Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
ACS Appl Mater Interfaces ; 14(7): 8718-8727, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1683917

ABSTRACT

Transparent antimicrobial coatings can maintain the aesthetic appeal of surfaces and the functionality of a touch-screen while adding the benefit of reducing disease transmission. We fabricated an antimicrobial coating of silver oxide particles in a silicate matrix on glass. The matrix was grown by a modified Stöber sol-gel process with vapor-phase water and ammonia. A coating on glass with 2.4 mg of Ag2O per mm2 caused a reduction of 99.3% of SARS-CoV-2 and >99.5% of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared to the uncoated glass after 1 h. We envisage that screen protectors with transparent antimicrobial coatings will find particular application to communal touch-screens, such as in supermarkets and other check-out or check-in facilities where a number of individuals utilize the same touch-screen in a short interval.


Subject(s)
Anti-Infective Agents/chemistry , Bacterial Infections/prevention & control , COVID-19/prevention & control , Oxides/chemistry , Silver Compounds/chemistry , Ammonia/chemistry , Anti-Infective Agents/pharmacology , Bacterial Infections/microbiology , COVID-19/virology , Glass/chemistry , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Oxides/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Silicates/chemistry , Silver Compounds/pharmacology , Water/chemistry
2.
Microbiol Spectr ; 10(1): e0108021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1673361

ABSTRACT

The spread of carbapenem-resistant Pseudomonas aeruginosa and carbapenemase-producing Enterobacterales (CPE) has dramatically impacted morbidity and mortality. COVID-19 pandemic has favored the selection of these microorganisms because of the excessive and prolonged use of broad-spectrum antibiotics and the outbreaks related to patient transfer between hospitals and inadequate personal protective equipment. Therefore, early CPE detection is considered essential for their control. We aimed to compare conventional phenotypic synergy tests and two lateral flow immunoassays for detecting carbapenemases in Enterobacterales and P. aeruginosa. We analyzed 100 carbapenem-resistant Gram-negative bacilli isolates, 80 Enterobacterales, and 20 P. aeruginosa (86 isolates producing KPC, NDM, OXA-48, IMP, and VIM carbapenemases and 14 non-carbapenemase-producing isolates). We performed a modified Hodge test, boronic acid and ethylenediaminetetraacetic acid (EDTA) synergy tests, and two lateral flow immunoassays: RESIST-4 O.K.N.V. (Coris Bioconcept) and NG Test Carba 5 (NG Biotech). In total, 76 KPC, seven VIM, one NDM, one OXA-48, and one isolate coproducing KPC + NDM enzymes were included. The concordance of different methods estimated by the Kappa index was 0.432 (standard error: 0.117), thus showing a high variability with the synergy tests with boronic acid and EDTA and reporting 16 false negatives that were detected by the two immunochromatographic methods. Co-production was only detected using immunoassays. Conventional phenotypic synergy tests with boronic acid and EDTA for detecting carbapenemases are suboptimal, and their routine use should be reconsidered. These tests depend on the degree of enzyme expression and the distance between disks. Lateral flow immunoassay tests are a rapid and cost-effective tool to detect and differentiate carbapenemases, improving clinical outcomes through targeted therapy and promoting infection prevention measures. IMPORTANCE Infections due to multidrug-resistant pathogens are a growing problem worldwide. The production of carbapenemases in Pseudomonas aeruginosa and Enterobacterales cause a high impact on the mortality of infected patients. Therefore, it is of great importance to have methods that allow the early detection of these multi-resistant microorganisms, achieving the confirmation of the type of carbapenemase present, with high sensitivity and specificity, with the aim of improving epidemiological control, dissemination, the clinical course to through targeted antibiotic therapy and promoting infection control in hospitals.


