Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Front Immunol ; 13: 834988, 2022.
Article in English | MEDLINE | ID: covidwho-1817941

ABSTRACT

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Complement C5a/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/physiology , Thromboembolism/immunology , Adult , Aminopyridines/pharmacology , Cells, Cultured , Female , Hospitalization , Humans , Male , Morpholines/pharmacology , Platelet Activation , Pyrimidines/pharmacology , Severity of Illness Index , Signal Transduction , Syk Kinase/antagonists & inhibitors
7.
Am J Hematol ; 97(6): 691-699, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1704611

ABSTRACT

Patients with relapsed warm antibody autoimmune hemolytic anemia (wAIHA) have limited treatment options. Fostamatinib is a potent, orally administered spleen tyrosine kinase inhibitor approved in the United States and Europe for the treatment of adults with chronic immune thrombocytopenia (ITP). This phase 2 study evaluated the response to fostamatinib, administered at 150 mg BID orally with or without food in adults with wAIHA and active hemolysis with hemoglobin (Hgb) <10 g/dL who had failed at least one prior treatment. Hemoglobin levels and safety assessments were performed at visits every 2 weeks. The primary endpoint was Hgb >10 g/dL with an increase of ≥2 g/dL from baseline by week 24 without rescue therapy or red blood cell transfusion. Eleven of 24 (46%) patients achieved the primary endpoint. Increases in median Hgb were detected at week 2 and sustained over time. Median lactate dehydrogenase levels and reticulocyte counts generally declined over time with little change in median haptoglobin levels. The most common adverse events (AEs) were diarrhea (42%), fatigue (42%), hypertension (27%), dizziness (27%), and insomnia (23%). AEs were manageable and consistent with the fostamatinib safety database of over 3900 patients across multiple diseases (rheumatoid arthritis, B-cell lymphoma, COVID-19, and ITP). No new safety signals were detected. Fostamatinib may be a promising therapeutic option for wAIHA. A randomized, double-blind, phase 3 study is nearing completion.


Subject(s)
Anemia, Hemolytic, Autoimmune , COVID-19 , Adult , Aminopyridines , Anemia, Hemolytic, Autoimmune/drug therapy , Humans , Morpholines , Oxazines , Pyridines , Pyrimidines
8.
J Infect Dev Ctries ; 16(1): 63-72, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1702718

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) infection is characterised by a viral phase and a severe pro-inflammatory phase. The inhibition of the JAK/STAT pathway limits the pro-inflammatory state in moderate to severe COVID-19. METHODOLOGY: We analysed the data obtained by an observational cohort of patients with SARS-CoV-2 pneumonia treated with ruxolitinib in 22 hospitals of Mexico. The applied dose was determined based on physician's criteria. The benefit of ruxolitinib was evaluated using the 8-points ordinal scale developed by the NIH in the ACTT1 trial. Duration of hospital stay, changes in pro-inflammatory laboratory values, mortality, and toxicity were also measured. RESULTS: A total of 287 patients were reported at 22 sites in Mexico from March to June 2020; 80.8% received ruxolitinib 5 mg BID and 19.16% received ruxolitinib 10 mg BID plus standard of care. At beginning of treatment, 223 patients were on oxygen support and 59 on invasive ventilation. The percentage of patients on invasive ventilation was 53% in the 10 mg and 13% in the 5 mg cohort. A statistically significant improvement measured as a reduction by 2 points on the 8-point ordinal scale was described (baseline 5.39 ± 0.93, final 3.67± 2.98, p = 0.0001). There were 74 deaths. Serious adverse events were presented in 6.9% of the patients. CONCLUSIONS: Ruxolitinib appears to be safe in COVID-19 patients, with clinical benefits observed in terms of decrease in the 8-point ordinal scale and pro-inflammatory state. Further studies must be done to ensure efficacy against mortality.


Subject(s)
COVID-19 , Pyrazoles , Pyrimidines , COVID-19/drug therapy , Cohort Studies , Humans , Nitriles , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , SARS-CoV-2 , Treatment Outcome
9.
Molecules ; 27(1)2022 Jan 02.
Article in English | MEDLINE | ID: covidwho-1686893

ABSTRACT

Hypercytokinemia, or cytokine storm, is one of the severe complications of viral and bacterial infections, involving the release of abnormal amounts of cytokines, resulting in a massive inflammatory response. Cytokine storm is associated with COVID-19 and sepsis high mortality rate by developing epithelial dysfunction and coagulopathy, leading to thromboembolism and multiple organ dysfunction syndrome. Anticoagulant therapy is an important tactic to prevent thrombosis in sepsis and COVID-19, but recent data show the incompatibility of modern direct oral anticoagulants and antiviral agents. It seems relevant to develop dual-action drugs with antiviral and anticoagulant properties. At the same time, it was shown that azolo[1,5-a]pyrimidines are heterocycles with a broad spectrum of antiviral activity. We have synthesized a new family of azolo[1,5-a]pyrimidines and their condensed polycyclic analogs by cyclocondensation reactions and direct CH-functionalization and studied their anticoagulant properties. Five compounds among 1,2,4-triazolo[1,5-a]pyrimidin-7-ones and 5-alkyl-1,3,4-thiadiazolo[3,2-a]purin-8-ones demonstrated higher anticoagulant activity than the reference drug, dabigatran etexilate. Antithrombin activity of most active compounds was confirmed using lipopolysaccharide (LPS)-treated blood to mimic the conditions of cytokine release syndrome. The studied compounds affected only the thrombin time value, reliably increasing it 6.5-15.2 times as compared to LPS-treated blood.


Subject(s)
Anticoagulants/pharmacology , Azo Compounds/chemistry , Blood Coagulation/drug effects , Hemorrhage/drug therapy , Pyrimidines/chemistry , Animals , Anticoagulants/chemistry , Hemorrhage/chemically induced , Lipopolysaccharides/toxicity , Male , Rabbits , Rats
10.
Biomed Pharmacother ; 147: 112614, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1682939

ABSTRACT

Post-Covid pulmonary fibrosis is evident following severe COVID-19. There is an urgent need to identify the cellular and pathophysiological characteristics of chronic lung squeals of Covid-19 for the development of future preventive and/or therapeutic interventions. Tissue-resident memory T (TRM) cells can mediate local immune protection against infections and cancer. Less beneficially, lung TRM cells cause chronic airway inflammation and fibrosis by stimulating pathologic inflammation. The effects of Janus kinase (JAK), an inducer pathway of cytokine storm, inhibition on acute Covid-19 cases have been previously evaluated. Here, we propose that Tofacitinib by targeting the CD8+ TRM cells could be a potential candidate for the treatment of chronic lung diseases induced by acute SARS-CoV-2 infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/drug therapy , Janus Kinase Inhibitors/therapeutic use , Lung Injury/drug therapy , Piperidines/therapeutic use , Pyrimidines/therapeutic use , T-Lymphocyte Subsets/immunology , COVID-19/complications , COVID-19/immunology , Humans , Immunologic Memory/immunology , Lung/immunology , Lung Injury/etiology , Lung Injury/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
11.
Nature ; 604(7904): 134-140, 2022 04.
Article in English | MEDLINE | ID: covidwho-1671590

ABSTRACT

The SARS-CoV-2 virus has infected more than 261 million people and has led to more than 5 million deaths in the past year and a half1 ( https://www.who.org/ ). Individuals with SARS-CoV-2 infection typically develop mild-to-severe flu-like symptoms, whereas infection of a subset of individuals leads to severe-to-fatal clinical outcomes2. Although vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics, which has been amplified by the emerging threats of variants that may evade vaccines. Large-scale efforts are underway to identify antiviral drugs. Here we screened approximately 18,000 drugs for antiviral activity using live virus infection in human respiratory cells and validated 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Among these candidates are 16 nucleoside analogues, the largest category of clinically used antivirals. This included the antivirals remdesivir and molnupiravir, which have been approved for use in COVID-19. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral. Moreover, we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogues synergistically inhibits SARS-CoV-2 infection in vitro and in vivo against emerging strains of SARS-CoV-2, suggesting a clinical path forward.


Subject(s)
Antiviral Agents , Drug Evaluation, Preclinical , Nucleosides , Pyrimidines , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Cell Line , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Nucleosides/analogs & derivatives , Nucleosides/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects
12.
J Med Virol ; 94(5): 2188-2200, 2022 05.
Article in English | MEDLINE | ID: covidwho-1648458

ABSTRACT

Brilacidin, a mimetic of host defense peptides (HDPs), is currently in Phase 2 clinical trial as an antibiotic drug candidate. A recent study reported that brilacidin has antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by inactivating the virus. In this study, we discovered an additional mechanism of action of brilacidin by targeting heparan sulfate proteoglycans (HSPGs) on the host cell surface. Brilacidin, but not acetyl brilacidin, inhibits the entry of SARS-CoV-2 pseudovirus into multiple cell lines, and heparin, an HSPG mimetic, abolishes the inhibitory activity of brilacidin on SARS-CoV-2 pseudovirus cell entry. In addition, we found that brilacidin has broad-spectrum antiviral activity against multiple human coronaviruses (HCoVs) including HCoV-229E, HCoV-OC43, and HCoV-NL63. Mechanistic studies revealed that brilacidin has a dual antiviral mechanism of action including virucidal activity and binding to coronavirus attachment factor HSPGs on the host cell surface. Brilacidin partially loses its antiviral activity when heparin was included in the cell cultures, supporting the host-targeting mechanism. Drug combination therapy showed that brilacidin has a strong synergistic effect with remdesivir against HCoV-OC43 in cell culture. Taken together, this study provides appealing findings for the translational potential of brilacidin as a broad-spectrum antiviral for coronaviruses including SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus OC43, Human , Antiviral Agents/pharmacology , COVID-19/drug therapy , Guanidines , Humans , Pyrimidines , SARS-CoV-2
13.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648677

ABSTRACT

The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/drug effects , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Pyrimidines/pharmacology , Triazoles/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Amides/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Catalytic Domain/drug effects , Computational Biology/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazines/pharmacology , Pyrimidines/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/drug effects , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Triazoles/chemistry , Virus Replication/drug effects
14.
Nat Med ; 28(1): 39-50, 2022 01.
Article in English | MEDLINE | ID: covidwho-1641982

ABSTRACT

Immune dysregulation is an important component of the pathophysiology of COVID-19. A large body of literature has reported the effect of immune-based therapies in patients with COVID-19, with some remarkable successes such as the use of steroids or anti-cytokine therapies. However, challenges in clinical decision-making arise from the complexity of the disease phenotypes and patient heterogeneity, as well as the variable quality of evidence from immunotherapy studies. This Review aims to support clinical decision-making by providing an overview of the evidence generated by major clinical trials of host-directed therapy. We discuss patient stratification and propose an algorithm to guide the use of immunotherapy strategies in the clinic. This will not only help guide treatment decisions, but may also help to design future trials that investigate immunotherapy in other severe infections.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/therapy , Complement Inactivating Agents/therapeutic use , Glucocorticoids/therapeutic use , Immunologic Factors/therapeutic use , Immunomodulation , Protein Kinase Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Azetidines/therapeutic use , Bradykinin/analogs & derivatives , Bradykinin/therapeutic use , Bradykinin B2 Receptor Antagonists/therapeutic use , COVID-19/immunology , Dexamethasone/therapeutic use , Drug Combinations , Factor Xa Inhibitors/therapeutic use , Heparin/therapeutic use , Humans , Hydrocortisone/therapeutic use , Imatinib Mesylate/therapeutic use , Immunization, Passive , Interferon beta-1a/therapeutic use , Interferon beta-1b/therapeutic use , Interferon-gamma/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Kallikrein-Kinin System , Piperidines/therapeutic use , Purines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , SARS-CoV-2 , Sulfonamides/therapeutic use
15.
BMC Infect Dis ; 21(1): 1277, 2021 Dec 22.
Article in English | MEDLINE | ID: covidwho-1638012

ABSTRACT

BACKGROUND: Several anti-cytokine therapies were tested in the randomized trials in hospitalized patients with severe acute respiratory syndrome coronavirus 2 infection (COVID-19). Previously, dexamethasone demonstrated a reduction of case-fatality rate in hospitalized patients with respiratory failure. In this matched control study we compared dexamethasone to a Janus kinase inhibitor, ruxolitinib. METHODS: The matched cohort study included 146 hospitalized patients with COVID-19 and oxygen support requirement. The control group was selected 1:1 from 1355 dexamethasone-treated patients and was matched by main clinical and laboratory parameters predicting survival. Recruitment period was April 7, 2020 through September 9, 2020. RESULTS: Ruxolitinib treatment in the general cohort of patients was associated with case-fatality rate similar to dexamethasone treatment: 9.6% (95% CI [4.6-14.6%]) vs 13.0% (95% CI [7.5-18.5%]) respectively (p = 0.35, OR = 0.71, 95% CI [0.31-1.57]). Median time to discharge without oxygen support requirement was also not different between these groups: 13 vs. 11 days (p = 0.13). Subgroup analysis without adjustment for multiple comparisons demonstrated a reduced case-fatality rate in ruxolitnib-treated patients with a high fever (≥ 38.5 °C) (OR 0.33, 95% CI [0.11-1.00]). Except higher incidence of grade 1 thrombocytopenia (37% vs 23%, p = 0.042), ruxolitinib therapy was associated with a better safety profile due to a reduced rate of severe cardiovascular adverse events (6.8% vs 15%, p = 0.025). For 32 patients from ruxolitinib group (21.9%) with ongoing progression of respiratory failure after 72 h of treatment, additional anti-cytokine therapy was prescribed (8-16 mg dexamethasone). CONCLUSIONS: Ruxolitinib may be an alternative initial anti-cytokine therapy with comparable effectiveness in patients with potential risks of steroid administration. Patients with a high fever (≥ 38.5 °C) at admission may potentially benefit from ruxolitinib administration. Trial registration The Ruxolitinib Managed Access Program (MAP) for Patients Diagnosed With Severe/Very Severe COVID-19 Illness NCT04337359, CINC424A2001M, registered April, 7, 2020. First participant was recruited after registration date.


Subject(s)
COVID-19 , Adult , COVID-19/drug therapy , Cohort Studies , Dexamethasone/therapeutic use , Humans , Nitriles , Pyrazoles , Pyrimidines , SARS-CoV-2 , Treatment Outcome
16.
Am J Trop Med Hyg ; 105(6): 1472-1475, 2021 Oct 04.
Article in English | MEDLINE | ID: covidwho-1629955

ABSTRACT

Human lives and nations' economies have been adversely affected worldwide by the COVID-19 pandemic. The hyperinflammatory state associated with the disease may be related to mortality. Systemic glucocorticoid is the first-line therapy for cytokine storm. Various immunomodulatory drugs such as tocilizumab and baricitinib have been used in those not responding to glucocorticoid monotherapy. Amid the peak crisis of COVID-19 in India, there was an extreme paucity of medications, oxygen, and hospital beds. We describe three patients with COVID-19 who received low-dose tofacitinib (an oral Janus kinase inhibitor) in addition to moderate-dose glucocorticoid. These patients were treated at their homes, as the hospitals were short of beds. Rapid reduction in hypoxemia along with gradual resolution of other signs of the disease were observed. The results are reassuring regarding the feasibility of managing of severe COVID-19 outside the hospital setting when healthcare resources are overwhelmed by pandemic-related caseload.


Subject(s)
COVID-19/drug therapy , Piperidines/therapeutic use , Pyrimidines/therapeutic use , SARS-CoV-2 , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Cytokine Release Syndrome/prevention & control , Cytokines/genetics , Cytokines/metabolism , Enoxaparin/administration & dosage , Enoxaparin/therapeutic use , Female , Gene Expression Regulation/drug effects , Humans , Methylprednisolone/administration & dosage , Methylprednisolone/therapeutic use , Middle Aged , Piperidines/administration & dosage , Prednisone/administration & dosage , Prednisone/therapeutic use , Pyrimidines/administration & dosage
17.
Ann Rheum Dis ; 81(1): 117-123, 2022 01.
Article in English | MEDLINE | ID: covidwho-1605885

ABSTRACT

OBJECTIVE: To compare the treatment efficacy and safety of tofacitinib (TOF) versus methotrexate (MTX) in Takayasu arteritis (TAK). METHODS: Fifty-three patients with active disease from an ongoing prospective TAK cohort in China were included in this study. Twenty-seven patients were treated with glucocorticoids (GCs) and TOF, and 26 patients were treated with GCs with MTX. The observation period was 12 months. Complete remission (CR), inflammatory parameter changes, GCs tapering and safety were assessed at the 6th, 9th and 12th month. Vascular lesions were evaluated at the 6th and 12th month, and relapse was analysed during 12 months. RESULTS: The CR rate was higher in the TOF group than in the MTX group (6 months: 85.19% vs 61.54%, p=0.07; 12 months: 88.46% vs 56.52%, p=0.02). During 12 months' treatment, patients in the TOF group achieved a relatively lower relapse rate (11.54% vs 34.78%, p=0.052) and a longer median relapse-free duration (11.65±0.98 vs 10.48±2.31 months, p=0.03). Average GCs dose at the 3rd, 6th and 12th month was lower in the TOF group than that in the MTX group (p<0.05). A difference was not observed in disease improvement or disease progression on imaging between the two groups (p>0.05). Prevalence of side effects was low in both groups (3.70% vs 15.38%, p=0.19). CONCLUSION: TOF was superior to MTX for CR induction, a tendency to prevent relapse and tapering of the GCs dose in TAK treatment. A good safety profile for TOF was also documented in patients with TAK.


Subject(s)
Antirheumatic Agents/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Methotrexate/therapeutic use , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Takayasu Arteritis/drug therapy , Adolescent , Adult , Antirheumatic Agents/adverse effects , Disease Progression , Drug Therapy, Combination , Female , Glucocorticoids/therapeutic use , Humans , Janus Kinase Inhibitors/adverse effects , Male , Methotrexate/adverse effects , Middle Aged , Piperidines/adverse effects , Prospective Studies , Pyrimidines/adverse effects , Recurrence , Time Factors , Treatment Outcome , Young Adult
18.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1597924

ABSTRACT

The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 , Giant Cells , Pyrimidines/pharmacology , SARS-CoV-2/metabolism , Staurosporine/analogs & derivatives , A549 Cells , COVID-19/drug therapy , COVID-19/metabolism , Computational Biology , Drug Evaluation, Preclinical , Drug Repositioning , Giant Cells/metabolism , Giant Cells/virology , Humans , Staurosporine/pharmacology
19.
Int Immunopharmacol ; 103: 108463, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587490

ABSTRACT

Therapeutics that impair the innate immune responses of the liver during the inflammatory cytokine storm like that occurring in COVID-19 are greatly needed. Much interest is currently directed toward Janus kinase (JAK) inhibitors as potential candidates to mitigate this life-threatening complication. Accordingly, this study investigated the influence of the novel JAK inhibitor ruxolitinib (RXB) on concanavalin A (Con A)-induced hepatitis and systemic hyperinflammation in mice to simulate the context occurring in COVID-19 patients. Mice were orally treated with RXB (75 and 150 mg/kg) 2 h prior to the intravenous administration of Con A (20 mg/kg) for a period of 12 h. The results showed that RXB pretreatments were efficient in abrogating Con A-instigated hepatocellular injury (ALT, AST, LDH), necrosis (histopathology), apoptosis (cleaved caspase-3) and nuclear proliferation due to damage (PCNA). The protective mechanism of RXB were attributed to i) prevention of Con A-enhanced hepatic production and systemic release of the proinflammatory cytokines TNF-α, IFN-γ and IL-17A, which coincided with decreasing infiltration of immune cells (monocytes, neutrophils), ii) reducing Con A-induced hepatic overexpression of IL-1ß and CD98 alongside NF-κB activation, and iii) lessening Con A-induced consumption of GSH and GSH peroxidase and generation of oxidative stress products (MDA, 4-HNE, NOx) in the liver. In summary, JAK inhibition by RXB led to eminent protection of the liver against Con A-deleterious manifestations primarily via curbing the inflammatory cytokine storm driven by TNF-α, IFN-γ and IL-17A.


Subject(s)
Concanavalin A/toxicity , Cytokine Release Syndrome/chemically induced , Cytokine Release Syndrome/drug therapy , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Aldehydes/metabolism , Animals , Chemical and Drug Induced Liver Injury , Dose-Response Relationship, Drug , Inflammation/chemically induced , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred BALB C , Nitrates/metabolism , Nitriles/administration & dosage , Nitrites/metabolism , Oxidative Stress , Peroxidase/metabolism , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage
20.
Biomed Pharmacother ; 146: 112592, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1588215

ABSTRACT

INTRODUCTION: The most grievous complication of the COVID-19 is the acute respiratory distress syndrome. A specific, rescue treatment for rapidly deteriorating patients should emerge to improve respiratory function and help patients to survive the most challenging period. Drugs used in targeted therapy of pulmonary arterial hypertension (PAH) appears to be suitable for this task and this article describes their potential for treatment of severe cases of COVID-19. METHODS: The authors reviewed the following databases for randomized controlled trials, reviews and meta-analyses published up to July 2020: Pubmed, Scopus, Google Scholar, Cochrane Database and ClinicalKey. The authors included every study contributory to the assessment of the potential of drugs used in targeted PAH therapy in treatment of COVID-19. RESULTS: Endothelin receptor antagonists, phosphodiesterase 5 inhibitors, riociguat and prostacyclin have proven ani-inflammatory effect and reduce pulmonary artery blood pressure, lung oedema and remodelling. Bosentan shows antiviral properties and sildenafil, as well as epoprostenol, inhibits apoptosis of lung epithelial cells. Among patients with lung lesions the decrease of pulmonary blood pressure can lead to increase of ventilation/perfusion mismatch and decrease of blood oxygenation. CONCLUSIONS: Among all assessed drugs bosentan, sildenafil and epoprostenol appear to be most promising and a combination of these drugs should be considered due to synergism. The targeted PAH therapy in treatment of COVID-19 associated ARDS could be a useful tool saving lives of patients with severe SARS-CoV-2 infection, however, its introduction should be investigated and monitored very carefully as it can lead to transient deterioration of patient condition.


Subject(s)
COVID-19/drug therapy , Pulmonary Artery/metabolism , Respiratory Distress Syndrome/drug therapy , Animals , COVID-19/complications , Endothelin Receptor Antagonists/therapeutic use , Humans , Phosphodiesterase Inhibitors/therapeutic use , Prostaglandins/therapeutic use , Pulmonary Artery/drug effects , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Respiratory Distress Syndrome/complications
SELECTION OF CITATIONS
SEARCH DETAIL