDK2 inhibitors potently impair viral RNA synthesis and SARS-CoV-2 infection. Taken together, we have discovered CDK2 as a key host factor of SARS-CoV-2 RdRp complex, thus serving a promising target for the development of SARS-CoV-2 RdRp inhibitors.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Cyclin-Dependent Kinase 2/genetics , Proteomics , COVID-19/genetics , Viral Nonstructural Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolismABSTRACT
During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.
Subject(s)
COVID-19 , Communicable Diseases , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Aged , Monocytes , Tumor Necrosis Factor-alpha/metabolism , Proteomics , COVID-19/metabolism , SARS-CoV-2 , Dendritic CellsABSTRACT
The COVID-19 has led to a devastating global health crisis, which emphasizes the urgent need to deepen our understanding of the molecular mechanism and identifying potential antiviral drugs. Here, we comprehensively analyzed the transcriptomic and proteomic profiles of 178 COVID-19 patients, ranging from asymptomatic to critically ill. Our analyses found that the RNA binding proteins (RBPs) were likely to be perturbed in infection. Interactome analysis revealed that RBPs interact with virus proteins and the viral interacting RBPs were likely to locate in central regions of human protein-protein interaction network. Functional enrichment analysis revealed that the viral interacting RBPs were likely to be enriched in RNA transport, apoptosis and viral genome replication-related pathways. Based on network proximity analyses of 299 human complex-disease genes and COVID-19-related RBPs in the human interactome, we revealed the significant associations between complex diseases and COVID-19. Network analysis also implicated potential antiviral drugs for treatment of COVID-19. In summary, our integrative characterization of COVID-19 patients may thus help providing evidence regarding pathophysiology and potential therapeutic strategies for COVID-19.
Subject(s)
COVID-19 , Humans , Proteomics , Multiomics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Antiviral AgentsABSTRACT
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations.
Subject(s)
COVID-19 , Patient Acuity , Proteomics , Humans , Chromatography, Liquid , COVID-19/diagnosis , COVID-19/metabolism , Proteomics/methods , SARS-CoV-2/pathogenicity , Tandem Mass SpectrometryABSTRACT
OBJECTIVES: Prior studies have characterized protein and metabolite changes associated with SARS-CoV-2 infection; we hypothesized that these biomarkers may be part of heritable metabolic pathways in erythrocytes. METHODS: Using a twin study of erythrocyte protein and metabolite levels, we describe the heritability of, and correlations among, previously identified biomarkers that correlate with COVID-19 severity. We used gene ontology and pathway enrichment analysis tools to identify pathways and biological processes enriched among these biomarkers. RESULTS: Many COVID-19 biomarkers are highly heritable in erythrocytes. Among heritable metabolites downregulated in COVID-19, metabolites involved in amino acid metabolism and biosynthesis are enriched. Specific amino acid metabolism pathways (valine, leucine, and isoleucine biosynthesis; glycine, serine, and threonine metabolism; and arginine biosynthesis) are heritable in erythrocytes. CONCLUSIONS: Metabolic pathways downregulated in COVID-19, particularly amino acid biosynthesis and metabolism pathways, are heritable in erythrocytes. This finding suggests that a component of the variation in COVID-19 severity may be the result of phenotypic variation in heritable metabolic pathways; future studies will be necessary to determine whether individual variation in amino acid metabolism pathways correlates with heritable outcomes of COVID-19.
Subject(s)
COVID-19 , Proteomics , Humans , COVID-19/genetics , SARS-CoV-2/metabolism , Glycine , Biomarkers/metabolismABSTRACT
The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.
Subject(s)
COVID-19 , Humans , Rats , Animals , SARS-CoV-2/metabolism , Hyaluronic Acid , Pandemics , Proteome , Proteomics , RNA, Viral , Peptidyl-Dipeptidase A/metabolismABSTRACT
BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.
Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , COVID-19/complications , Proteomics , Multiomics , Respiratory Distress Syndrome/etiology , Sepsis/complications , InflammationABSTRACT
Recent surges in large-scale mass spectrometry (MS)-based proteomics studies demand a concurrent rise in methods to facilitate reliable and reproducible data analysis. Quantification of proteins in MS analysis can be affected by variations in technical factors such as sample preparation and data acquisition conditions leading to batch effects, which adds to noise in the data set. This may in turn affect the effectiveness of any biological conclusions derived from the data. Here we present Batch-effect Identification, Representation, and Correction of Heterogeneous data (BIRCH), a workflow for analysis and correction of batch effect through an automated, versatile, and easy to use web-based tool with the goal of eliminating technical variation. BIRCH also supports diagnosis of the data to check for the presence of batch effects, feasibility of batch correction, and imputation to deal with missing values in the data set. To illustrate the relevance of the tool, we explore two case studies, including an iPSC-derived cell study and a Covid vaccine study to show different context-specific use cases. Ultimately this tool can be used as an extremely powerful approach for eliminating technical bias while retaining biological bias, toward understanding disease mechanisms and potential therapeutics.
Subject(s)
COVID-19 , Proteomics , Humans , Proteomics/methods , Betula , Workflow , COVID-19 Vaccines , Mass Spectrometry/methodsABSTRACT
Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can affect multiple organs, among which is the circulatory system. Inflammation and mortality risk markers were previously detected in COVID-19 plasma and red blood cells (RBCs) metabolic and proteomic profiles. Additionally, biophysical properties, such as deformability, were found to be changed during the infection. Based on such data, we aim to better characterize RBC functions in COVID-19. We evaluate the flow properties of RBCs in severe COVID-19 patients admitted to the intensive care unit by using microfluidic techniques and automated methods, including artificial neural networks, for an unbiased RBC analysis. We find strong flow and RBC shape impairment in COVID-19 samples and demonstrate that such changes are reversible upon suspension of COVID-19 RBCs in healthy plasma. Vice versa, healthy RBCs resemble COVID-19 RBCs when suspended in COVID-19 plasma. Proteomics and metabolomics analyses allow us to detect the effect of plasma exchanges on both plasma and RBCs and demonstrate a new role of RBCs in maintaining plasma equilibria at the expense of their flow properties. Our findings provide a framework for further investigations of clinical relevance for therapies against COVID-19 and possibly other infectious diseases.
Subject(s)
COVID-19 , Erythrocyte Deformability , Humans , Proteomics , SARS-CoV-2 , Erythrocytes/physiologyABSTRACT
Infection with the SARS-CoV-2 virus results in manifestation of several clinical observations from asymptomatic to multi-organ failure. Biochemically, the serious effects are due to what is described as cytokine storm. The initial infection region for COVID-19 is the nasopharyngeal/oropharyngeal region which is the site where samples are taken to examine the presence of virus. We have now carried out detailed proteomic analysis of the nasopharyngeal/oropharyngeal swab samples collected from normal individuals and those tested positive for SARS-CoV-2, in India, during the early days of the pandemic in 2020, by RTPCR, involving high throughput quantitative proteomics analysis. Several proteins like annexins, cytokines and histones were found differentially regulated in the host human cells following SARS-CoV-2 infection. Genes for these proteins were also observed to be differentially regulated when their expression was analyzed. Majority of the cytokine proteins were found to be up regulated in the infected individuals. Cell to Cell signaling interaction, Immune cell trafficking and inflammatory response pathways were found associated with the differentially regulated proteins based on network pathway analysis.
Subject(s)
COVID-19 , Cytokines , Humans , SARS-CoV-2 , Proteomics , HistonesABSTRACT
OBJECTIVES: Chloroquine (CQ) is an antimalarial drug with a growing number of applications as recently demonstrated in attempts to treat Covid-19. For decades, it has been well known that skeletal and cardiac muscle cells might display vulnerability against CQ exposure resulting in the clinical manifestation of a CQ-induced myopathy. In line with the known effect of CQ on inhibition of the lysosomal function and thus cellular protein clearance, the build-up of autophagic vacuoles along with protein aggregates is a histological hallmark of the disease. Given that protein targets of the perturbed proteostasis are still not fully discovered, we applied different proteomic and immunological-based studies to improve the current understanding of the biochemical nature of CQ-myopathy. METHODS: To gain a comprehensive understanding of the molecular pathogenesis of this acquired myopathy and to define proteins targets as well as pathophysiological processes beyond impaired proteolysis, utilising CQ-treated C2C12 cells and muscle biopsies derived from CQ-myopathy patients, we performed different proteomic approaches and Coherent Anti-Stokes Raman Scattering (CARS) microscopy, in addition to immunohistochemical studies. RESULTS: Our combined studies confirmed an impact of CQ-exposure on proper protein processing/folding and clearance, highlighted changes in the interactome of p62, a known aggregation marker and hereby identified the Rett syndrome protein MeCP2 as being affected. Moreover, our approach revealed-among others-a vulnerability of the extracellular matrix, cytoskeleton and lipid homeostasis. CONCLUSION: We demonstrated that CQ exposure (secondarily) impacts biological processes beyond lysosomal function and linked a variety of proteins with known roles in the manifestation of other neuromuscular diseases.
Subject(s)
COVID-19 , Muscular Diseases , Humans , Chloroquine/pharmacology , Proteomics , COVID-19 Drug Treatment , Proteins , Muscle CellsABSTRACT
Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high-precision approaches. COVID-19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age- and gender-matched COVID-19-negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell-specific annotation and deep-analysis for functional enrichment. COVID-19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3-7, and characterized by extensive organ damage. COVID-19 resulted in (1) reduced antigen presentation and B/T-cell function, (2) increased repurposed neutrophils and M1-type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID-19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID-19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems-level insight into the mechanisms of COVID-19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients.
Subject(s)
COVID-19 , Humans , Proteome , SARS-CoV-2 , Proteomics , Patient AcuityABSTRACT
The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.
Subject(s)
COVID-19 , Proteomics , Humans , Proteomics/methods , Gene Expression Profiling/methods , Transcriptome , Lung , Single-Cell Analysis/methodsABSTRACT
Severe neurological symptoms are associated with Coronavirus disease 2019 (COVID-19). However, the morphologic features, pathological nature and their potential mechanisms in patient brains have not been revealed despite evidence of neurotropic infection. In this study, neuropathological damages and infiltrating inflammatory cells were quantitatively evaluated by immunohistochemical staining, ultrastructural examination under electron microscopy, and an image threshold method, in postmortem brains from nine critically ill COVID-19 patients and nine age-matched cadavers of healthy individuals. Differentially expressed proteins were identified by quantitative proteomic assays. Histopathological findings included neurophagocytosis, microglia nodules, satellite phenomena, extensive edema, focal hemorrhage, and infarction, as well as infiltrating mononuclear cells. Immunostaining of COVID-19 brains revealed extensive activation of both microglia and astrocytes, severe damage of the blood-brain barrier (BBB) and various degrees of perivascular infiltration by predominantly CD14+/CD16+/CD141+/CCR7+/CD11c+ monocytes and occasionally CD4+/CD8+ T lymphocytes. Quantitative proteomic assays combined with bioinformatics analysis identified upregulated proteins predominantly involved in immune responses, autophagy and cellular metabolism in COVID-19 patient brains compared with control brains. Proteins involved in brain development, neuroprotection, and extracellular matrix proteins of the basement membrane were downregulated, potentially caused by the activation of transforming growth factor ß receptor and vascular endothelial growth factor signaling pathways. Thus, our results define histopathological and molecular profiles of COVID-19-associated monocytic encephalitis (CAME) and suggest potential therapeutic targets.