Subject(s)
Gammaproteobacteria/enzymology , Immunoassay/methods , Pseudomonas aeruginosa/enzymology , Carbapenems/metabolism , Carbapenems/pharmacology , Carbon-Nitrogen Ligases/metabolism , Drug Resistance , Immunoassay/standards , Phenotype , Pseudomonas aeruginosa/drug effects
3.
Microbiol Spectr ; 10(1): e0052221, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1622001

ABSTRACT

Heme-containing peroxidases are widely distributed in the animal and plant kingdoms and play an important role in host defense by generating potent oxidants. Myeloperoxidase (MPO), the prototype of heme-containing peroxidases, exists in neutrophils and monocytes. MPO has a broad spectrum of microbial killing. The difficulty of producing MPO at a large scale hinders its study and utilization. This study aimed to overexpress recombinant human MPO and characterize its microbicidal activities in vitro and in vivo. A human HEK293 cell line stably expressing recombinant MPO (rMPO) was established as a component of this study. rMPO was overexpressed and purified for studies on its biochemical and enzymatic properties, as well as its microbicidal activities. In this study, rMPO was secreted into culture medium as a monomer. rMPO revealed enzymatic activity similar to that of native MPO. rMPO, like native MPO, was capable of killing a broad spectrum of microorganisms, including Gram-negative and -positive bacteria and fungi, at low nM levels. Interestingly, rMPO could kill antibiotic-resistant bacteria, making it very useful for treatment of nosocomial infections and mixed infections. The administration of rMPO significantly reduced the morbidity and mortality of murine lung infections induced by Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. In animal safety tests, the administration of 100 nM rMPO via tail vein did not result in any sign of toxic effects. Taken together, the data suggest that rMPO purified from a stably expressing human cell line is a new class of antimicrobial agents with the ability to kill a broad spectrum of pathogens, including bacteria and fungi with or without drug resistance. IMPORTANCE Over the past 2 decades, more than 20 new infectious diseases have emerged. Unfortunately, novel antimicrobial therapeutics are discovered at much lower rates. Infections caused by resistant microorganisms often fail to respond to conventional treatment, resulting in prolonged illness, greater risk of death, and high health care costs. Currently, this is best seen with the lack of a cure for coronavirus disease 2019 (COVID-19). To combat such untreatable microorganisms, there is an urgent need to discover new classes of antimicrobial agents. Myeloperoxidase (MPO) plays an important role in host defense. The difficulty of producing MPO on a large scale hinders its study and utilization. We have produced recombinant MPO at a large scale and have characterized its antimicrobial activities. Most importantly, recombinant MPO significantly reduced the morbidity and mortality of murine pneumonia induced by Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus. Our data suggest that recombinant MPO from human cells is a new class of antimicrobials with a broad spectrum of activity.


Subject(s)
Anti-Infective Agents/pharmacology , Peroxidase/pharmacology , Acute Disease , Animals , Anti-Infective Agents/classification , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/toxicity , Candida albicans/drug effects , Drug Resistance, Bacterial , Escherichia coli/drug effects , Female , HEK293 Cells , Humans , Hydrogen Peroxide/toxicity , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred C57BL , Peroxidase/genetics , Peroxidase/therapeutic use , Peroxidase/toxicity , Pneumonia, Bacterial/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Recombinant Proteins/toxicity , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects
4.
Eur J Clin Microbiol Infect Dis ; 41(1): 53-62, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1616163

ABSTRACT

There is relatively little contemporary information regarding clinical characteristics of patients with Pseudomonas aeruginosa bacteremia (PAB) in the community hospital setting. This was a retrospective, observational cohort study examining the clinical characteristics of patients with PAB across several community hospitals in the USA with a focus on the appropriateness of initial empirical therapy and impact on patient outcomes. Cases of PAB occurring between 2016 and 2019 were pulled from 8 community medical centers. Patients were classified as having either positive or negative outcome at hospital discharge. Several variables including receipt of active empiric therapy (AET) and the time to receiving AET were collected. Variables with a p value of < 0.05 in univariate analyses were included in a multivariable logistic regression model. Two hundred and eleven episodes of PAB were included in the analysis. AET was given to 81.5% of patients and there was no difference in regard to outcome (p = 0.62). There was no difference in the median time to AET in patients with a positive or negative outcome (p = 0.53). After controlling for other variables, age, Pitt bacteremia score ≥ 4, and septic shock were independently associated with a negative outcome. A high proportion of patients received timely, active antimicrobial therapy for PAB and time to AET did not have a significant impact on patient outcome.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Aged , Bacteremia/microbiology , Female , Hospitals, Community/statistics & numerical data , Humans , Male , Middle Aged , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/physiology , Retrospective Studies
5.
Science ; 372(6547): 1169-1175, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1583231

ABSTRACT

Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biofilms , Crystallography, X-Ray , Cystathionine gamma-Lyase/chemistry , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Drug Discovery , Drug Resistance, Bacterial , Drug Synergism , Drug Tolerance , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development
6.
Sci Rep ; 11(1): 22543, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1526103

ABSTRACT

Microbial contamination is one of the major dreadful problems that raises hospitalization, morbidity and mortality rates globally, which subsequently obstructs socio-economic progress. The continuous misuse and overutilization of antibiotics participate mainly in the emergence of microbial resistance. To circumvent such a multidrug-resistance phenomenon, well-defined nanocomposite structures have recently been employed. In the current study, a facile, novel and cost-effective approach was applied to synthesize Ag@Ag2O core-shell nanocomposites (NCs) via chemical method. Several techniques were used to determine the structural, morphological, and optical characteristics of the as-prepared NCs. XRD, Raman, FTIR, XPS and SAED analysis revealed a crystalline hybrid structure of Ag core and Ag2O shell. Besides, SEM and HRTEM micrographs depicted spherical nanoparticles with size range of 19-60 nm. Additionally, zeta potential and fluorescence spectra illustrated aggregated nature of Ag@Ag2O NCs by - 5.34 mV with fluorescence emission peak at 498 nm. Ag@Ag2O NCs exhibited higher antimicrobial, antibiofilm, and algicidal activity in dose-dependent behavior. Interestingly, a remarkable mycocidal potency by 50 µg of Ag@Ag2O NCs against Candida albican; implying promising activity against COVID-19 white fungal post-infections. Through assessing cytotoxicity, Ag@Ag2O NCs exhibited higher safety against Vero cells than bulk silver nitrate by more than 100-fold.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Nanocomposites/chemistry , Oxides/chemistry , Silver Compounds/chemistry , Animals , Anti-Infective Agents/chemical synthesis , Candida albicans/drug effects , Cell Survival/drug effects , Chlorella vulgaris/drug effects , Chlorocebus aethiops , Disinfectants/chemical synthesis , Disinfectants/chemistry , Disinfectants/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Metal Nanoparticles/chemistry , Oxides/chemical synthesis , Pseudomonas aeruginosa/drug effects , Silver Compounds/chemical synthesis , Silver Nitrate/pharmacology , Staphylococcus aureus/drug effects , Vero Cells
7.
ACS Appl Mater Interfaces ; 13(46): 54706-54714, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1514382

ABSTRACT

Antimicrobial coatings are one method to reduce the spread of microbial diseases. Transparent coatings preserve the visual properties of surfaces and are strictly necessary for applications such as antimicrobial cell phone screens. This work describes transparent coatings that inactivate microbes within minutes. The coatings are based on a polydopamine (PDA) adhesive, which has the useful property that the monomer can be sprayed, and then the monomer polymerizes in a conformal film at room temperature. Two coatings are described (1) a coating where PDA is deposited first and then a thin layer of copper is grown on the PDA by electroless deposition (PDA/Cu) and (2) a coating where a suspension of Cu2O particles in a PDA solution is deposited in a single step (PDA/Cu2O). In the second coating, PDA menisci bind Cu2O particles to the solid surface. Both coatings are transparent and are highly efficient in inactivating microbes. PDA/Cu kills >99.99% of Pseudomonas aeruginosa and 99.18% of methicillin-resistant Staphylococcus aureus (MRSA) in only 10 min and inactivates 99.98% of SARS-CoV-2 virus in 1 h. PDA/Cu2O kills 99.94% of P. aeruginosa and 96.82% of MRSA within 10 min and inactivates 99.88% of SARS-CoV-2 in 1 h.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Microbial/drug effects , SARS-CoV-2/drug effects , COVID-19/virology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Surface Properties
8.
Microbiol Spectr ; 9(3): e0028321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501550

ABSTRACT

The Infectious Disease Surveillance of Pediatrics (ISPED) program was established in 2015 to monitor and analyze the trends of bacterial epidemiology and antimicrobial resistance (AMR) in children. Clinical bacterial isolates were collected from 11 tertiary care children's hospitals in China in 2016 to 2020. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method or automated systems, with interpretation according to the Clinical and Laboratory Standards Institute 2019 breakpoints. A total of 288,377 isolates were collected, and the top 10 predominant bacteria were Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter baumannii. In 2020, the coronavirus disease 2019 (COVID-19) pandemic year, we observed a significant reduction in the proportion of respiratory tract samples (from 56.9% to 44.0%). A comparable reduction was also seen in the primary bacteria mainly isolated from respiratory tract samples, including S. pneumoniae, H. influenzae, and S. pyogenes. Multidrug-resistant organisms (MDROs) in children were commonly observed and presented higher rates of drug resistance than sensitive strains. The proportions of carbapenem-resistant K. pneumoniae (CRKP), carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and methicillin-resistant S. aureus (MRSA) strains were 19.7%, 46.4%%, 12.8%, and 35.0%, respectively. The proportions of CRKP, CRAB, and CRPA strains all showed decreasing trends between 2015 and 2020. Carbapenem-resistant Enterobacteriaceae (CRE) and CRPA gradually decreased with age, while CRAB showed the opposite trend with age. Both CRE and CRPA pose potential threats to neonates. MDROs show very high levels of AMR and have become an urgent threat to children, suggesting that effective monitoring of AMR and antimicrobial stewardship among children in China are required. IMPORTANCE AMR, especially that involving multidrug-resistant organisms (MDROs), is recognized as a global threat to human health; AMR renders infections increasingly difficult to treat, constituting an enormous economic burden and producing tremendous negative impacts on patient morbidity and mortality rates. There are many surveillance programs in the world to address AMR profiles and MDRO prevalence in humans. However, published studies evaluating the overall AMR rates or MDRO distributions in children are very limited or are of mixed quality. In this study, we showed the bacterial epidemiology and resistance profiles of primary pathogens in Chinese children from 2016 to 2020 for the first time, analyzed MDRO distributions with time and with age, and described MDROs' potential threats to children, especially low-immunity neonates. Our study will be very useful to guide antiinfection therapy in Chinese children, as well as worldwide pediatric patients.


Subject(s)
Bacteria/classification , Communicable Diseases/epidemiology , Communicable Diseases/microbiology , Drug Resistance, Bacterial , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , COVID-19/epidemiology , Child , China/epidemiology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Humans , Klebsiella pneumoniae/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Moraxella catarrhalis , Pseudomonas aeruginosa/drug effects , SARS-CoV-2 , Staphylococcus aureus/drug effects , Staphylococcus epidermidis , Streptococcus pneumoniae , Streptococcus pyogenes
9.
Molecules ; 26(19)2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1463769

ABSTRACT

Pristine high-density bulk disks of MgB2 with added hexagonal BN (10 wt.%) were prepared using spark plasma sintering. The BN-added samples are machinable by chipping them into desired geometries. Complex shapes of different sizes can also be obtained by the 3D printing of polylactic acid filaments embedded with MgB2 powder particles (10 wt.%). Our present work aims to assess antimicrobial activity quantified as viable cells (CFU/mL) vs. time of sintered and 3D-printed materials. In vitro antimicrobial tests were performed against the bacterial strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Enterococcus faecium DSM 13590, and Enterococcus faecalis ATCC 29212; and the yeast strain Candida parapsilosis ATCC 22019. The antimicrobial effects were found to depend on the tested samples and microbes, with E. faecium being the most resistant and E. coli the most susceptible.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Boron Compounds/pharmacology , Fungi/drug effects , Magnesium Compounds/pharmacology , Candida parapsilosis/drug effects , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Polyesters/pharmacology , Printing, Three-Dimensional , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
10.
Ann Clin Microbiol Antimicrob ; 20(1): 64, 2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1398863

ABSTRACT

BACKGROUND: Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated. METHODS: We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing. RESULTS: Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to ß-lactams and quinolones. CONCLUSIONS: Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved.


Subject(s)
Anti-Bacterial Agents/pharmacology , COVID-19/microbiology , Gram-Negative Bacteria/drug effects , Respiratory System/microbiology , COVID-19/complications , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/isolation & purification , Humans , Microbial Sensitivity Tests , Pneumonia, Ventilator-Associated/microbiology , Prospective Studies , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , SARS-CoV-2/isolation & purification , Switzerland
11.
ACS Appl Bio Mater ; 4(7): 5471-5484, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1337090

ABSTRACT

Centers for Disease Control and Prevention (CDC) warns the use of one-way valves or vents in face masks for potential threat of spreading COVID-19 through expelled respiratory droplets. Here, we have developed a nanoceutical cotton fabric duly sensitized with non-toxic zinc oxide nanomaterial for potential use as a membrane filter in the one-way valve for the ease of breathing without the threat of COVID-19 spreading. A detailed computational study revealed that zinc oxide nanoflowers (ZnO NFs) with almost two-dimensional petals trap SARS-CoV-2 spike proteins, responsible to attach to ACE-2 receptors in human lung epithelial cells. The study also confirmed significant denaturation of the spike proteins on the ZnO surface, revealing removal of the virus upon efficient trapping. Following the computational study, we have synthesized ZnO NF on a cotton matrix using a hydrothermal-assisted strategy. Electron-microscopic, steady-state, and picosecond-resolved spectroscopic studies confirm attachment of ZnO NF to the cotton (i.e., cellulose) matrix at the atomic level to develop the nanoceutical fabric. A detailed antimicrobial assay using Pseudomonas aeruginosa bacteria (model SARS-CoV-2 mimic) reveals excellent antimicrobial efficiency of the developed nanoceutical fabric. To our understanding, the nanoceutical fabric used in the one-way valve of a face mask would be the choice to assure breathing comfort along with source control of COVID-19 infection. The developed nanosensitized cloth can also be used as an antibacterial/anti CoV-2 washable dress material in general.


Subject(s)
Anti-Infective Agents/chemistry , COVID-19/prevention & control , Nanostructures/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , COVID-19/virology , Cotton Fiber/analysis , Humans , Masks , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Recycling , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zinc Oxide/chemistry
12.
ACS Appl Bio Mater ; 4(7): 5485-5493, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1327183

ABSTRACT

Attachment of microbial bodies including the corona virus on the surface of personal protective equipment (PPE) is found to be potential threat of spreading infection. Here, we report the development of a triboelectroceutical fabric (TECF) consisting of commonly available materials, namely, nylon and silicone rubber (SR), for the fabrication of protective gloves on the nitrile platform as model wearable PPE. A small triboelectric device (2 cm × 2 cm) consisting of SR and nylon on nitrile can generate more than 20 V transient or 41 µW output power, which is capable of charging a capacitor up to 65 V in only ∼50 s. The importance of the present work relies on the TECF-led antimicrobial activity through the generation of an electric current in saline water. The fabrication of TECF-based functional prototype gloves can generate hypochlorite ions through the formation of electrolyzed water upon rubbing them with saline water. Further, computational modelling has been employed to reveal the optimum structure and mechanistic pathway of antimicrobial hypochlorite generation. Detailed antimicrobial assays have been performed to establish effectiveness of such TECF-based gloves to reduce the risk from life-threatening pathogen spreading. The present work provides the rationale to consider the studied TECF, or other materials with comparable properties, as a material of choice for the development of self-sanitizing PPE in the fight against microbial infections including COVID-19.


Subject(s)
Anti-Infective Agents/chemistry , Electricity , Personal Protective Equipment , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Humans , Nylons/chemistry , Personal Protective Equipment/microbiology , Personal Protective Equipment/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Recycling , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Silicone Elastomers/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
13.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1304665

ABSTRACT

The paper presents a synthesis of poly(l-lactide) with bacteriostatic properties. This polymer was obtained by ring-opening polymerization of the lactide initiated by selected low-toxic zinc complexes, Zn[(acac)(L)H2O], where L represents N-(pyridin-4-ylmethylene) tryptophan or N-(2-pyridin-4-ylethylidene) phenylalanine. These complexes were obtained by reaction of Zn[(acac)2 H2O] and Schiff bases, the products of the condensation of amino acids and 4-pyridinecarboxaldehyde. The composition, structure, and geometry of the synthesized complexes were determined by NMR and FTIR spectroscopy, elemental analysis, and molecular modeling. Both complexes showed the geometry of a distorted trigonal bipyramid. The antibacterial and antifungal activities of both complexes were found to be much stronger than those of the primary Schiff bases. The present study showed a higher efficiency of polymerization when initiated by the obtained zinc complexes than when initiated by the zinc(II) acetylacetonate complex. The synthesized polylactide showed antibacterial properties, especially the product obtained by polymerization initiated by a zinc(II) complex with a ligand based on l-phenylalanine. The polylactide showed a particularly strong antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus brasiliensis. At the same time, this polymer does not exhibit fibroblast cytotoxicity.


Subject(s)
Polyesters/chemistry , Polymers/chemistry , Zinc/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Aspergillus/drug effects , Chelating Agents/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
14.
Molecules ; 26(12)2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1282538

ABSTRACT

Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Coated Materials, Biocompatible/pharmacology , Drug Resistance, Microbial/drug effects , Flavonoids/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Biofilms/growth & development , Coated Materials, Biocompatible/chemistry , Flavonoids/chemistry , Lasers/standards , Microbial Sensitivity Tests/methods , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development , Surface Properties
15.
Bioorg Med Chem Lett ; 36: 127808, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1034180

ABSTRACT

Commercial disinfectants are routinely used to decontaminate surfaces where microbes are expected and unwelcome. Several disinfectants contain quaternary ammonium salts, or "quats", all being derived from ammonium. Quaternary alkyl dimethyl benzyl ammonium chloride or bromide disinfectants are widely available. These compounds are effective in reducing or eliminating bacteria on contaminated nonporous surfaces. A unique benzyl derived boronium salt with strong detergent action has been developed. It demonstrated 4-8X greater antibacterial activity against 3 different bacteria when compared to an equal concentration of a commercial quant disinfectant solution containing alkyl dimethyl benzyl ammonium chloride and alkyl dimethyl ethylbenzyl ammonium chloride. Antibacterial effectiveness of each agent was determined by the minimum inhibitory concentration (MIC) method.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bromides/pharmacology , Disinfectants/pharmacology , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bromides/chemical synthesis , Bromides/chemistry , Disinfectants/chemical synthesis , Disinfectants/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Staphylococcus aureus/drug effects , Structure-Activity Relationship
16.
Eur J Clin Microbiol Infect Dis ; 40(2): 373-379, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1033857

ABSTRACT

Quorum sensing (QS) inhibition is an essential strategy to combat bacterial infection. Previously, we have synthesized a series of thymidine derivatives bearing isoxazole and 1,2,3-triazole rings (TITL). Herein, the inhibitory effects of TITL on QS of Pseudomonas aeruginosa PAO1 were evaluated. In vitro results demonstrated that TITL effectively inhibited biofilm formation and reduced the virulence factors of P. aeruginosa PAO1. In combination with antibiotics, our TITL compounds significantly prolonged the lifespans of Caenorhabditis elegans N2 nematodes that were infected with P. aeruginosa PAO1 in vivo. In conclusion, TITL compounds are promising candidates for the treatment of antibiotic-resistant P. aeruginosa PAO1.


Subject(s)
Biofilms/drug effects , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Triazoles/pharmacology , Virulence/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans , Drug Resistance, Bacterial
17.
Rev Esp Quimioter ; 34(2): 81-92, 2021 Apr.
Article in Spanish | MEDLINE | ID: covidwho-1145772

ABSTRACT

From a microbiological point of view, both empirical and targeted antimicrobial treatment in respiratory infection is based on the sensitivity profile of isolated microorganisms and the possible resistance mechanisms that they may present. The latter may vary in different geographic areas according to prescription profiles and vaccination programs. Beta-lactam antibiotics, fluoroquinolones, and macrolides are the most commonly used antimicrobials during the exacerbations of chronic obstructive pulmonary disease and community-acquired pneumonia. In their prescription, different aspects such as intrinsic activity, bactericidal effect or their ability to prevent the development of resistance must be taken into account. The latter is related to the PK/PD parameters, the mutant prevention concentration and the so-called selection window. More recently, the potential ecological impact has grown in importance, not only on the intestinal microbiota, but also on the respiratory one. Maintaining the state of eubiosis requires the use of antimicrobials with a low profile of action on anaerobic bacteria. With their use, the resilience of the bacterial populations belonging to the microbiota, the state of resistance of colonization and the collateral damage related to the emergence of resistance to the antimicrobials in pathogens causing the infections and in the bacterial populations integrating the microbiota.


Subject(s)
Anti-Bacterial Agents/pharmacology , COVID-19/epidemiology , Drug Resistance, Bacterial , Pulmonary Disease, Chronic Obstructive/drug therapy , Respiratory Tract Infections/drug therapy , Administration, Oral , Anti-Bacterial Agents/administration & dosage , Chlamydophila pneumoniae/drug effects , Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology , Disease Progression , Gastrointestinal Microbiome/drug effects , Haemophilus influenzae/drug effects , Humans , Microbial Sensitivity Tests , Moraxella catarrhalis/drug effects , Mycoplasma pneumoniae/drug effects , Pseudomonas aeruginosa/drug effects , Pulmonary Disease, Chronic Obstructive/microbiology , Respiratory Tract Infections/microbiology , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects
18.
Int J Antimicrob Agents ; 57(5): 106318, 2021 May.
Article in English | MEDLINE | ID: covidwho-1131354

ABSTRACT

OBJECTIVES: Piperacillin/tazobactam has long been a broad-spectrum 'workhorse' antibiotic; however, it is compromised by resistance. One response is to re-partner tazobactam with cefepime, which is easier to protect, being less ß-lactamase labile, and to use a high-dose and prolonged infusion. On this basis, Wockhardt are developing cefepime/tazobactam (WCK 4282) as a 2+2 g q8h combination with a 90-min infusion. METHODS: The activity of cc cefepime/tazobactam was assessed, with other tazobactam combinations as comparators, against 1632 Enterobacterales, 745 Pseudomonas aeruginosa and 450 other non-fermenters, as submitted to the UK National Reference Laboratory. These were categorised by carbapenemase-gene detection and interpretive reading of phenotypes, with MICs determined by British Society for Antimicrobial Chemotherapy agar dilution. RESULTS: Although higher breakpoints may be justifiable, based on the pharmacodynamics, the results were reviewed against current cefepime criteria. On this basis, cefepime/tazobactam was broadly active against Enterobacterales with AmpC enzymes and extended-spectrum ß-lactamases (ESBLs), even when they had ertapenem resistance, suggesting porin loss. At 8+8 mg/L, activity extended to > 90% of Enterobacterales with OXA-48 and KPC carbapenemases, although the MICs for KPC producers belonging to the international Klebsiella pneumoniae ST258 lineage were higher; metallo-ß-lactamase producers remained resistant. Cefepime/tazobactam was less active than ceftolozane/tazobactam against Pseudomonas aeruginosa with AmpC de-repression or high-level efflux but achieved wider antipseudomonal coverage than piperacillin/tazobactam. Activity against other non-fermenters was species-specific. CONCLUSION: Overall, cefepime/tazobactam had a spectrum exceeding those of piperacillin/tazobactam and ceftolozane/tazobactam and resembling or exceeding that of carbapenems. Used as a 'new-combination of old-agents' it has genuine potential to be 'carbapenem-sparing'.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cefepime/pharmacology , Cephalosporins/pharmacology , Gram-Negative Bacteria/drug effects , Piperacillin, Tazobactam Drug Combination/pharmacology , Tazobactam/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , beta-Lactamases/metabolism
19.
Bioorg Chem ; 104: 104320, 2020 11.
Article in English | MEDLINE | ID: covidwho-848890

ABSTRACT

In the present study, we intend to synthesize a series of novel substituted phenyl azetidine-2-one sulphonyl derivatives. The entire set of derivatives 5 (a-t) were screened for in-vitro antibacterial, and antifungal activity, and among them eleven compounds were further screened for the antiviral activity to predict their efficacy against pathogenic viruses. Interestingly, compound 5d, 5e, 5f, 5h, 5i, and 5j showed similar or better antibacterial activity as compared to ampicillin (standard). Moreover, compounds 5h, 5i, 5j, and 5q showed good inhibitory activity against fungal strains whereas other derivatives had mild or diminished activity in comparison with standard drug clotrimazole. The antimicrobial study indicated that compounds having electron-withdrawing groups showed the highest activity. Interestingly, these tested compounds showed weak antiviral activity against Vaccinia virus, Human Coronavirus (229E), Reovirus-1, Herpes simplex virus, Sindbis virus, Coxsackievirus B4, Yellow Fever virus, and Influenza B virus in HEL cell, Vero cell, and MDCK cell cultures. The findings of the present study might open new avenues to target human disease-causing deadly microbes and viruses.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antiviral Agents/pharmacology , Azetidines/pharmacology , Sulfonamides/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Aspergillus fumigatus/drug effects , Aspergillus niger/drug effects , Azetidines/chemical synthesis , Candida albicans/drug effects , Cell Line, Tumor , Chlorocebus aethiops , Dogs , Escherichia coli/drug effects , Humans , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Vero Cells , Viruses/drug effects
20.
IUBMB Life ; 72(10): 2097-2111, 2020 10.
Article in English | MEDLINE | ID: covidwho-696287

ABSTRACT

The pandemic coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID-19 are underway. Respiratory viral infections, such as influenza, predispose patients to co-infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co-infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS-CoV-2). Although antibiotics do not directly affect SARS-CoV-2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co-infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co-infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID-19. Also, the antibiotic-resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co-infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID-19.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Bacterial Infections/epidemiology , COVID-19/epidemiology , Pandemics , Pneumonia, Bacterial/epidemiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Infections/virology , COVID-19/drug therapy , COVID-19/microbiology , COVID-19/virology , Coinfection , Haemophilus influenzae/drug effects , Haemophilus influenzae/pathogenicity , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Legionella pneumophila/drug effects , Legionella pneumophila/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Respiratory System/drug effects , Respiratory System/microbiology , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL