Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Respir Res ; 23(1): 37, 2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1701068

ABSTRACT

BACKGROUND: Some COVID-19 survivors present lung function abnormalities during follow-up, particularly reduced carbon monoxide lung diffusing capacity (DLCO). To investigate risk factors and underlying pathophysiology, we compared the clinical characteristics and levels of circulating pulmonary epithelial and endothelial markers in COVID-19 survivors with normal or reduced DLCO 6 months after discharge. METHODS: Prospective, observational study. Clinical characteristics during hospitalization, and spirometry, DLCO and plasma levels of epithelial (surfactant protein (SP) A (SP-A), SP-D, Club cell secretory protein-16 (CC16) and secretory leukocyte protease inhibitor (SLPI)), and endothelial (soluble intercellular adhesion molecule 1 (sICAM-1), soluble E-selectin and Angiopoietin-2) 6 months after hospital discharge were determined in 215 COVID-19 survivors. RESULTS: DLCO was < 80% ref. in 125 (58%) of patients, who were older, more frequently smokers, had hypertension, suffered more severe COVID-19 during hospitalization and refer persistent dyspnoea 6 months after discharge. Multivariate regression analysis showed that age ≥ 60 years and severity score of the acute episode ≥ 6 were independent risk factors of reduced DLCO 6 months after discharge. Levels of epithelial (SP-A, SP-D and SLPI) and endothelial (sICAM-1 and angiopoietin-2) markers were higher in patients with reduced DLCO, particularly in those with DLCO ≤ 50% ref. Circulating SP-A levels were associated with the occurrence of acute respiratory distress syndrome (ARDS), organizing pneumonia and pulmonary embolisms during hospitalization. CONCLUSIONS: Reduced DLCO is common in COVID-19 survivors 6 months after hospital discharge, especially in those older than 60 years with very severe acute disease. In these individuals, elevated levels of epithelial and endothelial markers suggest persistent lung damage.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Endothelial Cells , Epithelial Cells , Pulmonary Diffusing Capacity , Age Factors , Aged , Biomarkers/blood , COVID-19/complications , Female , Humans , Hypertension/complications , Lung/pathology , Male , Middle Aged , Patient Discharge , Prospective Studies , Respiratory Function Tests , Risk Factors , Smokers , Spirometry , Survivors
4.
Respir Med ; 191: 106709, 2022 01.
Article in English | MEDLINE | ID: covidwho-1556145

ABSTRACT

INTRODUCTION: Prospective and longitudinal data on pulmonary injury over one year after acute coronavirus disease 2019 (COVID-19) are sparse. We aim to determine reductions in pulmonary function and respiratory related quality of life up to 12 months after acute COVID-19. METHODS: Patients with acute COVID-19 were enrolled into an ongoing single-centre, prospective observational study and prospectively examined 6 weeks, 3, 6 and 12 months after onset of COVID-19 symptoms. Chest CT-scans, pulmonary function and symptoms assessed by St. Georges Respiratory Questionnaire were used to evaluate respiratory limitations. Patients were stratified according to severity of acute COVID-19. RESULTS: Median age of all patients was 57 years, 37.8% were female. Higher age, male sex and higher BMI were associated with acute-COVID-19 severity (p < 0.0001, 0.001 and 0.004 respectively). Also, pulmonary restriction and reduced carbon monoxide diffusion capacity was associated with disease severity. In patients with restriction and impaired diffusion capacity, FVC improved over 12 months from 61.32 to 71.82, TLC from 68.92 to 76.95, DLCO from 60.18 to 68.98 and KCO from 81.28 to 87.80 (percent predicted values; p = 0.002, 0.045, 0.0002 and 0.0005). The CT-score of lung involvement in the acute phase was associated with restriction and reduction in diffusion capacity in follow-up. Respiratory symptoms improved for patients in higher severity groups during follow-up, but not for patients with initially mild disease. CONCLUSION: Severity of respiratory failure during COVID-19 correlates with the degree of pulmonary function impairment and respiratory quality of life in the year after acute infection.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Lung/physiopathology , Quality of Life , Respiratory Insufficiency/physiopathology , Adult , Aged , COVID-19/diagnostic imaging , COVID-19/therapy , Extracorporeal Membrane Oxygenation , Female , Forced Expiratory Volume/physiology , Hospitalization , Humans , Longitudinal Studies , Lung/diagnostic imaging , Male , Middle Aged , Oxygen Inhalation Therapy , Pulmonary Diffusing Capacity/physiology , Recovery of Function , Respiration, Artificial , Respiratory Function Tests , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/therapy , SARS-CoV-2 , Severity of Illness Index , Surveys and Questionnaires , Tomography, X-Ray Computed , Total Lung Capacity/physiology , Vital Capacity/physiology
5.
Sci Rep ; 11(1): 22666, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528025

ABSTRACT

Many coronavirus disease 2019 (Covid-19) survivors show symptoms months after acute illness. The aim of this work is to describe the clinical evolution of Covid-19, one year after discharge. We performed a prospective cohort study on 238 patients previously hospitalized for Covid-19 pneumonia in 2020 who already underwent clinical follow-up 4 months post-Covid-19. 200 consented to participate to a 12-months clinical assessment, including: pulmonary function tests with diffusing lung capacity for carbon monoxide (DLCO); post-traumatic stress (PTS) symptoms evaluation by the Impact of Event Scale (IES); motor function evaluation (by Short Physical Performance Battery and 2 min walking test); chest Computed Tomography (CT). After 366 [363-369] days, 79 patients (39.5%) reported at least one symptom. A DLCO < 80% was observed in 96 patients (49.0%). Severe DLCO impairment (< 60%) was reported in 20 patients (10.2%), related to extent of CT scan abnormalities. Some degree of motor impairment was observed in 25.8% of subjects. 37/200 patients (18.5%) showed moderate-to-severe PTS symptoms. In the time elapsed from 4 to 12 months after hospital discharge, motor function improves, while respiratory function does not, being accompanied by evidence of lung structural damage. Symptoms remain highly prevalent one year after acute illness.


Subject(s)
COVID-19/complications , Hospitalization , Aged , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19/epidemiology , Carbon Monoxide/metabolism , Female , Humans , Italy/epidemiology , Logistic Models , Male , Mental Health , Middle Aged , Motor Activity , Patient Acuity , Patient Discharge , Prevalence , Prospective Studies , Pulmonary Diffusing Capacity , Respiratory Function Tests , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/etiology , Survivors , Tomography, X-Ray Computed , Walk Test
6.
BMC Pulm Med ; 21(1): 136, 2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1511742

ABSTRACT

BACKGROUND: All over the world, SARS-CoV-2 pneumonia is causing a significant short-term morbidity and mortality, but the medium-term impact on lung function and quality of life of affected patients are still unknown. METHODS: In this prospective observational study, 39 patients with SARS-CoV-2 pneumonia were recruited from a single COVID-19 hospital in Southern Switzerland. At three months patients underwent radiological and functional follow-up through CT scan, lung function tests, and 6 min walking test. Furthermore, quality of life was assessed through self-reported questionnaires. RESULTS: Among 39 patients with SARS-CoV-2 pneumonia, 32 (82% of all participants) presented abnormalities in CT scan and 25 (64.1%) had lung function tests impairment at three months. Moreover, 31 patients (79.5%) reported a perception of poor health due to respiratory symptoms and all 39 patients showed an overall decreased quality of life. CONCLUSIONS: Medium-term follow up at three months of patients diagnosed with SARS-CoV-2 pneumonia shows the persistence of abnormalities in CT scans, a significant functional impairment assessed by lung function tests and a decreased quality of life in affected patients. Further studies evaluating the long-term impact are warranted to guarantee an appropriate follow-up to patients recovering from SARS-CoV-2 pneumonia.


Subject(s)
COVID-19/physiopathology , Lung/physiopathology , Quality of Life , Aged , COVID-19/diagnostic imaging , Convalescence , Female , Forced Expiratory Volume , Health Status , Humans , Length of Stay , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , Pulmonary Diffusing Capacity , Recovery of Function , Respiratory Function Tests , SARS-CoV-2 , Switzerland , Tomography, X-Ray Computed , Vital Capacity , Walk Test
7.
Respir Care ; 66(10): 1610-1617, 2021 10.
Article in English | MEDLINE | ID: covidwho-1381426

ABSTRACT

BACKGROUND: Persistent impairment of pulmonary function and exercise capacity has been known to last for months or even years in the survivors who recovered from other coronavirus pneumonia. Some reports showed that subjects with coronavirus disease 2019 pneumonia after being discharged could have several sequelae, but there are few studies on gas exchange and exercise capacity complications in these subjects. AIMS: To describe residual gas exchange abnormalities during recovery from coronavirus disease 2019 pneumonia. METHODS: In an observational study, ∼90 d after onset of disease, we scheduled almost 200 subjects for an out-patient visit with pulmonary function testing and computed tomography of the lungs. Lung mechanics by using body plethysmography, gas exchange with diffusing lung capacity for carbon monoxide determined by the single-breath technique (DLCOsb) and diffusing lung capacity for nitric oxide determined by the single-breath technique (DLNOsb), and exercise ability by using the 6-min walk test (6MWT) were measured in the subjects. The results were compared between those who required invasive mechanical ventilation and those who did not. RESULTS: A total of 171 subjects were included, the majority (96%) had signs of residual pneumonia (such as an excess of high attenuation areas) on computed tomography of the lungs. The DLCOSB results were below the lower limit of the normal range in 29.2% of the subjects; during the 6MWT, 67% experienced oxygen desaturation ([Formula: see text]) > 4%; and, in 81 (47%), the dropped below 88%. Subjects who required invasive mechanical ventilation (49.7%) were more likely to have lower lung volumes, more gas exchange abnormality, less exercise capacity and more radiologic abnormality. CONCLUSIONS: Subjects who recovered from severe COVID-19 pneumonia continued to have abnormal lung function and abnormal radiologic findings.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Pulmonary Diffusing Capacity , Pulmonary Gas Exchange , Respiratory Function Tests , SARS-CoV-2 , Walk Test
8.
BMC Pulm Med ; 21(1): 241, 2021 Jul 17.
Article in English | MEDLINE | ID: covidwho-1369491

ABSTRACT

INTRODUCTION: The novel coronavirus SARS-Cov-2 can infect the respiratory tract causing a spectrum of disease varying from mild to fatal pneumonia, and known as COVID-19. Ongoing clinical research is assessing the potential for long-term respiratory sequelae in these patients. We assessed the respiratory function in a cohort of patients after recovering from SARS-Cov-2 infection, stratified according to PaO2/FiO2 (p/F) values. METHOD: Approximately one month after hospital discharge, 86 COVID-19 patients underwent physical examination, arterial blood gas (ABG) analysis, pulmonary function tests (PFTs), and six-minute walk test (6MWT). Patients were also asked to quantify the severity of dyspnoea and cough before, during, and after hospitalization using a visual analogic scale (VAS). Seventy-six subjects with ABG during hospitalization were stratified in three groups according to their worst p/F values: above 300 (n = 38), between 200 and 300 (n = 30) and below 200 (n = 20). RESULTS: On PFTs, lung volumes were overall preserved yet, mean percent predicted residual volume was slightly reduced (74.8 ± 18.1%). Percent predicted diffusing capacity for carbon monoxide (DLCO) was also mildly reduced (77.2 ± 16.5%). Patients reported residual breathlessness at the time of the visit (VAS 19.8, p < 0.001). Patients with p/F below 200 during hospitalization had lower percent predicted forced vital capacity (p = 0.005), lower percent predicted total lung capacity (p = 0.012), lower DLCO (p < 0.001) and shorter 6MWT distance (p = 0.004) than patients with higher p/F. CONCLUSION: Approximately one month after hospital discharge, patients with COVID-19 can have residual respiratory impairment, including lower exercise tolerance. The extent of this impairment seems to correlate with the severity of respiratory failure during hospitalization.


Subject(s)
COVID-19/physiopathology , Pneumonia, Viral/physiopathology , Aged , Blood Gas Analysis , COVID-19/complications , Carbon Monoxide , Dyspnea/virology , Exercise Tolerance , Female , Humans , Male , Middle Aged , Oxygen/blood , Partial Pressure , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Pulmonary Diffusing Capacity , Residual Volume , SARS-CoV-2 , Severity of Illness Index , Walk Test
11.
High Blood Press Cardiovasc Prev ; 28(4): 373-381, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1205023

ABSTRACT

The aim of the study was to assess the short-term consequences of SARS-CoV-2-related pneumonia, also in relation to radiologic/laboratory/clinical indices of risk at baseline. This prospective follow-up cohort study included 94 patients with confirmed COVID-19 admitted to a medical ward at the Montichiari Hospital, Brescia, Italy from February 28th to April 30th, 2020. Patients had COVID-19 related pneumonia with respiratory failure. Ninety-four patients out of 193 survivors accepted to be re-evaluated after discharge, on average after 4 months. In » of the patients an evidence of pulmonary fibrosis was detected, as indicated by an altered diffusing capacity of the lung for carbon monoxide (DLCO); in 6-7% of patients the alteration was classified as of moderate/severe degree. We also evaluated quality of life thorough a structured questionnaire: 52% of the patients still lamented fatigue, 36% effort dyspnea, 10% anorexia, 14% dysgeusia or anosmia, 31% insomnia and 21% anxiety. Finally, we evaluated three prognostic indices (the Brixia radiologic score, the Charlson Comorbidity Index and the 4C mortality score) in terms of prediction of the clinical consequences of the disease. All of them significantly predicted the extent of short-term lung involvement. In conclusion, our study demonstrated that SARS-CoV-2-related pneumonia is associated to relevant short-term clinical consequences, both in terms of persistence of symptoms and in terms of impairment of DLCO (indicator of a possible development of pulmonary fibrosis); some severity indices of the disease may predict short-term clinical outcome. Further studies are needed to ascertain whether such manifestations may persist long-term.


Subject(s)
COVID-19/virology , Lung Diseases, Interstitial/virology , Lung/virology , Pulmonary Fibrosis/virology , SARS-CoV-2/pathogenicity , COVID-19/complications , COVID-19/diagnosis , Follow-Up Studies , Host-Pathogen Interactions , Humans , Italy , Lung/pathology , Lung/physiopathology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/physiopathology , Prognosis , Prospective Studies , Pulmonary Diffusing Capacity , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/physiopathology , Quality of Life , Time Factors
12.
Respir Med ; 182: 106394, 2021 06.
Article in English | MEDLINE | ID: covidwho-1188980

ABSTRACT

There is limited knowledge about the long-term effects on pulmonary function of COVID-19 in patients that required intensive care treatment. Spirometry and diffusing capacity for carbon monoxide (DLCO) were measured in 60 subjects at 3-6 months post discharge. Impaired lung function was found in 52% of the subjects, with reduced DLCO as the main finding. The risk increased with age above 60 years, need for mechanical ventilation and longer ICU stay as well as lower levels of C-reactive protein at admission. This suggests the need of follow-up with pulmonary function testing in intensive-care treated patients.


Subject(s)
COVID-19/physiopathology , Carbon Monoxide/metabolism , Critical Illness , Lung/physiopathology , Patient Discharge , Pulmonary Diffusing Capacity/physiology , COVID-19/metabolism , Humans , SARS-CoV-2 , Spirometry , Time Factors
13.
Medicina (Kaunas) ; 57(3)2021 Mar 18.
Article in English | MEDLINE | ID: covidwho-1167652

ABSTRACT

The COVID-19 pandemic dramatically changed medical care. Healthcare professionals are faced with new issues. Patients who survived COVID-19 have plenty of different continuing symptoms, of which the most common are fatigue and breathlessness. It is not well known how to care for patients with persistent or worsening respiratory symptoms and changes on chest X-ray following COVID-19 pneumonia. In this article, we talk about a subgroup of patients with organizing pneumonia following COVID-19 pneumonia that could be effectively treated with systemic glucocorticoids. It is important that patients with COVID-19 pneumonia be followed-up at least three weeks after diagnosis, in order to recognize early lung damage. We are providing a management algorithm for early diagnosis of lung diseases after COVID-19 pneumonia.


Subject(s)
COVID-19/complications , Lung Diseases, Interstitial/diagnosis , Algorithms , Biopsy , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/physiopathology , Computed Tomography Angiography , Disease Management , Early Diagnosis , Glucocorticoids/therapeutic use , Humans , Lung/diagnostic imaging , Lung/pathology , Lung/physiopathology , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/physiopathology , Pulmonary Diffusing Capacity , SARS-CoV-2 , Spirometry , Tomography, X-Ray Computed , Walk Test
14.
BMC Pulm Med ; 21(1): 97, 2021 Mar 22.
Article in English | MEDLINE | ID: covidwho-1147114

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) causes a wide spectrum of lung manifestations ranging from mild asymptomatic disease to severe respiratory failure. We aimed to clarify the characteristics of radiological and functional lung sequelae of COVID-19 patients described in follow-up period. METHOD: PubMed and EMBASE were searched on January 20th, 2021 to investigate characteristics of lung sequelae in COVID-19 patients. Chest computed tomography (CT) and pulmonary function test (PFT) data were collected and analyzed using one-group meta-analysis. RESULTS: Our search identified 15 eligible studies with follow-up period in a range of 1-6 months. A total of 3066 discharged patients were included in these studies. Among them, 1232 and 1359 patients were evaluated by chest CT and PFT, respectively. The approximate follow-up timing on average was 90 days after either symptom onset or hospital discharge. The frequency of residual CT abnormalities after hospital discharge was 55.7% (95% confidential interval (CI) 41.2-70.1, I2 = 96.2%). The most frequent chest CT abnormality was ground glass opacity in 44.1% (95% CI 30.5-57.8, I2 = 96.2%), followed by parenchymal band or fibrous stripe in 33.9% (95% CI 18.4-49.4, I2 = 95.0%). The frequency of abnormal pulmonary function test was 44.3% (95% CI 32.2-56.4, I2 = 82.1%), and impaired diffusion capacity was the most frequently observed finding in 34.8% (95% CI 25.8-43.8, I2 = 91.5%). Restrictive and obstructive patterns were observed in 16.4% (95% CI 8.9-23.9, I2 = 89.8%) and 7.7% (95% CI 4.2-11.2, I2 = 62.0%), respectively. CONCLUSIONS: This systematic review suggested that about half of the patients with COVID-19 still had residual abnormalities on chest CT and PFT at about 3 months. Further studies with longer follow-up term are warranted.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Follow-Up Studies , Humans , Pulmonary Diffusing Capacity , Respiratory Function Tests , SARS-CoV-2 , Tomography, X-Ray Computed
15.
Physiol Rep ; 9(4): e14748, 2021 02.
Article in English | MEDLINE | ID: covidwho-1100462

ABSTRACT

A decreased lung diffusing capacity for carbon monoxide (DLCO ) has been reported in a variable proportion of subjects over the first 3 months of recovery from severe coronavirus disease 2019 (COVID-19). In this study, we investigated whether measurement of lung diffusing capacity for nitric oxide (DLNO ) offers additional insights on the presence and mechanisms of gas transport abnormalities. In 94 subjects, recovering from mild-to-severe COVID-19 pneumonia, we measured DLNO and DLCO between 10 and 266 days after each patient was tested negative for severe acute respiratory syndrome coronavirus 2. In 38 subjects, a chest computed tomography (CT) was available for semiquantitative analysis at six axial levels and automatic quantitative analysis of entire lungs. DLNO was abnormal in 57% of subjects, independent of time of lung function testing and severity of COVID-19, whereas standard DLCO was reduced in only 20% and mostly within the first 3 months. These differences were not associated with changes of simultaneous DLNO /DLCO ratio, while DLCO /VA and DLNO /VA were within normal range or slightly decreased. DLCO but not DLNO positively correlated with recovery time and DLCO was within the normal range in about 90% of cases after 3 months, while DLNO was reduced in more than half of subjects. Both DLNO and DLCO inversely correlated with persisting CT ground glass opacities and mean lung attenuation, but these were more frequently associated with DLNO than DLCO decrease. These data show that an impairment of DLNO exceeding standard DLCO may be present during the recovery from COVID-19, possibly due to loss of alveolar units with alveolar membrane damage, but relatively preserved capillary volume. Alterations of gas transport may be present even in subjects who had mild COVID-19 pneumonia and no or minimal persisting CT abnormalities. TRIAL REGISTRY: ClinicalTrials.gov PRS: No.: NCT04610554 Unique Protocol ID: SARS-CoV-2_DLNO 2020.


Subject(s)
COVID-19/physiopathology , Carbon Monoxide/metabolism , Lung/physiopathology , Nitric Oxide/metabolism , Pulmonary Diffusing Capacity , COVID-19/complications , COVID-19/diagnostic imaging , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pulmonary Diffusing Capacity/methods , Pulmonary Diffusing Capacity/physiology , Radiography, Thoracic , Respiratory Function Tests , Severity of Illness Index
16.
Can Respir J ; 2021: 6692409, 2021.
Article in English | MEDLINE | ID: covidwho-1093889

ABSTRACT

We aimed to investigate changes in pulmonary function and computed tomography (CT) findings in patients with coronavirus disease 2019 (COVID-19) during the recovery period. COVID-19 patients underwent symptom assessment, pulmonary function tests, and high-resolution chest CT 6 months after discharge from the hospital. Of the 54 patients enrolled, 31 and 23 were in the moderate and severe group, respectively. The main symptoms 6 months after discharge were fatigue and exertional dyspnea, experienced by 24.1% and 18.5% of patients, respectively, followed by smell and taste dysfunction (9.3%) and cough (5.6%). One patient dropped out of the pulmonary function tests. Of the remaining 54 patients, 41.5% had pulmonary dysfunction. Specifically, 7.5% presented with restrictive ventilatory dysfunction (forced vital capacity <80% of the predicted value), 18.9% presented with small airway dysfunction, and 32.1% presented with pulmonary diffusion impairment (diffusing capacity for carbon monoxide <80% of the predicted value). Of the 54 patients enrolled, six patients dropped out of the chest CT tests. Eleven of the remaining 48 patients presented with abnormal lung CT findings 6 months after discharge. Patients with residual lung lesions were more common in the severe group (52.6%) than in the moderate group (3.4%); a higher proportion of patients had involvement of both lungs (42.1% vs. 3.4%) in the severe group. The residual lung lesions were mainly ground-glass opacities (20.8%) and linear opacities (14.6%). Semiquantitative visual scoring of the CT findings revealed significantly higher scores in the left, right, and both lungs in the severe group than in the moderate group. COVID-19 patients 6 months after discharge mostly presented with fatigue and exertional dyspnea, and their pulmonary dysfunction was mostly characterized by pulmonary diffusion impairment. As revealed by chest CT, the severe group had a higher prevalence of residual lesions than the moderate group, and the residual lesions mostly manifested as ground-glass opacities and linear opacities.


Subject(s)
COVID-19/physiopathology , Dyspnea/physiopathology , Fatigue/physiopathology , Lung/physiopathology , Adult , Aged , COVID-19/diagnostic imaging , Cough/physiopathology , Female , Follow-Up Studies , Forced Expiratory Volume , Humans , Lung/diagnostic imaging , Male , Middle Aged , Olfaction Disorders/physiopathology , Peak Expiratory Flow Rate , Pulmonary Diffusing Capacity , Recovery of Function , Respiratory Function Tests , SARS-CoV-2 , Severity of Illness Index , Taste Disorders/physiopathology , Tomography, X-Ray Computed , Vital Capacity
17.
Pulmonology ; 27(4): 328-337, 2021.
Article in English | MEDLINE | ID: covidwho-969698

ABSTRACT

BACKGROUND: Evidence suggests lungs as the organ most affected by coronavirus disease 2019 (COVID-19). The literature on previous coronavirus infections reports that patients may experience persistent impairment in respiratory function after being discharged. Our objective was to determine the prevalence of restrictive pattern, obstructive pattern and altered diffusion in patients post-COVID-19 infection and to describe the different evaluations of respiratory function used with these patients. METHODS: A systematic review was conducted in five databases. Studies that used lung function testing to assess post-infection COVID-19 patients were included for review. Two independent reviewers analysed the studies, extracted the data and assessed the quality of evidence. RESULTS: Of the 1973 reports returned by the initial search, seven articles reporting on 380 patients were included in the data synthesis. In the sensitivity analysis, we found a prevalence of 0.39 (CI 0.24-0.56, p < 0.01, I2 = 86%), 0.15 (CI 0.09-0.22, p = 0.03, I2 = 59%), and 0.07 (CI 0.04-0.11, p = 0.31, I2 = 16%) for altered diffusion capacity of the lungs for carbon monoxide (DLCO), restrictive pattern and obstructive pattern, respectively. CONCLUSION: Post-infection COVID-19 patients showed impaired lung function; the most important of the pulmonary function tests affected was the diffusion capacity.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Lung/physiopathology , Forced Expiratory Volume/physiology , Humans , Pulmonary Diffusing Capacity/physiology , Respiratory Function Tests , SARS-CoV-2 , Total Lung Capacity/physiology , Vital Capacity/physiology
18.
Chest ; 158(6): 2502-2510, 2020 12.
Article in English | MEDLINE | ID: covidwho-956971

ABSTRACT

To reduce the spread of the severe acute respiratory syndrome coronavirus 2, many pulmonary function testing (PFT) laboratories have been closed or have significantly reduced their testing capacity. Because these mitigation strategies may be necessary for the next 6 to 18 months to prevent recurrent peaks in disease prevalence, fewer objective measurements of lung function will alter the diagnosis and care of patients with chronic respiratory diseases. PFT, which includes spirometry, lung volume, and diffusion capacity measurement, is essential to the diagnosis and management of patients with asthma, COPD, and other chronic lung conditions. Both traditional and innovative alternatives to conventional testing must now be explored. These may include peak expiratory flow devices, electronic portable spirometers, portable exhaled nitric oxide measurement, airwave oscillometry devices, and novel digital health tools such as smartphone microphone spirometers and mobile health technologies along with integration of machine learning approaches. The adoption of some novel approaches may not merely replace but could improve existing management strategies and alter common diagnostic paradigms. With these options comes important technical, privacy, ethical, financial, and medicolegal barriers that must be addressed. However, the coronavirus disease 19 pandemic also presents a unique opportunity to augment conventional testing by including innovative and emerging approaches to measuring lung function remotely in patients with respiratory disease. The benefits of such an approach have the potential to enhance respiratory care and empower patient self-management well beyond the current global pandemic.


Subject(s)
COVID-19 , Delivery of Health Care/methods , Lung Diseases/diagnosis , Lung Diseases/therapy , Respiratory Function Tests/instrumentation , Respiratory Function Tests/methods , Asthma/diagnosis , Asthma/physiopathology , Asthma/therapy , Breath Tests/instrumentation , Breath Tests/methods , Chronic Disease , Cystic Fibrosis/diagnosis , Cystic Fibrosis/therapy , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy , Inventions , Lung Diseases/physiopathology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/therapy , Lung Volume Measurements , Machine Learning , Oscillometry/instrumentation , Oscillometry/methods , Peak Expiratory Flow Rate , Pulmonary Diffusing Capacity/instrumentation , Pulmonary Diffusing Capacity/methods , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Self-Management , Smartphone , Spirometry/instrumentation , Spirometry/methods
20.
Respir Med ; 174: 106197, 2020.
Article in English | MEDLINE | ID: covidwho-880602

ABSTRACT

BACKGROUND: Since December 2019 the novel coronavirus disease 2019 (COVID-19) has been burdening all health systems worldwide. However, pulmonary and extrapulmonary sequelae of COVID-19 after recovery from the acute disease are unknown. MATERIAL AND METHODS: Hospitalized COVID-19 patients not requiring mechanical ventilation were included and followed 6 weeks after discharge. Body plethysmography, lung diffusion capacity (DLco), blood gas analysis (ABG), 6-min walk test (6MWT), echocardiography, and laboratory tests were performed. Quality of life (QoL), depression, and anxiety were assessed using validated questionnaires. RESULTS: 33 patients with severe disease were included. Patients were discharged without prophylactic anticoagulation. At follow-up there were no thromboembolic complications in any patient. 11 patients (33%) had dyspnea, 11 (33%) had cough, and 15 (45%) suffered from symptoms of fatigue. Pulmonary function tests including ABG did not reveal any limitations (TLC: median=94% of predicted {IQR:85-105}; VC: 93% {78-101}; FEV1: 95% {72-103}; FEV1/FVC 79% {76-85}; PaO2: 72 mmHg {67-79}; PaCO2: 38 mmHg {35-38}), except for slightly reduced DLco (77% {69-95}). There were no echocardiographic impairments. 6MWT distance was reduced in most patients without oxygen desaturation. According to standardized questionnaires, patients suffered from reduced QoL, mainly due to decreased mobility (SGRQ activity score: 54 {19-78}). There were no indicators for depression or anxiety (PHQ-9: 7 {4-11}, GAD-7: 4 {1-9}, respectively). CONCLUSIONS: Hospitalized patients with severe COVID-19, who did not require mechanical ventilation, are unlikely to develop pulmonary long-term impairments, thromboembolic complications or cardiac impairments after discharge but frequently suffer from symptoms of fatigue.


Subject(s)
COVID-19/complications , Lung Diseases/etiology , SARS-CoV-2/genetics , Aged , Anxiety/epidemiology , Anxiety/etiology , Blood Gas Analysis/methods , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/virology , Cough/epidemiology , Depression/epidemiology , Depression/etiology , Dyspnea/epidemiology , Echocardiography/methods , Fatigue/epidemiology , Female , Follow-Up Studies , Heart Diseases/epidemiology , Heart Diseases/etiology , Humans , Lung Diseases/epidemiology , Lung Diseases/physiopathology , Male , Middle Aged , Patient Discharge , Plethysmography, Whole Body/methods , Prospective Studies , Pulmonary Diffusing Capacity/methods , Quality of Life , Respiratory Function Tests/methods , Severity of Illness Index , Thromboembolism/epidemiology , Thromboembolism/etiology , Walk Test/methods
SELECTION OF CITATIONS
SEARCH DETAIL