Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chest ; 161(1): 169-178, 2022 01.
Article in English | MEDLINE | ID: covidwho-1616416

ABSTRACT

The COVID-19 pandemic has caused acute lung injury in millions of individuals worldwide. Some patients develop COVID-related acute respiratory distress syndrome (CARDS) and cannot be liberated from mechanical ventilation. Others may develop post-COVID fibrosis, resulting in substantial disability and need for long-term supplemental oxygen. In both of these situations, treatment teams often inquire about the possibility of lung transplantation. In fact, lung transplantation has been successfully employed for both CARDS and post-COVID fibrosis in a limited number of patients worldwide. Lung transplantation after COVID infection presents a number of unique challenges that transplant programs must consider. In those with severe CARDS, the inability to conduct proper psychosocial evaluation and pretransplantation education, marked deconditioning from critical illness, and infectious concerns regarding viral reactivation are major hurdles. In those with post-COVID fibrosis, our limited knowledge about the natural history of recovery after COVID-19 infection is problematic. Increased knowledge of the likelihood and degree of recovery after COVID-19 acute lung injury is essential for appropriate decision-making with regard to transplantation. Transplant physicians must weigh the risks and benefits of lung transplantation differently in a post-COVID fibrosis patient who is likely to remain stable or gradually improve in comparison with a patient with a known progressive fibrosing interstitial lung disease (fILD). Clearly lung transplantation can be a life-saving therapeutic option for some patients with severe lung injury from COVID-19 infection. In this review, we discuss how lung transplant providers from a number of experienced centers approach lung transplantation for CARDS or post-COVID fibrosis.


Subject(s)
COVID-19/surgery , Lung Transplantation , Pneumonia, Viral/surgery , Pulmonary Fibrosis/surgery , Humans , Pandemics , Pneumonia, Viral/virology , Pulmonary Fibrosis/virology , SARS-CoV-2
2.
Chest ; 161(1): 169-178, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540448

ABSTRACT

The COVID-19 pandemic has caused acute lung injury in millions of individuals worldwide. Some patients develop COVID-related acute respiratory distress syndrome (CARDS) and cannot be liberated from mechanical ventilation. Others may develop post-COVID fibrosis, resulting in substantial disability and need for long-term supplemental oxygen. In both of these situations, treatment teams often inquire about the possibility of lung transplantation. In fact, lung transplantation has been successfully employed for both CARDS and post-COVID fibrosis in a limited number of patients worldwide. Lung transplantation after COVID infection presents a number of unique challenges that transplant programs must consider. In those with severe CARDS, the inability to conduct proper psychosocial evaluation and pretransplantation education, marked deconditioning from critical illness, and infectious concerns regarding viral reactivation are major hurdles. In those with post-COVID fibrosis, our limited knowledge about the natural history of recovery after COVID-19 infection is problematic. Increased knowledge of the likelihood and degree of recovery after COVID-19 acute lung injury is essential for appropriate decision-making with regard to transplantation. Transplant physicians must weigh the risks and benefits of lung transplantation differently in a post-COVID fibrosis patient who is likely to remain stable or gradually improve in comparison with a patient with a known progressive fibrosing interstitial lung disease (fILD). Clearly lung transplantation can be a life-saving therapeutic option for some patients with severe lung injury from COVID-19 infection. In this review, we discuss how lung transplant providers from a number of experienced centers approach lung transplantation for CARDS or post-COVID fibrosis.


Subject(s)
COVID-19/surgery , Lung Transplantation , Pneumonia, Viral/surgery , Pulmonary Fibrosis/surgery , Humans , Pandemics , Pneumonia, Viral/virology , Pulmonary Fibrosis/virology , SARS-CoV-2
3.
Sci Transl Med ; 12(574)2020 12 16.
Article in English | MEDLINE | ID: covidwho-1207479

ABSTRACT

Lung transplantation can potentially be a life-saving treatment for patients with nonresolving COVID-19-associated respiratory failure. Concerns limiting lung transplantation include recurrence of SARS-CoV-2 infection in the allograft, technical challenges imposed by viral-mediated injury to the native lung, and the potential risk for allograft infection by pathogens causing ventilator-associated pneumonia in the native lung. Additionally, the native lung might recover, resulting in long-term outcomes preferable to those of transplant. Here, we report the results of lung transplantation in three patients with nonresolving COVID-19-associated respiratory failure. We performed single-molecule fluorescence in situ hybridization (smFISH) to detect both positive and negative strands of SARS-CoV-2 RNA in explanted lung tissue from the three patients and in additional control lung tissue samples. We conducted extracellular matrix imaging and single-cell RNA sequencing on explanted lung tissue from the three patients who underwent transplantation and on warm postmortem lung biopsies from two patients who had died from COVID-19-associated pneumonia. Lungs from these five patients with prolonged COVID-19 disease were free of SARS-CoV-2 as detected by smFISH, but pathology showed extensive evidence of injury and fibrosis that resembled end-stage pulmonary fibrosis. Using machine learning, we compared single-cell RNA sequencing data from the lungs of patients with late-stage COVID-19 to that from the lungs of patients with pulmonary fibrosis and identified similarities in gene expression across cell lineages. Our findings suggest that some patients with severe COVID-19 develop fibrotic lung disease for which lung transplantation is their only option for survival.


Subject(s)
COVID-19/surgery , Lung Transplantation , Lung/surgery , Pulmonary Fibrosis/surgery , Adult , Aged, 80 and over , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Databases, Factual , Disease Progression , Female , Humans , In Situ Hybridization, Fluorescence , Lung/physiopathology , Lung/virology , Male , Middle Aged , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/virology , RNA-Seq , Recovery of Function , Retrospective Studies , Severity of Illness Index , Single-Cell Analysis , Treatment Outcome
4.
Chin Med J (Engl) ; 133(12): 1390-1396, 2020 Jun 20.
Article in English | MEDLINE | ID: covidwho-1050186

ABSTRACT

BACKGROUND: Critical patients with the coronavirus disease 2019 (COVID-19), even those whose nucleic acid test results had turned negative and those receiving maximal medical support, have been noted to progress to irreversible fatal respiratory failure. Lung transplantation (LT) as the sole therapy for end-stage pulmonary fibrosis related to acute respiratory distress syndrome has been considered as the ultimate rescue therapy for these patients. METHODS: From February 10 to March 10, 2020, three male patients were urgently assessed and listed for transplantation. After conducting a full ethical review and after obtaining assent from the family of the patients, we performed three LT procedures for COVID-19 patients with illness durations of more than one month and extremely high sequential organ failure assessment scores. RESULTS: Two of the three recipients survived post-LT and started participating in a rehabilitation program. Pearls of the LT team collaboration and perioperative logistics were summarized and continually improved. The pathological results of the explanted lungs were concordant with the critical clinical manifestation, and provided insight towards better understanding of the disease. Government health affair systems, virology detection tools, and modern communication technology all play key roles towards the survival of the patients and their rehabilitation. CONCLUSIONS: LT can be performed in end-stage patients with respiratory failure due to COVID-19-related pulmonary fibrosis. If confirmed positive-turned-negative virology status without organ dysfunction that could contraindicate LT, LT provided the final option for these patients to avoid certain death, with proper protection of transplant surgeons and medical staffs. By ensuring instant seamless care for both patients and medical teams, the goal of reducing the mortality rate and salvaging the lives of patients with COVID-19 can be attained.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Lung Transplantation/methods , Pneumonia, Viral/complications , Pulmonary Fibrosis/surgery , Respiratory Distress Syndrome/surgery , Aged , COVID-19 , Coronavirus Infections/mortality , Extracorporeal Membrane Oxygenation , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pulmonary Fibrosis/mortality , Respiratory Distress Syndrome/mortality , SARS-CoV-2
5.
Eur J Clin Invest ; 51(1): e13443, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-901035

ABSTRACT

BACKGROUND: To reveal detailed histopathological changes, virus distributions, immunologic properties and multi-omic features caused by SARS-CoV-2 in the explanted lungs from the world's first successful lung transplantation of a COVID-19 patient. MATERIALS AND METHODS: A total of 36 samples were collected from the lungs. Histopathological features and virus distribution were observed by optical microscope and transmission electron microscope (TEM). Immune cells were detected by flow cytometry and immunohistochemistry. Transcriptome and proteome approaches were used to investigate main biological processes involved in COVID-19-associated pulmonary fibrosis. RESULTS: The histopathological changes of the lung tissues were characterized by extensive pulmonary interstitial fibrosis and haemorrhage. Viral particles were observed in the cytoplasm of macrophages. CD3+ CD4- T cells, neutrophils, NK cells, γ/δ T cells and monocytes, but not B cells, were abundant in the lungs. Higher levels of proinflammatory cytokines iNOS, IL-1ß and IL-6 were in the area of mild fibrosis. Multi-omics analyses revealed a total of 126 out of 20,356 significant different transcription and 114 out of 8,493 protein expression in lung samples with mild and severe fibrosis, most of which were related to fibrosis and inflammation. CONCLUSIONS: Our results provide novel insight that the significant neutrophil/ CD3+ CD4- T cell/ macrophage activation leads to cytokine storm and severe fibrosis in the lungs of COVID-19 patient and may contribute to a better understanding of COVID-19 pathogenesis.


Subject(s)
COVID-19/pathology , Hemorrhage/pathology , Lung Transplantation , Lung/pathology , Lymph Nodes/pathology , Pulmonary Fibrosis/pathology , B-Lymphocytes/pathology , B-Lymphocytes/ultrastructure , B-Lymphocytes/virology , COVID-19/genetics , COVID-19/metabolism , COVID-19/surgery , Chromatography, Liquid , Flow Cytometry , Gene Expression Profiling , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Killer Cells, Natural/pathology , Killer Cells, Natural/ultrastructure , Killer Cells, Natural/virology , Lung/metabolism , Lung/ultrastructure , Lung/virology , Lymph Nodes/metabolism , Lymph Nodes/ultrastructure , Lymph Nodes/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/ultrastructure , Macrophages, Alveolar/virology , Male , Middle Aged , Monocytes/pathology , Monocytes/ultrastructure , Monocytes/virology , Neutrophils/pathology , Neutrophils/ultrastructure , Neutrophils/virology , Nitric Oxide Synthase Type II/metabolism , Proteomics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/surgery , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/pathology , T-Lymphocytes/ultrastructure , T-Lymphocytes/virology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL