Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Molecules ; 26(24)2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1572567

ABSTRACT

COVID-19 is the name of the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that occurred in 2019. The virus-host-specific interactions, molecular targets on host cell deaths, and the involved signaling are crucial issues, which become potential targets for treatment. Spike protein, angiotensin-converting enzyme 2 (ACE2), cathepsin L-cysteine peptidase, transmembrane protease serine 2 (TMPRSS2), nonstructural protein 1 (Nsp1), open reading frame 7a (ORF7a), viral main protease (3C-like protease (3CLpro) or Mpro), RNA dependent RNA polymerase (RdRp) (Nsp12), non-structural protein 13 (Nsp13) helicase, and papain-like proteinase (PLpro) are molecules associated with SARS-CoV infection and propagation. SARS-CoV-2 can induce host cell death via five kinds of regulated cell death, i.e., apoptosis, necroptosis, pyroptosis, autophagy, and PANoptosis. The mechanisms of these cell deaths are well established and can be disrupted by synthetic small molecules or natural products. There are a variety of compounds proven to play roles in the cell death inhibition, such as pan-caspase inhibitor (z-VAD-fmk) for apoptosis, necrostatin-1 for necroptosis, MCC950, a potent and specific inhibitor of the NLRP3 inflammasome in pyroptosis, and chloroquine/hydroxychloroquine, which can mitigate the corresponding cell death pathways. However, NF-κB signaling is another critical anti-apoptotic or survival route mediated by SARS-CoV-2. Such signaling promotes viral survival, proliferation, and inflammation by inducing the expression of apoptosis inhibitors such as Bcl-2 and XIAP, as well as cytokines, e.g., TNF. As a result, tiny natural compounds functioning as proteasome inhibitors such as celastrol and curcumin can be used to modify NF-κB signaling, providing a responsible method for treating SARS-CoV-2-infected patients. The natural constituents that aid in inhibiting viral infection, progression, and amplification of coronaviruses are also emphasized, which are in the groups of alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones. Natural constituents derived from medicinal herbs have anti-inflammatory and antiviral properties, as well as inhibitory effects, on the viral life cycle, including viral entry, replication, assembly, and release of COVID-19 virions. The phytochemicals contain a high potential for COVID-19 treatment. As a result, SARS-CoV-2-infected cell death processes and signaling might be of high efficacy for therapeutic targeting effects and yielding encouraging outcomes.


Subject(s)
COVID-19/drug therapy , Cell Death/drug effects , Drug Discovery/methods , Molecular Targeted Therapy/methods , SARS-CoV-2/drug effects , Amino Acid Chloromethyl Ketones/pharmacology , Antiviral Agents/pharmacology , Apoptosis/drug effects , Furans/pharmacology , Humans , Hydroxychloroquine/pharmacology , Imidazoles/pharmacology , Indenes/pharmacology , Indoles/pharmacology , Necroptosis/drug effects , Phytochemicals/pharmacology , Pyroptosis/drug effects , SARS-CoV-2/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Viral Proteins/antagonists & inhibitors
2.
Front Immunol ; 12: 728896, 2021.
Article in English | MEDLINE | ID: covidwho-1456291

ABSTRACT

A purified spike (S) glycoprotein of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) coronavirus was used to study its effects on THP-1 macrophages, peripheral blood mononuclear cells (PBMCs), and HUVEC cells. The S protein mediates the entry of SARS-CoV-2 into cells through binding to the angiotensin-converting enzyme 2 (ACE2) receptors. We measured the viability, intracellular cytokine release, oxidative stress, proinflammatory markers, and THP-1-like macrophage polarization. We observed an increase in apoptosis, ROS generation, MCP-1, and intracellular calcium expression in the THP-1 macrophages. Stimulation with the S protein polarizes the THP-1 macrophages towards proinflammatory futures with an increase in the TNFα and MHC-II M1-like phenotype markers. Treating the cells with an ACE inhibitor, perindopril, at 100 µM reduced apoptosis, ROS, and MHC-II expression induced by S protein. We analyzed the sensitivity of the HUVEC cells after the exposure to a conditioned media (CM) of THP-1 macrophages stimulated with the S protein. The CM induced endothelial cell apoptosis and MCP-1 expression. Treatment with perindopril reduced these effects. However, the direct stimulation of the HUVEC cells with the S protein, slightly increased HIF1α and MCP-1 expression, which was significantly increased by the ACE inhibitor treatment. The S protein stimulation induced ROS generation and changed the mitogenic responses of the PBMCs through the upregulation of TNFα and interleukin (IL)-17 cytokine expression. These effects were reduced by the perindopril (100 µM) treatment. Proteomic analysis of the S protein stimulated THP-1 macrophages with or without perindopril (100 µM) exposed more than 400 differentially regulated proteins. Our results provide a mechanistic analysis suggesting that the blood and vascular components could be activated directly through S protein systemically present in the circulation and that the activation of the local renin angiotensin system may be partially involved in this process. Graphical: Suggested pathways that might be involved at least in part in S protein inducing activation of inflammatory markers (red narrow) and angiotensin-converting enzyme inhibitor (ACEi) modulation of this process (green narrow).


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Apoptosis/drug effects , COVID-19/immunology , Macrophages/immunology , Oxidative Stress/drug effects , Perindopril/pharmacology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/drug therapy , COVID-19/physiopathology , COVID-19/virology , Cell Line , Humans , Macrophages/drug effects , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pyroptosis/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Article in English | MEDLINE | ID: covidwho-1437673

ABSTRACT

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Subject(s)
COVID-19 , Colitis, Ulcerative , Disulfiram/pharmacokinetics , Lactoferrin , Systemic Inflammatory Response Syndrome , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Biomimetic Materials/pharmacology , COVID-19/drug therapy , COVID-19/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Disease Models, Animal , Disulfiram/pharmacology , Drug Carriers/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Lactoferrin/metabolism , Lactoferrin/pharmacology , Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Nanoparticles/therapeutic use , Pyroptosis/drug effects , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , Treatment Outcome
4.
Front Immunol ; 11: 1518, 2020.
Article in English | MEDLINE | ID: covidwho-644235

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus within the family Coronaviridae. It is an enveloped single-stranded positive-sense RNA virus. Since December of 2019, a global expansion of the infection has occurred with widespread dissemination of coronavirus disease 2019 (COVID-19). COVID-19 often manifests as only mild cold-like symptomatology, but severe disease with complications occurs in 15% of cases. Respiratory failure occurs in severe disease that can be accompanied by a systemic inflammatory reaction characterized by inflammatory cytokine release. In severe cases, fatality is caused by the rapid development of severe lung injury characteristic of acute respiratory distress syndrome (ARDS). Although ARDS is a complication of SARS-CoV-2 infection, it is not viral replication or infection that causes tissue injury; rather, it is the result of dysregulated hyperinflammation in response to viral infection. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome pathway and release of its products including the proinflammatory cytokines IL-6 and IL-1ß. Here we review the literature that describes the pathogenesis of severe COVID-19 and NLRP3 activation and describe an important role in targeting this pathway for the treatment of severe COVID-19.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia, Viral/metabolism , Animals , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/metabolism , Furans , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Immunity, Innate , Indenes , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Mice , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pyroptosis/drug effects , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , SARS-CoV-2 , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes, Guaiane/therapeutic use , Sulfonamides , Sulfones/pharmacology , Sulfones/therapeutic use
5.
J Immunol ; 205(2): 307-312, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-542361

ABSTRACT

The inflammatory response to severe acute respiratory syndrome-related coronavirus 2 infection has a direct impact on the clinical outcomes of coronavirus disease 2019 patients. Of the many innate immune pathways that are engaged by severe acute respiratory syndrome-related coronavirus 2, we highlight the importance of the inflammasome pathway. We discuss available pharmaceutical agents that target a critical component of inflammasome activation, signaling leading to cellular pyroptosis, and the downstream cytokines as a promising target for the treatment of severe coronavirus disease 2019-associated diseases.


Subject(s)
Antiviral Agents/pharmacology , Inflammasomes/drug effects , Pyroptosis/drug effects , Animals , Antiviral Agents/immunology , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Immunity, Innate , Intercellular Signaling Peptides and Proteins/metabolism , Macrophages, Alveolar/pathology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS Virus/physiology , SARS-CoV-2 , Signal Transduction
6.
Leukemia ; 34(7): 1726-1729, 2020 07.
Article in English | MEDLINE | ID: covidwho-459385

ABSTRACT

The scientific community faces an unexpected and urgent challenge related to the SARS-CoV-2 pandemic and is investigating the role of receptors involved in entry of this virus into cells as well as pathomechanisms leading to a cytokine "storm," which in many cases ends in severe acute respiratory syndrome, fulminant myocarditis and kidney injury. An important question is if it may also damage hematopoietic stem progenitor cells?


Subject(s)
Coronavirus Infections/epidemiology , Cytokine Release Syndrome/epidemiology , Hematopoietic Stem Cells/virology , Inflammasomes/immunology , Pandemics , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/immunology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/virology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Furans/pharmacology , Gene Expression Regulation , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/immunology , Heterocyclic Compounds, 4 or More Rings , Humans , Immunity, Innate/drug effects , Immunologic Factors/pharmacology , Indenes , Inflammasomes/antagonists & inhibitors , Inflammasomes/genetics , Myocarditis/epidemiology , Myocarditis/immunology , Myocarditis/prevention & control , Myocarditis/virology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pyroptosis/drug effects , Pyroptosis/genetics , Pyroptosis/immunology , Risk Factors , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL