Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Nutrients ; 14(5)2022 Mar 05.
Article in English | MEDLINE | ID: covidwho-1732145

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a chronic, progressive, and, ultimately, terminal interstitial disease caused by a variety of factors, ranging from genetics, bacterial, and viral infections, to drugs and other influences. Varying degrees of PF and its rapid progress have been widely reported in post-COVID-19 patients and there is consequently an urgent need to develop an appropriate, cost-effective approach for the prevention and management of PF. AIM: The potential "therapeutic" effect of the tocotrienol-rich fraction (TRF) and carotene against bleomycin (BLM)-induced lung fibrosis was investigated in rats via the modulation of TGF-ß/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. DESIGN/METHODS: Lung fibrosis was induced in Sprague-Dawley rats by a single intratracheal BLM (5 mg/kg) injection. These rats were subsequently treated with TRF (50, 100, and 200 mg/kg body wt/day), carotene (10 mg/kg body wt/day), or a combination of TRF (200 mg/kg body wt/day) and carotene (10 mg/kg body wt/day) for 28 days by gavage administration. A group of normal rats was provided with saline as a substitute for BLM as the control. Lung function and biochemical, histopathological, and molecular alterations were studied in the lung tissues. RESULTS: Both the TRF and carotene treatments were found to significantly restore the BLM-induced alterations in anti-inflammatory and antioxidant functions. The treatments appeared to show pneumoprotective effects through the upregulation of antioxidant status, downregulation of MMP-7 and inflammatory cytokine expressions, and reduction in collagen accumulation (hydroxyproline). We demonstrated that TRF and carotene ameliorate BLM-induced lung injuries through the inhibition of apoptosis, the induction of TGF-ß1/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. Furthermore, the increased expression levels were shown to be significantly and dose-dependently downregulated by TRF (50, 100, and 200 mg/kg body wt/day) treatment in high probability. The histopathological findings further confirmed that the TRF and carotene treatments had significantly attenuated the BLM-induced lung injury in rats. CONCLUSION: The results of this study clearly indicate the ability of TRF and carotene to restore the antioxidant system and to inhibit proinflammatory cytokines. These findings, thus, revealed the potential of TRF and carotene as preventive candidates for the treatment of PF in the future.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Tocotrienols , Animals , Bleomycin/toxicity , Carotenoids/adverse effects , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Rats , Rats, Sprague-Dawley , SARS-CoV-2 , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tocotrienols/adverse effects , Transforming Growth Factor beta/metabolism
2.
Am J Chin Med ; 50(1): 33-51, 2022.
Article in English | MEDLINE | ID: covidwho-1608685

ABSTRACT

Qingfei Paidu decoction (QFPD) has been repeatedly recommended for the clinical treatment of novel coronavirus disease 2019 (COVID-19) in multiple provinces throughout China. A possible complication of COVID-19 lung involvement is pulmonary fibrosis, which causes chronic breathing difficulties and affects the patient's quality of life. Therefore, there is an important question regarding whether QFPD can alleviate the process of pulmonary fibrosis and its potential mechanisms. To explore this issue, this study demonstrated the anti-pulmonary fibrosis activity and mode of action of QFPD in vivo and in vitro pulmonary fibrosis models and network pharmacology. The results showed that QFPD effectively ameliorated the bleomycin-induced inflammation and collagen deposition in mice and significantly improved the epithelial-mesenchymal transition in pulmonary fibrosis in mice. In addition, QFPD inhibited bleomycin-induced M2 polarization of macrophages in pulmonary tissues. An in-depth study of the mechanism of QFPD in the treatment of pulmonary fibrosis based on network pharmacology and molecular simulation revealed that SRC was the main target of QFPD and sitosterol (a key compound in QFPD). QFPD and sitosterol regulate the EMT process and M2 polarization of macrophages by inhibiting the activation of SRC, thereby alleviating pulmonary fibrosis in mice. COVID-19 infection might produce severe fibrosis, and antifibrotic therapy with QFPD may be valuable in preventing severe neocoronavirus disease in patients with IPF, which could be a key factor explaining the role of QFPD in the treatment of COVID-19.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Animals , Drugs, Chinese Herbal , Epithelial-Mesenchymal Transition , Humans , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Quality of Life , SARS-CoV-2
3.
Am J Chin Med ; 49(8): 1965-1999, 2021.
Article in English | MEDLINE | ID: covidwho-1599109

ABSTRACT

Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.


Subject(s)
Cell Physiological Phenomena/drug effects , Drugs, Chinese Herbal/therapeutic use , Pulmonary Fibrosis/drug therapy , Signal Transduction/drug effects , Transforming Growth Factor beta1/antagonists & inhibitors , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , Humans , Medicine, Chinese Traditional/methods , Phytotherapy/methods , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/metabolism , SARS-CoV-2/physiology , Transforming Growth Factor beta1/metabolism
4.
Medicine (Baltimore) ; 100(51): e28282, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1595309

ABSTRACT

BACKGROUND: Novel coronavirus disease (COVID-19) is a kind of pulmonary inflammation induced by New Coronavirus. It seriously threatens people's health and safety. Clinical studies have found that some patients have different degrees of inflammation after discharge from hospital, especially in patients with severe inflammatory lung fibrosis. Early combination of Chinese medicine and modern medicine has important clinical significance. There are still many deficiencies in the current research. We studied the effectiveness of the combination of traditional Chinese medicine and modern medicine in the treatment of pulmonary fibrosis caused by COVID-19, and proposed a network meta-analysis (NMA) scheme. METHODS: According to the search strategy, we will search Chinese and English databases to collect all randomized controlled trials of traditional Chinese medicine combined with modern drugs or only using traditional Chinese medicine for new coronavirus-19-induced pulmonary fibrosis between December 1, 2019 and November 15, 2021. First, the literature was screened according to the eligibility criteria, endnotex9 was used to manage the literature, and the Cochrane Collaboration's tool was used to assess the quality of the included literature. Revman 5.3, Stata 14.2, and gemtc14.3 meta-analysis software was then used for data processing and analysis, and the grading of recommendations assessment will be used to develop and evaluate a hierarchy for classifying the quality of evidence for NMA. RESULTS: Through the analysis, the ranking of efficacy and safety of various treatments for pulmonary fibrosis caused by COVID-19 will be drawn, thus providing stronger evidence support for the choice of clinical treatment methods. CONCLUSION: Traditional Chinese medicine (TCM) combined with modern drugs has played a positive role in the treatment of pulmonary fibrosis caused by COVID-19, and this study may provide more references for the clinical medication of pulmonary fibrosis caused by COVID-19. INPLASY REGISTRATION NUMBER: INPLASY2021110061.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Pulmonary Fibrosis , Bayes Theorem , COVID-19/drug therapy , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional , Meta-Analysis as Topic , Network Meta-Analysis , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/virology , Randomized Controlled Trials as Topic , Treatment Outcome
5.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1580700

ABSTRACT

Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-ß is intimately involved in the fibrogenic process. When activated, TGF-ß promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 tissue expression) involved in the TGF-ß1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-ß pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-ß inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.


Subject(s)
COVID-19/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/drug therapy , COVID-19/pathology , Caveolin 1/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/pathology , Interleukin-4/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Retrospective Studies , Transforming Growth Factor beta1/metabolism
6.
Expert Opin Investig Drugs ; 30(12): 1183-1195, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1541410

ABSTRACT

INTRODUCTION: Lung injury in severe COVID-19 pneumonia can rapidly evolve to established pulmonary fibrosis, with prognostic implications in the acute phase of the disease and long-lasting impact on the quality of life of COVID-19 survivors. This is an emerging medical need, and it has been hypothesized that antifibrotic treatments could have a role in ameliorating the fibrotic process in the lungs of these patients. AREAS COVERED: The safety and efficacy of available antifibrotic drugs (nintedanib and pirfenidone) and novel promising agents are being assessed in several ongoing clinical trials that were performed either in critically ill patients admitted to intensive care, or in discharged patients presenting fibrotic sequalae from COVID-19. Literature search was performed using Medline and Clinicaltrials.org databases (2001-2021). EXPERT OPINION: Despite the strong rationale support the use of antifibrotic therapies in COVID-related fibrosis, there are several uncertainties regarding the timing for their introduction and the real risks/benefits ratio of antifibrotic treatment in the acute and the chronic phases of the disease. The findings of ongoing clinical trials and the long-term observation of longitudinal cohorts will eventually clarify the best management approach for these patients.


Subject(s)
/therapeutic use , COVID-19/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Animals , Critical Illness , Humans , Indoles/therapeutic use , Pyridones
7.
Eur J Clin Pharmacol ; 76(11): 1615-1618, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1384377

ABSTRACT

AIM: SARS-CoV-2 infection has been divided by scientific opinion into three phases: the first as asymptomatic or slightly symptomatic and the second and the third with greater severity, characterized by a hyperinflammatory and fibrotic state, responsible for lung lesions, in some cases fatal. The development of antiviral drugs directed against SARS-CoV-2 and effective vaccines is progressing; meanwhile, the best pharmacological objective is related to the management of all the complications caused by this viral infection, mainly controlling the inflammatory and fibrotic state and preventing the infection from moving into the most serious phases. SUBJECT AND METHOD: Describe the scientific rationale related to the use of an antifibrotic therapy with pirfenidone, as monotherapy and/or in combination with anti-inflammatory drugs to manage and control complications of SARS-CoV-2 infection. RESULTS: Based on the scientific literature and epidemiological results and considering the pathophysiological, biological, and molecular characteristics of SARS-CoV-2, an antifibrotic drug such as pirfenidone as monotherapy or in combination with anti-inflammatory drugs can be (acting early, at the right doses and at the right time) therapeutically effective to avoid serious complications during viral infection. The same approach can also be effective as postinfection therapy in patients with residual pulmonary fibrotic damage. Management of inflammation and fibrotic status with a combination therapy of pirfenidone and IL-6 or IL-1 inhibitors could represent a pharmacological synergy with added value. CONCLUSION: In this article, we consider the role of antifibrotic therapy with pirfenidone in patients with SARS-CoV-2 infection on going or in the stage of postinfection with pulmonary fibrotic consequences. The scientific rationale for its use is also described.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Pyridones/therapeutic use , Betacoronavirus , COVID-19 , Drug Therapy, Combination , Humans , Inflammation/drug therapy , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Pandemics , SARS-CoV-2
8.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1374422

ABSTRACT

The lungs play a very important role in the human respiratory system. However, many factors can destroy the structure of the lung, causing several lung diseases and, often, serious damage to people's health. Nerve growth factor (NGF) is a polypeptide which is widely expressed in lung tissues. Under different microenvironments, NGF participates in the occurrence and development of lung diseases by changing protein expression levels and mediating cell function. In this review, we summarize the functions of NGF as well as some potential underlying mechanisms in pulmonary fibrosis (PF), coronavirus disease 2019 (COVID-19), pulmonary hypertension (PH), asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Furthermore, we highlight that anti-NGF may be used in future therapeutic strategies.


Subject(s)
Airway Remodeling/drug effects , Lung/pathology , Nerve Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Asthma/drug therapy , Asthma/pathology , COVID-19/drug therapy , COVID-19/pathology , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Lung/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Molecular Targeted Therapy/methods , Nerve Growth Factor/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology
9.
Carbohydr Polym ; 273: 118567, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1363900

ABSTRACT

Diffuse alveolar injury and pulmonary fibrosis (PF) are the main causes of death of Covid-19 cases. In this study a low molecular weight fucoidan (LMWF) with unique structural was obtained from Laminaria japonica, and its anti- PF and anti-epithelial-mesenchymal transition (EMT) bioactivity were investigated both in vivo and in vitro. After LWMF treatment the fibrosis and inflammatory factors stimulated by Bleomycin (BLM) were in lung tissue. Immunohistochemical and Western-blot results found the expression of COL2A1, ß-catenin, TGF-ß, TNF-α and IL-6 were declined in mice lung tissue. Besides, the phosphorylation of PI3K and Akt were inhibited by LMWF. In addition, the progression of EMT induced by TGF-ß1 was inhibited by LMWF through down-regulated both TGF-ß/Smad and PI3K/AKT signaling pathways. These data indicate that unique LMWF can protect the lung from fibrosis by weakening the process of inflammation and EMT, and it is a promising therapeutic option for the treatment of PF.


Subject(s)
COVID-19/complications , Epithelial-Mesenchymal Transition/drug effects , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , SARS-CoV-2 , A549 Cells , Animals , Bleomycin/adverse effects , COVID-19/virology , Cell Survival/drug effects , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Cytokines/pharmacology , Disease Models, Animal , Humans , Inflammation/drug therapy , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Molecular Weight , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/mortality , Signal Transduction/drug effects
10.
Int J Mol Sci ; 22(8)2021 Apr 17.
Article in English | MEDLINE | ID: covidwho-1298166

ABSTRACT

The virus responsible for the current COVID-19 pandemic is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a new virus with high infectivity and moderate mortality. The major clinical manifestation of COVID-19 is interstitial pneumonia, which may progress to acute respiratory distress syndrome (ARDS). However, the disease causes a potent systemic hyperin-flammatory response, i.e., a cytokine storm or macrophage activation syndrome (MAS), which is associated with thrombotic complications. The complexity of the disease requires appropriate intensive treatment. One of promising treatment is statin administration, these being 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that exert pleiotropic anti-inflammatory effects. Recent studies indicate that statin therapy is associated with decreased mortality in COVID-19, which may be caused by direct and indirect mechanisms. According to literature data, statins can limit SARS-CoV-2 cell entry and replication by inhibiting the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). The cytokine storm can be ameliorated by lowering serum IL-6 levels; this can be achieved by inhibiting Toll-like receptor 4 (TLR4) and modulating macrophage activity. Statins can also reduce the complications of COVID-19, such as thrombosis and pulmonary fibrosis, by reducing serum PAI-1 levels, attenuating TGF-ß and VEGF in lung tissue, and improving endothelial function. Despite these benefits, statin therapy may have side effects that should be considered, such as elevated creatinine kinase (CK), liver enzyme and serum glucose levels, which are already elevated in severe COVID-19 infection. The present study analyzes the latest findings regarding the benefits and limitations of statin therapy in patients with COVID-19.


Subject(s)
COVID-19/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Animals , COVID-19/complications , Endothelium/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Inflammation/complications , Inflammation/drug therapy , Lipid Metabolism/drug effects , Macrophage Activation/drug effects , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , SARS-CoV-2/drug effects , Thrombosis/complications , Thrombosis/drug therapy
11.
Minerva Med ; 113(1): 135-140, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1285637

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the combination of Pycnogenol® (150 mg/day) (Horphag Research, London, UK) and Centella asiatica (Centellicum® 3×225 mg/day; Horphag Research) (PY-CE) for 8 months in subjects with sequelae of idiopathic interstitial pneumonia (IIP). Recently, post-COVID-19 lung disease is emerging with large numbers of patients left with chronic lung conditions. Considering the antifibrotic activity of the combination PY-CE, we also tested this supplementary management in post-COVID-19 lung patients. METHODS: Nineteen subjects with idiopathic interstitial pneumonia (IIP) were included in the study. High Resolution CT scans at inclusion confirmed the presence of lung fibrosis: 10 patients were treated with the Pycnogenol® Centellicum® combination and 9 subjects with standard management (SM) served as controls. Oxidative stress that was very high in all subjects at inclusion, decreased significantly in the supplement group (P<0.05). The Karnofsky Performance Scale Index significantly improved in the supplement group in comparison with controls (P<0.05). The symptoms (fatigue, muscular pain, dyspnea) were significantly lower after 8 months in supplemented patients (P<0.05) as compared with controls. RESULTS: At the end of the study, the small cystic lesions (honeycombing) and traction bronchiectasis were stable or in partial regression in 4 subjects in the supplemented group (vs. none in the control group) with a significant improvement in tissue edema in the supplemented subjects. On ultrasound lung scans the white (more echogenic) fibrotic component at inclusion was 18.5±2.2% in the images in controls vs. 19.4±2.7% in the supplement group. At the end of the study, there was no improvement in controls (18.9±2.5%) vs. a significant improvement in supplemented subjects (16.2±2.1%; P<0.05). In addition, 18 subjects with post-COVID-19 lung disease were included in the study; 10 patients were treated with the Pycnogenol® Centellicum® combination and evaluated after 4 weeks; 8 patients served as controls. Preliminary results show that symptoms associated with post-COVID-19 lung disease after 4 weeks were significantly improved with the supplement combination (P<0.05). Oxidative stress and the Karnofsky Performance Scale Index were significantly improved in the supplements group as compared with controls (P<0.05). CONCLUSIONS: According to these observations, Pycnogenol® controls and decreases edema and Centellicum® by modulating the apposition of collagen, slows down the development of irregular cicatrization, the keloidal scarring and fibrosis. More time is needed to evaluate this effect in a larger number of post-COVID-19 patients with lung disease. This disease has affected millions of subjects worldwide, leaving severe consequences. Pycnogenol® and Centellicum® may improve the residual clinical picture in post-COVID-19 lung disease (PCL) patients and may reduce the number of subjects evolving into lung fibrosis. The evolution from edema to fibrosis seems to be slower or attenuated with this supplement combination both in Idiopathic pulmonary fibrosis (IPF) and in PCL patients.


Subject(s)
COVID-19 , Pulmonary Fibrosis , COVID-19/complications , COVID-19/drug therapy , Dietary Supplements , Flavonoids/therapeutic use , Humans , Lung/diagnostic imaging , Plant Extracts/therapeutic use , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology
12.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Article in English | MEDLINE | ID: covidwho-1283899

ABSTRACT

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Furin/metabolism , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/metabolism , Lung/pathology , Male , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Treatment Outcome
13.
Biomaterials ; 275: 120986, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275155

ABSTRACT

Pulmonary fibrosis is an irreparable and life-threatening disease with only limited therapeutic options. The recent outbreak of COVID-19 has caused a sharp rise in the incidence of pulmonary fibrosis owing to SARS-CoV-2 infection-mediated acute respiratory distress syndrome (ARDS). The considerable oxidative damage caused by locally infiltrated immune cells plays a crucial role in ARDS, suggesting the potential use of antioxidative therapeutics. Here, we report the therapeutic potential of nanoparticles derived from the endogenous antioxidant and anti-inflammatory bile acid, bilirubin (BRNPs), in treating pulmonary fibrosis in a bleomycin-induced mouse model of the disease. Our results demonstrate that BRNPs can effectively reduce clinical signs in mice, as shown by histological, disease index evaluations, and detection of biomarkers. Our findings suggest that BRNPs, with their potent antioxidant and anti-inflammatory effects, long blood circulation half-life, and preferential accumulation at the inflamed site, are potentially a viable clinical option for preventing Covid-19 infection-associated pulmonary fibrosis.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Animals , Bilirubin , Humans , Mice , Nanomedicine , Pulmonary Fibrosis/drug therapy , SARS-CoV-2
14.
Arch Pharm Res ; 44(5): 499-513, 2021 May.
Article in English | MEDLINE | ID: covidwho-1245757

ABSTRACT

In 2019, an unprecedented disease named coronavirus disease 2019 (COVID-19) emerged and spread across the globe. Although the rapid transmission of COVID-19 has resulted in thousands of deaths and severe lung damage, conclusive treatment is not available. However, three COVID-19 vaccines have been authorized, and two more will be approved soon, according to a World Health Organization report on December 12, 2020. Many COVID-19 patients show symptoms of acute lung injury that eventually leads to pulmonary fibrosis. Our aim in this article is to present the relationship between pulmonary fibrosis and COVID-19, with a focus on angiotensin converting enzyme-2. We also evaluate the radiological imaging methods computed tomography (CT) and chest X-ray (CXR) for visualization of patient lung condition. Moreover, we review possible therapeutics for COVID-19 using four categories: treatments related and unrelated to lung disease and treatments that have and have not entered clinical trials. Although many treatments have started clinical trials, they have some drawbacks, such as short-term and small-group testing, that need to be addressed as soon as possible.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Development , Drug Repositioning , Pulmonary Fibrosis/drug therapy , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/diagnostic imaging , Humans , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/etiology , Radiography, Thoracic , Tomography, X-Ray Computed
15.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Article in English | MEDLINE | ID: covidwho-1242859

ABSTRACT

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Furin/metabolism , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/metabolism , Lung/pathology , Male , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Treatment Outcome
16.
Cells ; 10(5)2021 05 14.
Article in English | MEDLINE | ID: covidwho-1234672

ABSTRACT

To date, more than 100 million people worldwide have recovered from COVID-19. Unfortunately, although the virus is eradicated in such patients, fibrotic irreversible interstitial lung disease (pulmonary fibrosis, PF) is clinically evident. Given the vast numbers of individuals affected, it is urgent to design a strategy to prevent a second wave of late mortality associated with COVID-19 PF as a long-term consequence of such a devastating pandemic. Available antifibrotic therapies, namely nintedanib and pirfenidone, might have a role in attenuating profibrotic pathways in SARS-CoV-2 infection but are not economically sustainable by national health systems and have critical adverse effects. It is our opinion that the mesenchymal stem cell secretome could offer a new therapeutic approach in treating COVID-19 fibrotic lungs through its anti-inflammatory and antifibrotic factors.


Subject(s)
Biological Factors/pharmacology , COVID-19/complications , Mesenchymal Stem Cells/metabolism , Pulmonary Fibrosis/drug therapy , Biological Factors/metabolism , Biological Factors/therapeutic use , COVID-19/drug therapy , COVID-19/economics , COVID-19/virology , Humans , Indoles/administration & dosage , Indoles/adverse effects , Indoles/economics , Lung/drug effects , Lung/pathology , Lung/virology , Pulmonary Fibrosis/economics , Pulmonary Fibrosis/virology , Pyridones/administration & dosage , Pyridones/adverse effects , Pyridones/economics , SARS-CoV-2/pathogenicity
17.
J Med Virol ; 93(3): 1378-1386, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196511

ABSTRACT

Since December 2019, coronavirus disease (COVID-19) has rapidly swept the world. So far, more than 30 million people have been infected and nearly one million have died. Although the world is still in the stage of COVID-19 pandemic, the treatment of new cases and critically ill patients is the focus of the current work. However, COVID-19 patients lead to pulmonary fibrosis, such a serious threat to the prognosis of complications were also worthy of our attention. First of all, we proposed the possible mechanism of pulmonary fibrosis caused by SARS-CoV-2, based on the published data of COVID-19 ((i) Direct evidence: pulmonary fibrosis was found in autopsy and pulmonary puncture pathology. (ii) Indirect evidence: increased levels of fibrosis-related cytokines[transforming growth factor [TGF]- ß, tumor necrosis factor [TNF]- α, interleukin [IL]-6, etc] in peripheral blood of severe patients.) What is more, we summarized the role of three fibrosis-related signaling pathways (TGF- ß signal pathway, WNT signal pathway and YAP/TAZ signal pathway) in pulmonary fibrosis. Finally, we suggested the therapeutic value of two drugs (pirfenidone and nintedanib) for idiopathic pulmonary fibrosis in COVID-19-induced pulmonary fibrosis.


Subject(s)
COVID-19/complications , Indoles/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Pyridones/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19/metabolism , COVID-19/pathology , Humans , Lung/pathology , Patient Discharge , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Severity of Illness Index , Signal Transduction
18.
Respir Res ; 22(1): 99, 2021 Apr 06.
Article in English | MEDLINE | ID: covidwho-1169963

ABSTRACT

BACKGROUND: COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. METHODS: In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. RESULTS: Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-ß1 (TGF-ß1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-ß1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. CONCLUSION: Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning , Hypoxia/drug therapy , Justicia , Lung/drug effects , Plant Extracts/pharmacology , Pneumonia/prevention & control , Pulmonary Fibrosis/drug therapy , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/isolation & purification , Bleomycin , COVID-19/metabolism , COVID-19/virology , Cecum/microbiology , Cecum/surgery , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Inflammation Mediators/metabolism , Justicia/chemistry , Ligation , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/microbiology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sepsis/genetics , Sepsis/metabolism , Sepsis/microbiology , Transcriptome
19.
Med Sci Monit ; 26: e927240, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-985826

ABSTRACT

BACKGROUND Infants and young children with acute respiratory distress syndrome (ARDS) have acute progressive hypoxic respiratory failure caused by a variety of extrapulmonary pathogenic factors and cardiogenic factors. Diffuse alveolar injury and pulmonary fibrosis both are pathological features of ARDS. This study investigated the effect of Rehmannia Radix extract (RRE) on pulmonary fibrosis of infants with ARDS. MATERIAL AND METHODS The human lung fibroblasts cell line HFL1 was treated with various concentrations of Rehmannia Radix extract in different groups for different times. Flow cytometry and TUNEL assay were performed to detect cell apoptosis, and CCK8 assay was utilized to analyze cell proliferation. TGF-ß1 expression was detected by real-time quantitative PCR, and protein-level expressions of Caspase3, TGF-ß1, Bcl-2, and Smad3 were measured by western blot and immunohistochemical staining in cells or tissues. TGF-ß1 was overexpressed by recombinant human TGF-ß1 (2 ng/mL) and the treated cells and culture supernatant were harvested for analysis in each step. Bleomycin was used to induce a mouse model of pulmonary fibrosis and was confirmed by HE pathological sections. RESULTS Flow cytometry and TUNEL results showed that RRE promoted the apoptosis of HFL1 cells in a concentration-dependent manner, and it inhibited the proliferation of HFL1 cells. Upregulation of TGF-ß1 reversed the effects of RRE in HFL1 cells. RRE alleviated pulmonary fibrosis in mice through downregulating Bcl-2, TGF-ß1, and Smad3 expression. CONCLUSIONS RRE promoted apoptosis and inhibited proliferation of HFL1, and then arrested the progression of pulmonary fibrosis. RRE had a significant inhibitory effect on TGF-ß1 and Smad3. These results suggest that RRE directly prevents the development of pulmonary fibrosis by affecting the expression of TGF-ß1 and Smad3.


Subject(s)
Plant Extracts/therapeutic use , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Rehmannia/chemistry , Transforming Growth Factor beta1/metabolism , Animals , Apoptosis/drug effects , Bleomycin , Cell Line , Cell Proliferation/drug effects , Disease Progression , Humans , Mice , Plant Extracts/pharmacology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology
20.
Life Sci ; 266: 118883, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-974347

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly spread around the world causing global public health emergency. In the last twenty years, we have witnessed several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV), Influenza A virus subtype H1N1 and most recently Middle East respiratory syndrome coronavirus (MERS-CoV). There were tremendous efforts endeavoured globally by scientists to combat these viral diseases and now for SARS-CoV-2. Several drugs such as chloroquine, arbidol, remdesivir, favipiravir and dexamethasone are adopted for use against COVID-19 and currently clinical studies are underway to test their safety and efficacy for treating COVID-19 patients. As per World Health Organization reports, so far more than 16 million people are affected by COVID-19 with a recovery of close to 10 million and deaths at 600,000 globally. SARS-CoV-2 infection is reported to cause extensive pulmonary damages in affected people. Given the large number of recoveries, it is important to follow-up the recovered patients for apparent lung function abnormalities. In this review, we discuss our understanding about the development of long-term pulmonary abnormalities such as lung fibrosis observed in patients recovered from coronavirus infections (SARS-CoV and MERS-CoV) and probable epigenetic therapeutic strategy to prevent the development of similar pulmonary abnormalities in SARS-CoV-2 recovered patients. In this regard, we address the use of U.S. Food and Drug Administration (FDA) approved histone deacetylase (HDAC) inhibitors therapy to manage pulmonary fibrosis and their underlying molecular mechanisms in managing the pathologic processes in COVID-19 recovered patients.


Subject(s)
COVID-19/complications , Drug Repositioning , Histone Deacetylase Inhibitors/therapeutic use , Pulmonary Fibrosis/drug therapy , Transforming Growth Factor beta/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/therapy , Coronavirus Infections/pathology , Extracellular Matrix/pathology , Extracellular Matrix/virology , Histone Deacetylase Inhibitors/pharmacology , Humans , Middle Aged , Pulmonary Fibrosis/virology , Risk Factors , Signal Transduction , Survivors
SELECTION OF CITATIONS
SEARCH DETAIL