Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Huan Jing Ke Xue ; 44(1): 583-592, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: covidwho-2246715


Quaternary ammonium compounds (QACs) are one type of widely used cationic biocide, and their usage amount is growing rapidly due to the flu and COVID-19 pandemic. Many QACs were released into the environment in or after the course of their use, and thus they were widely detected in water, sediment, soil, and other environmental media. QACs have stronger surface activity and non-specific biotoxicity, which poses a potential threat to the ecosystem. In this study, the environmental fate and potential toxicity of QACs were documented in terms of their migration and transformation process, biological toxicity effects, and the main mechanisms of bacterial resistance to QACs. Aerobic biodegradation was the main natural way of eliminating QACs in the environment, and the reaction was mainly initiated by the hydroxylation of C atoms at different positions of QACs and finally mineralized to CO2and H2O through decarboxylation, demethylation, and ß-oxidation reaction. Toxicological studies showed that QACs at environmental concentrations could not pose acute toxicity to the selected biotas but threatened the growth and reproduction of aquatic organisms like Daphnia magna. Their toxicity effects depended on their molecular structure, the tested species, and the exposed durations. Additionally, our team first investigated the toxicity effects and mechanisms of QACs toward Microcystis aeruginosa, which showed that QACs depressed the algae growth through the denaturation of photosynthetic organelles, suppression of electron transport, and then induction of cell membrane damage. In the environment, the concentrations of QACs were always lower than their bactericidal concentrations, and their degradation could induce the formation of a concentration gradient, which facilitated microbes resistant to QACs. The known resistance mechanisms of bacteria to QACs mainly included the change in cell membrane structure and composition, formation of biofilm, overexpression of the efflux pump gene, and acquisition of resistance genes. Due to the similar targets and mechanisms, QACs could also induce the occurrence of antibiotic resistance, mainly through co-resistance and cross-resistance. Based on the existing data, future research should emphasize the toxicity effect and the potential QACs resistance mechanism of microorganisms in real environmental conditions.

Ammonium Compounds , COVID-19 , Humans , Ecosystem , Pandemics , Quaternary Ammonium Compounds/toxicity , Quaternary Ammonium Compounds/chemistry , Anti-Bacterial Agents/pharmacology
Toxicol Appl Pharmacol ; 404: 115182, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-694488


Due to the pandemic of coronavirus disease 2019, the use of disinfectants is rapidly increasing worldwide. Didecyldimethylammonium chloride (DDAC) is an EPA-registered disinfectant, it was also a component in humidifier disinfectants that had caused idiopathic pulmonary diseases in Korea. In this study, we identified the possible pulmonary toxic response and mechanism using human bronchial epithelial (BEAS-2B) cells and mice. First, cell viability decreased sharply at a 4 µg/mL of concentration. The volume of intracellular organelles and the ROS level reduced, leading to the formation of apoptotic bodies and an increase of the LDH release. Secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and matrix metalloproteinase-1 also significantly increased. More importantly, lamellar body-like structures were formed in both the cells and mice exposed to DDAC, and the expression of both the indicator proteins for lamellar body (ABCA3 and Rab11a) and surfactant proteins (A, B, and D) was clearly enhanced. In addition, chronic fibrotic pulmonary lesions were notably observed in mice instilled twice (weekly) with DDAC (500 µg), ultimately resulting in death. Taken together, we suggest that disruption of pulmonary surfactant homeostasis may contribute to DDAC-induced cell death and subsequent pathophysiology and that the formation of lamellar body-like structures may play a role as the trigger. In addition, we propose that the cause of sudden death of mice exposed to DDAC should be clearly elucidated for the safe application of DDAC.

Betacoronavirus/drug effects , Cell Survival/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Quaternary Ammonium Compounds/toxicity , Animals , Apoptosis/drug effects , COVID-19 , Cell Line , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice , Mice, Inbred ICR , Quaternary Ammonium Compounds/administration & dosage , SARS-CoV-2
Ecotoxicol Environ Saf ; 206: 111116, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-741186


Disinfectant quaternary ammonium compounds (Quats) have diverse uses in a variety of consumer and commercial products, particularly cleaning products. With the emergence of the COVID-19 pandemic, they have become a primary tool to inactivate the SARS-CoV-2 virus on surfaces. Disinfectant Quats have very low vapor pressure, and following the use phase of the products in which they are found, disposal is typically "down-the-drain" to wastewater treatment systems. Consequently, the potential for the greatest environmental effect is to the aquatic environment, from treated effluent, and potentially to soils, which might be amended with wastewater biosolids. Among the earliest used and still common disinfectant Quats are the alkyl dimethyl benzyl ammonium chloride (ADBAC) compounds and the dialkyl dimethyl ammonium chloride (DDAC) compounds. They are cationic surfactants often found in consumer and commercial surface cleaners. Because of their biocidal properties, disinfectant Quats are heavily regulated for human and environmental safety around the world. Consequently, there is a robust database of information regarding the ecological hazards and environmental fate of ADBAC and DDAC; however, some of the data presented are from unpublished studies that have been submitted to and reviewed by regulatory agencies (i.e., EPA and European Chemicals Agency) to support antimicrobial product registration. We summarize the available environmental fate data and the acute and chronic aquatic ecotoxicity data for freshwater species, including algae, invertebrates, fish, and plants using peer-reviewed literature and unpublished data submitted to and summarized by regulatory agencies. The lower limit of the range of the ecotoxicity data for disinfectant Quats tends to be lower than that for other surface active agents, such as nonionic or anionic surfactants. However, ecotoxicity is mitigated by environmental fate characteristics, the data for which we also summarize, including high biodegradability and a strong tendency to sorb to wastewater biosolids, sediment, and soil. As a result, disinfectant Quats are largely removed during wastewater treatment, and those residues discharged in treated effluent are likely to rapidly bind to suspended solids or sediments, thus mitigating their toxicity.

Disinfectants/toxicity , Quaternary Ammonium Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Biodegradation, Environmental , COVID-19/epidemiology , COVID-19/prevention & control , Disinfectants/chemistry , Disinfectants/pharmacology , Ecotoxicology , Humans , Pandemics/prevention & control , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Risk Assessment , SARS-CoV-2/drug effects , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacology , Water Purification/methods