Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Anal Chem ; 94(2): 1333-1341, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1606902

ABSTRACT

Proton nuclear magnetic resonance (NMR) N-acetyl signals (Glyc) from glycoproteins and supramolecular phospholipids composite peak (SPC) from phospholipid quaternary nitrogen methyls in subcompartments of lipoprotein particles) can give important systemic metabolic information, but their absolute quantification is compromised by overlap with interfering resonances from lipoprotein lipids themselves. We present a J-Edited DIffusional (JEDI) proton NMR spectroscopic approach to selectively augment signals from the inflammatory marker peaks Glyc and SPCs in blood serum NMR spectra, which enables direct integration of peaks associated with molecules found in specific compartments. We explore a range of pulse sequences that allow editing based on peak J-modulation, translational diffusion, and T2 relaxation time and validate them for untreated blood serum samples from SARS-CoV-2 infected patients (n = 116) as well as samples from healthy controls and pregnant women with physiological inflammation and hyperlipidemia (n = 631). The data show that JEDI is an improved approach to selectively investigate inflammatory signals in serum and may have widespread diagnostic applicability to disease states associated with systemic inflammation.


Subject(s)
COVID-19 , Protons , Biomarkers , Female , Glycoproteins , Humans , Inflammation , Magnetic Resonance Spectroscopy , Phospholipids , Pregnancy , SARS-CoV-2 , Serum
2.
J Med Chem ; 64(8): 4991-5000, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1574766

ABSTRACT

The main protease (3CL Mpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is an essential enzyme for viral replication with no human counterpart, making it an attractive drug target. To date, no small-molecule clinical drugs are available that specifically inhibit SARS-CoV-2 Mpro. To aid rational drug design, we determined a neutron structure of Mpro in complex with the α-ketoamide inhibitor telaprevir at near-physiological (22 °C) temperature. We directly observed protonation states in the inhibitor complex and compared them with those in the ligand-free Mpro, revealing modulation of the active-site protonation states upon telaprevir binding. We suggest that binding of other α-ketoamide covalent inhibitors can lead to the same protonation state changes in the Mpro active site. Thus, by studying the protonation state changes induced by inhibitors, we provide crucial insights to help guide rational drug design, allowing precise tailoring of inhibitors to manipulate the electrostatic environment of SARS-CoV-2 Mpro.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Oligopeptides/chemistry , Binding Sites , Coronavirus 3C Proteases/metabolism , Crystallography/methods , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/metabolism , Models, Molecular , Neutrons , Oligopeptides/metabolism , Protein Conformation , Protons
3.
J Chem Theory Comput ; 17(10): 6483-6490, 2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1404872

ABSTRACT

SARS-CoV-2 that caused COVID-19 has spread since the end of 2019. Its major effects resulted in over four million deaths around the whole world by August 2021. Therefore, understanding virulence mechanisms is important to prevent future outbreaks and for COVID-19 drug development. The envelope (E) protein is an important structural protein, affecting virus assembly and budding. The E protein pentamer is a viroporin, serving as an ion transferring channel in cells. In this work, we applied molecular dynamic simulations and topological and electrostatic analyses to study the effects of palmitoylation on the E protein pentamer. The results indicate that the cation transferring direction is more from the lumen to the cytosol. The structure of the palmitoylated E protein pentamer is more stable while the loss of palmitoylation caused the pore radius to reduce and even collapse. The electrostatic forces on the two sides of the palmitoylated E protein pentamer are more beneficial to attract cations in the lumen and to release cations into the cytosol. The results indicate the importance of palmitoylation, which can help the drug design for the treatment of COVID-19.


Subject(s)
Coronavirus Envelope Proteins/chemistry , Lipoylation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cations/chemistry , Computational Biology , Cytosol/chemistry , Drug Design , Humans , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Principal Component Analysis , Protons , Static Electricity
4.
J Am Soc Mass Spectrom ; 32(4): 1116-1125, 2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1397839

ABSTRACT

The metabolism of vitamin D3 includes a parallel C-3 epimerization pathway-in addition to the standard metabolic processes for vitamin D3-reversing the stereochemical configuration of the -OH group at carbon-3 (ß→α). While the biological function of the 3α epimer has not been elucidated yet, the additional species cannot be neglected in the analytical determination of vitamin D3, as it has the potential to introduce analytical errors if not properly accounted for. Recently, some inconsistent mass spectral behavior was seen for the 25-hydroxyvitamin D3 (25(OH)D3) epimers during quantification using electrospray LC-MS/MS. The present work extends that of Flynn et al. ( Ann. Clin. Biochem. 2014, 51, 352-559) and van den Ouweland et al. ( J. Chromatogr. B 2014, 967, 195-202), who reported larger electrospray ionization response factors for the 3α epimer of 25(OH)D3 in human serum samples as compared to the regular 3ß variant. The present work was concerned with the mechanistic reasons for these differences. We used a combination of electrospray ionization, atmospheric pressure chemical ionization, and density functional theory calculations to uncover structural dissimilarities between the epimers. A plausible mechanism is described based on intramolecular hydrogen bonding in the gas phase, which creates a small difference of proton affinities between the epimers. More importantly, this mechanism allows the explanation of the different ionization efficiencies of the epimers based on kinetic control of the ionization process, where ionization initially takes place at the hydroxyl group with subsequent proton transfer to a basic carbon atom. The barrier for this transfer differs between the epimers and is in direct competition with H2O elimination from the protonated hydroxyl group. The "hidden" site of high gas phase basicity was revealed through computational calculations and appears to be inaccessible via direct protonation.


Subject(s)
Calcifediol/blood , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Calcifediol/chemistry , Density Functional Theory , Gases , Molecular Structure , Protons , Solvents , Stereoisomerism
5.
J Mol Model ; 27(10): 276, 2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1391881

ABSTRACT

Rimegepant is a new medicine developed for the management of chronic headache due to migraine. This manuscript is an attempt to study the various structural, physical, and chemical properties of the molecules. The molecule was optimized using B3LYP functional with 6-311G + (2d,p) basis set. Excited state properties of the compound were studied using CAM-B3LYP functional with same basis sets using IEFPCM model in methanol for the implicit solvent atmosphere. The various electronic descriptors helped to identify the reactivity behavior and stability. The compound is found to possess good nonlinear optical properties in the gas phase. The various intramolecular electronic delocalizations and non-covalent interactions were analyzed and explained. As the compound contain several heterocyclic nitrogen atoms, they have potential proton abstraction features, which was analyzed energetically. The most important result from this study is from the molecular docking analysis which indicates that rimegepant binds irreversibly with three established SARS-CoV-2 proteins with ID 6LU7, 6M03, and 6W63 with docking scores - 9.2988, - 8.3629, and - 9.5421 kcal/mol respectively. Further assessment of docked complexes with molecular dynamics simulations revealed that hydrophobic interactions, water bridges, and π-π interactions play a significant role in stabilizing the ligand within the binding region of respective proteins. MMGBSA-free energies further demonstrated that rimegepant is more stable when complexed with 6LU7 among the selected PDB models. As the pharmacology and pharmacokinetics of this molecule are already established, rimegepant can be considered as an ideal candidate with potential for use in the treatment of COVID patients after clinical studies.


Subject(s)
Molecular Dynamics Simulation , Piperidines/chemistry , Protons , Pyridines/chemistry , SARS-CoV-2/chemistry , Viral Proteins/chemistry , SARS-CoV-2/metabolism , Viral Proteins/metabolism
6.
FEBS J ; 288(17): 5071-5088, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1393880

ABSTRACT

While there is undeniable evidence to link endosomal acid-base homeostasis to viral pathogenesis, the lack of druggable molecular targets has hindered translation from bench to bedside. The recent identification of variants in the interferon-inducible endosomal Na+ /H+ exchanger 9 associated with severe coronavirus disease-19 (COVID-19) has brought a shift in the way we envision aberrant endosomal acidification. Is it linked to an increased susceptibility to viral infection or a propensity to develop critical illness? This review summarizes the genetic and cellular evidence linking endosomal Na+ /H+ exchangers and viral diseases to suggest how they can act as a broad-spectrum modulator of viral infection and downstream pathophysiology. The review also presents novel insights supporting the complex role of endosomal acid-base homeostasis in viral pathogenesis and discusses the potential causes for negative outcomes of clinical trials utilizing alkalinizing drugs as therapies for COVID-19. These findings lead to a pathogenic model of viral disease that predicts that nonspecific targeting of endosomal pH might fail, even if administered early on, and suggests that endosomal Na+ /H+ exchangers may regulate key host antiviral defence mechanisms and mediators that act to drive inflammatory organ injury.


Subject(s)
COVID-19/therapy , SARS-CoV-2/pathogenicity , Sodium-Hydrogen Exchangers/genetics , Virus Diseases/therapy , COVID-19/genetics , COVID-19/virology , Endosomes/genetics , Endosomes/virology , Humans , Protons , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Virus Diseases/genetics , Virus Diseases/virology
7.
Angew Chem Int Ed Engl ; 60(21): 11884-11891, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1384108

ABSTRACT

2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino-imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Protons , RNA, Viral/analysis , SARS-CoV-2/chemistry , Magnetic Phenomena , RNA, Viral/chemistry
8.
J Phys Chem Lett ; 12(17): 4195-4202, 2021 May 06.
Article in English | MEDLINE | ID: covidwho-1387119

ABSTRACT

The catalytic reaction in SARS-CoV-2 main protease is activated by a proton transfer (PT) from Cys145 to His41. The same PT is likely also required for the covalent binding of some inhibitors. Here we use a multiscale computational approach to investigate the PT thermodynamics in the apo enzyme and in complex with two potent inhibitors, N3 and the α-ketoamide 13b. We show that with the inhibitors the free energy cost to reach the charge-separated state of the active-site dyad is lower, with N3 inducing the most significant reduction. We also show that a few key sites (including specific water molecules) significantly enhance or reduce the thermodynamic feasibility of the PT reaction, with selective desolvation of the active site playing a crucial role. The approach presented is a cost-effective procedure to identify the enzyme regions that control the activation of the catalytic reaction and is thus also useful to guide the design of inhibitors.


Subject(s)
Drug Design , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Biocatalysis , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protons , Quantum Theory , SARS-CoV-2/isolation & purification , Thermodynamics , Viral Matrix Proteins/metabolism
9.
J Med Chem ; 64(7): 3885-3896, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1155689

ABSTRACT

Quinacrine (QC) and chloroquine (CQ) have antimicrobial and antiviral activities as well as antimalarial activity, although the mechanisms remain unknown. QC increased the antimicrobial activity against yeast exponentially with a pH-dependent increase in the cationic amphiphilic drug (CAD) structure. CAD-QC localized in the yeast membranes and induced glucose starvation by noncompetitively inhibiting glucose uptake as antipsychotic chlorpromazine (CPZ) did. An exponential increase in antimicrobial activity with pH-dependent CAD formation was also observed for CQ, indicating that the CAD structure is crucial for its pharmacological activity. A decrease in CAD structure with a slight decrease in pH from 7.4 greatly reduced their effects; namely, these drugs would inefficiently act on falciparum malaria and COVID-19 pneumonia patients with acidosis, resulting in resistance. The decrease in CAD structure at physiological pH was not observed for quinine, primaquine, or mefloquine. Therefore, restoring the normal blood pH or using pH-insensitive quinoline drugs might be effective for these infectious diseases with acidosis.


Subject(s)
Antifungal Agents/pharmacology , Chloroquine/pharmacology , Quinacrine/pharmacology , Surface-Active Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Cell Membrane/metabolism , Chloroquine/chemistry , Chloroquine/metabolism , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Molecular Structure , Monosaccharide Transport Proteins/antagonists & inhibitors , Protons , Quinacrine/chemistry , Quinacrine/metabolism , Saccharomyces cerevisiae/drug effects , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
10.
Angew Chem Int Ed Engl ; 60(21): 11884-11891, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1121482

ABSTRACT

2D NOESY plays a central role in structural NMR spectroscopy. We have recently discussed methods that rely on solvent-driven exchanges to enhance NOE correlations between exchangeable and non-exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino-imino cross-peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential is demonstrated on RNA fragments derived from the genome of SARS-CoV-2, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Protons , RNA, Viral/analysis , SARS-CoV-2/chemistry , Magnetic Phenomena , RNA, Viral/chemistry
11.
J Am Chem Soc ; 142(52): 21883-21890, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1065801

ABSTRACT

The SARS coronavirus 2 (SARS-CoV-2) main protease (Mpro) is an attractive broad-spectrum antiviral drug target. Despite the enormous progress in structure elucidation, the Mpro's structure-function relationship remains poorly understood. Recently, a peptidomimetic inhibitor has entered clinical trial; however, small-molecule orally available antiviral drugs have yet to be developed. Intrigued by a long-standing controversy regarding the existence of an inactive state, we explored the proton-coupled dynamics of the Mpros of SARS-CoV-2 and the closely related SARS-CoV using a newly developed continuous constant pH molecular dynamics (MD) method and microsecond fixed-charge all-atom MD simulations. Our data supports a general base mechanism for Mpro's proteolytic function. The simulations revealed that protonation of His172 alters a conserved interaction network that upholds the oxyanion loop, leading to a partial collapse of the conserved S1 pocket, consistent with the first and controversial crystal structure of SARS-CoV Mpro determined at pH 6. Interestingly, a natural flavonoid binds SARS-CoV-2 Mpro in the close proximity to a conserved cysteine (Cys44), which is hyper-reactive according to the CpHMD titration. This finding offers an exciting new opportunity for small-molecule targeted covalent inhibitor design. Our work represents a first step toward the mechanistic understanding of the proton-coupled structure-dynamics-function relationship of CoV Mpros; the proposed strategy of designing small-molecule covalent inhibitors may help accelerate the development of orally available broad-spectrum antiviral drugs to stop the current pandemic and prevent future outbreaks.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Binding Sites , Cysteine/chemistry , Drug Design , Humans , Hydrogen-Ion Concentration , Models, Molecular , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Protein Conformation , Protons , Small Molecule Libraries , Structure-Activity Relationship
12.
J Chem Phys ; 153(11): 115101, 2020 Sep 21.
Article in English | MEDLINE | ID: covidwho-796705

ABSTRACT

Broad-spectrum antiviral drugs are urgently needed to stop the Coronavirus Disease 2019 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle. As a cysteine protease, PLpro is rich in cysteines and histidines, and their protonation/deprotonation modulates catalysis and conformational plasticity. Here, we report the pKa calculations and assessment of the proton-coupled conformational dynamics of SARS-CoV-2 in comparison to SARS-CoV and MERS-CoV PLpros using the recently developed graphical processing unit (GPU)-accelerated implicit-solvent continuous constant pH molecular dynamics method with a new asynchronous replica-exchange scheme, which allows computation on a single GPU card. The calculated pKa's support the catalytic roles of the Cys-His-Asp triad. We also found that several residues can switch protonation states at physiological pH among which is C270/271 located on the flexible blocking loop 2 (BL2) of SARS-CoV-2/CoV PLpro. Simulations revealed that the BL2 can open and close depending on the protonation state of C271/270, consistent with the most recent crystal structure evidence. Interestingly, despite the lack of an analogous cysteine, BL2 in MERS-CoV PLpro is also very flexible, challenging a current hypothesis. These findings are supported by the all-atom fixed-charge simulations and provide a starting point for more detailed studies to assist the structure-based design of broad-spectrum inhibitors against CoV PLpros.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Drug Design , Middle East Respiratory Syndrome Coronavirus/enzymology , Molecular Dynamics Simulation , Papain/chemistry , Papain/metabolism , Protons , Amino Acid Sequence , Histidine , Hydrogen-Ion Concentration , Papain/antagonists & inhibitors , Protein Domains , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...