ABSTRACT
Currently approved therapies for COVID-19 are mostly limited by their low availability, high costs or the requirement of parenteral administration by trained medical personnel in an in-hospital setting. Quercetin is a cheap and easily accessible therapeutic option for COVID-19 patients. However, it has not been evaluated in a systematic review until now. We aimed to conduct a meta-analysis to assess the effect of quercetin on clinical outcomes in COVID-19 patients. Various databases including PubMed, the Cochrane Library and Embase were searched from inception until 5 October 2022 and results from six randomized controlled trials (RCTs) were pooled using a random-effects model. All analyses were conducted using RevMan 5.4 with odds ratio (OR) as the effect measure. Quercetin decreased the risk of intensive care unit admission (OR = 0.31; 95% confidence interval (CI) 0.10-0.99) and the incidence of hospitalisation (OR = 0.25; 95% CI 0.10-0.62) but did not decrease the risk of all-cause mortality and the rate of no recovery. Quercetin may be of benefit in COVID-19 patients, especially if administered in its phytosome formulation which greatly enhances its bioavailability but large-scale RCTs are needed to confirm these findings.
Subject(s)
COVID-19 , Humans , Quercetin , HospitalizationABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: The worldwide use of natural remedies is an alternative therapeutic solution to strengthen immunity, fight, and prevent this disease. The rapid spread of the coronavirus disease worldwide has promoted the search for therapeutic solutions following different approaches. China and Benin have seen the use of natural remedies such as Chinese herbal medicine and local endemic plants as alternative solutions in treating COVID-19. AIM OF THE STUDY: The present study was designed to identify the prevalence of medicinal plant use in four municipalities of Benin most affected by COVID-19 and compare them with traditional Chinese medicine and finally verify the efficacy of the main components of the six plants most frequently used, via in vitro experiments. MATERIALS AND METHODS: This study targeting market herbalists and traditional healers was conducted in the form of an ethnomedicinal survey in four representative communities (Cotonou, Abomey-Calavi, Zè, and Ouidah) of southern Benin. The chemical compositions of the six most commonly used herbs were investigated using network pharmacology. Network-based global prediction of disease genes and drug, target, function, and pathway enrichment analysis of the top six herbs was conducted using databases including IPA and visualised using Cytoscape software. The natural botanical drugs involved three medicines and three formulas used in the treatment of COVID-19 in China from the published literature were compared with the top six botanical drugs used in Benin to identify similarities between them and guide the clinical medication in both countries. Finally, the efficacy of the common ingredients in six plants was verified by measuring the viability of BEAS-2B cells and the release of inflammatory factors after administration of different ingredients. Binding abilities of six components to COVID-19 related targets were verified by molecular docking. RESULTS: According to the medication survey investigation, the six most used herbs were Citrus aurantiifolia (13.18%), Momordica charantia (7.75%), Ocimum gratissimum (7.36%), Crateva adansonii (6.59%), Azadirachta indica (5.81%), and Zanthoxylum zanthoxyloides (5.42%). The most represented botanical families were Rutaceae, Lamiaceae, Cucurbitaceae, Meliaceae, and Capparaceae. The network pharmacology of these six herbal plants showed that the flavonoids quercetin, kaempferol, and ß-sitosterol were the main active ingredients of the Benin herbal medicine. Chinese and Beninese herbal medicine are similar in that they have the same targets and pathways in inflammation and oxidative stress relief. Mild COVID-19-related targets come from C. aurantiifolia and M. charantia, and severe COVID-19-related targets come from A. indica A. Juss. Cell viability and enzyme-linked immunosorbent assay results confirmed that six major compounds could protect BEAS-2B cells against injury by inhibiting the expression of inflammatory factors, among which quercetin and isoimperatorin were more effective. Docking verified that the six compounds have good binding potential with COVID-19 related targets. CONCLUSIONS: These results suggest that Benin herbal medicine and Chinese herbal medicine overlap in compounds, targets, and pathways to a certain extent. Among the commonly used plants in Benin, C. aurantiifolia and M. charantia may have a good curative effect on the treatment of mild COVID-19, while for severe COVID-19, A. indica can be added on this basis.
Subject(s)
COVID-19 , Drugs, Chinese Herbal , Plants, Medicinal , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Quercetin , Benin , Medicine, Chinese TraditionalABSTRACT
Quercetin (QCT) is a naturally occurring phenolic flavonoid compound with inbuilt characteristics of antioxidant, anti-inflammatory, and immune protection. Several recent studies have shown that QCT and QCTits nanoparticles have therapeutic potential against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Novel therapeutics also include the implication of extracellular vesicles (EVs) to protect from SARS-CoV-2 viral infection. This article highlighted the therapeutic/prophylactic potential of engineered EVs loaded with QCT against SARS-CoV-2 infection. Several biotechnological engineering approaches are available to deliver EVs loaded with QCT nanoparticles. Among these biotechnological advances, a specific approach with significantly higher efficiency and yield has to be opted to fabricate such drug delivery of nano molecules, especially to combat SARS-CoV-2 infection. The current treatment regime protects the human body from virus infection but has some limitations including drugs and long-term steroid side effects. However, the vaccine strategy is somehow effective in inhibiting the spread of coronavirus disease-19 (COVID-19) infection. Moreover, the proposed exosomal therapy met the current need to repair the damaged tissue along with inhibition of COVID-19-associated complications at the tissue level. These scientific findings expand the possibilities and predictability of developing a novel and cost-effective therapeutic approach that combines the dual molecule, EVs and QCT nanoparticles, to treat SARS-CoV-2 infection. Therefore, the most suitable engineering method to fabricate such a drug delivery system should be better understood before developing novel therapeutics for clinical purposes.
Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , Quercetin/therapeutic use , Prospective Studies , Antiviral Agents/pharmacologyABSTRACT
Increasing evidence shows that SARS-CoV-2 can infect kidneys and cause acute kidney injury (AKI) in critically ill COVID-19 patients. However, mechanisms through which COVID-19 induces AKI are largely unknown, and treatment remains ineffective. Here, we report that kidney-specific overexpressing SARS-CoV-2 N gene can cause AKI, including tubular necrosis and elevated levels of serum creatinine and BUN in 8-week-old diabetic db/db mice, which become worse in those with older age (16 weeks) and underlying diabetic kidney disease (DKD). Treatment with quercetin, a purified product from traditional Chinese medicine (TCM) that shows effective treatment of COVID-19 patients, can significantly inhibit SARS-CoV-2 N protein-induced AKI in diabetic mice with or without underlying DKD. Mechanistically, quercetin can block the binding of SARS-CoV-2 N protein to Smad3, thereby inhibiting Smad3 signaling and Smad3-mediated cell death via the p16-dependent G1 cell-cycle arrest mechanism in vivo and in vitro. In conclusion, SARS-CoV-2 N protein is pathogenic and can cause severe AKI in diabetic mice, particularly in those with older age and pre-existing DKD, via the Smad3-dependent G1 cell-cycle arrest mechanism. Importantly, we identify that quercetin may be an effective TCM compound capable of inhibiting COVID-19 AKI by blocking SARS-CoV-2 N-Smad3-mediated cell death pathway.
Subject(s)
Acute Kidney Injury , COVID-19 , Diabetes Mellitus, Experimental , Mice , Animals , SARS-CoV-2 , COVID-19/complications , Quercetin/pharmacology , Diabetes Mellitus, Experimental/complications , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Mice, Inbred Strains , Cell Cycle CheckpointsABSTRACT
The resistance of microorganisms against commonly used antibiotics is becoming an increasingly important problem in the food and pharmaceutical industries. Therefore, the development of novel bactericidal agents, as well as the design of drug delivery systems based on materials composed of biocompatible and biodegradable building blocks, has attracted increasing attention. To address this challenge, microparticles composed of l-lactide homopolymer and l-lactide/1,3-dioxolane (co)polymers loaded with quercetin (Q) were fabricated by using a microfluidic technique. This method enables the preparation of homogeneous particles with sizes ranging from 60 to 80 µm, composed of degradable semicrystalline or amorphous (co)polyesters. The microencapsulation of Q in a (co)polymeric matrix enables prolonged release of the antimicrobial agent. The antibacterial properties of the obtained biocompatible microparticles are confirmed by the agar diffusion plate method for various bacterial strains. Therefore, Q-loaded microparticles can have important applications in food preservation as a novel antimicrobial system.
Subject(s)
Lactic Acid , Polyglycolic Acid , Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations/chemistry , Dioxanes , Dioxolanes , Lactic Acid/chemistry , Microfluidics , Particle Size , Polyesters/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , QuercetinABSTRACT
BACKGROUND: Acute lung injury (ALI), a severe health-threatening disease, has a risk of causing chronic pulmonary fibrosis. Informative and powerful evidence suggests that inflammation and oxidative stress play a central role in the pathogenesis of ALI. Quercetin is well recognized for its excellent antioxidant and anti-inflammatory properties, which showed great potential for ALI treatment. However, the application of quercetin is often hindered by its low solubility and bioavailability. Therefore, to overcome these challenges, an inhalable quercetin-alginate nanogel (QU-Nanogel) was fabricated, and by this special "material-drug" structure, the solubility and bioavailability of quercetin were significantly enhanced, which could further increase the activity of quercetin and provide a promising therapy for ALI. RESULTS: QU-Nanogel is a novel alginate and quercetin based "material-drug" structural inhalable nanogel, in which quercetin was stabilized by hydrogen bonding to obtain a "co-construct" water-soluble nanogel system, showing antioxidant and anti-inflammatory properties. QU-Nanogel has an even distribution in size of less than 100 nm and good biocompatibility, which shows a stronger protective and antioxidant effect in vitro. Tissue distribution results provided evidence that the QU-Nanogel by ultrasonic aerosol inhalation is a feasible approach to targeted pulmonary drug delivery. Moreover, QU-Nanogel was remarkably reversed ALI rats by relieving oxidative stress damage and acting the down-regulation effects of mRNA and protein expression of inflammation cytokines via ultrasonic aerosol inhalation administration. CONCLUSIONS: In the ALI rat model, this novel nanogel showed an excellent therapeutic effect by ultrasonic aerosol inhalation administration by protecting and reducing pulmonary inflammation, thereby preventing subsequent pulmonary fibrosis. This work demonstrates that this inhalable QU-Nanogel may function as a promising drug delivery strategy in treating ALI.
Subject(s)
Acute Lung Injury , Pulmonary Fibrosis , Acute Lung Injury/drug therapy , Alginates , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Inflammation , Nanogels , Particle Size , Quercetin/pharmacology , Quercetin/therapeutic use , RatsABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global health pandemic. Among the viral proteins, RNA-dependent RNA polymerase (RdRp) is responsible for viral genome replication and has emerged as one of the most promising targets for pharmacological intervention against SARS-CoV-2. To this end, we experimentally tested luteolin and quercetin for their ability to inhibit the RdRp enzyme. These two compounds are ancestors of flavonoid natural compounds known for a variety of basal pharmacological activities. Luteolin and quercetin returned a single-digit IC50 of 4.6 µM and 6.9 µM, respectively. Then, through dynamic docking simulations, we identified possible binding modes of these compounds to a recently published cryo-EM structure of RdRp. Collectively, these data indicate that these two compounds are a valid starting point for further optimization and development of a new class of RdRp inhibitors to treat SARS-CoV-2 and potentially other viral infections.
Subject(s)
Antiviral Agents , Luteolin , Quercetin , SARS-CoV-2 , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Luteolin/pharmacology , Quercetin/pharmacology , RNA, ViralABSTRACT
BACKGROUND: The Transmembrane Serine Protease 2 (TMPRSS2) of human cell plays a significant role in proteolytic cleavage of SARS-Cov-2 coronavirus spike protein and subsequent priming to the receptor ACE2. Approaching TMPRSS2 as a therapeutic target for the inhibition of SARS-Cov-2 infection is highly promising. Hence, in the present study, we docked the binding efficacy of ten naturally available phyto compounds with known anti-viral potential with TMPRSS2. The aim is to identify the best phyto compound with a high functional affinity towards the active site of the TMPRSS2 with the aid of two different docking software. Molecular Dynamic Simulations were performed to analyse the conformational space of the binding pocket of the target protein with selected molecules. RESULTS: Docking analysis using PyRx version 0.8 along with AutoDockVina reveals that among the screened phyto compounds, Genistein shows the maximum binding affinity towards the hydrophobic substrate-binding site of TMPRSS2 with three hydrogen bonds interaction ( - 7.5 kcal/mol). On the other hand, molecular docking analysis using Schrodinger identified Quercetin as the most potent phyto compound with a maximum binding affinity towards the hydrophilic catalytic site of TMPRSS2 ( - 7.847 kcal/mol) with three hydrogen bonds interaction. The molecular dynamics simulation reveals that the Quercetin-TMPRSS complex is stable until 50 ns and forms stable interaction with the protein ( - 22.37 kcal/mol of MM-PBSA binding free energy). Genistein creates a weak interaction with the loop residues and hence has an unstable binding and exits from the binding pocket. CONCLUSION: The compounds, Quercetin and Genistein, can inhibit the TMPRSS2 guided priming of the spike protein. The compounds could reduce the interaction of the host cell with the type I transmembrane glycoprotein to prevent the entry of the virus. The critical finding is that compared to Genistein, Quercetin exhibits higher binding affinity with the catalytic unit of TMPRSS2 and forms a stable complex with the target. Thus, enhancing our innate immunity by consuming foods rich in Quercetin and Genistein or developing a novel drug in the combination of Quercetin and Genistein could be the brilliant choices to prevent SARS-Cov-2 infection when we consider the present chaos associated with vaccines and anti-viral medicines.
Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Antiviral Agents/pharmacology , Genistein/pharmacology , Humans , Molecular Docking Simulation , Quercetin/pharmacology , SARS-CoV-2 , Serine Endopeptidases , Virus InternalizationABSTRACT
We investigated the molecular mechanism by which Houttuynia cordata Thunb (HCT) may intervene in coronavirus disease 2019 (COVID-19) and COVID-19-induced cytokine storms using network pharmacology and molecular docking approaches. Using the Traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a "component-target-pathway" topology map of HCT for COVID-19 treatment was constructed using Cytoscape. Core target genes were analyzed using the STRING database, and the signal pathway map and biological mechanism of COVID-19 therapy were obtained using cluster profilers. Active components of HCT were docked with severe respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) using AutoDockTools. Data visualization and statistical analysis were conducted using the R program. A molecular dynamic simulation was carried out with the Groningen Machine for Chemical Simulation program. HCT had six active anti-COVID-19 ingredients and 45 molecular targets. Their crucial target proteins for COVID-19 treatment were the RELA (nuclear factor kappa B [NF-κB] p65 subunit), interleukin 6, and mitogen-activated protein kinase 1. In functional enrichment analysis, the potential molecular targets of active components of HCT for COVID-19 treatment belonged to 18 signaling pathways (adjusted P = 2.12E-11). Gene ontology obtained by Kyoto Encyclopedia of Genes and Genome enrichment screening showed that the primary mechanism of COVID-19 treatment was upregulation of protein kinase C followed by downregulations of T cell differentiation and proliferation and NF-κB signaling. Molecular docking showed that the active components of HCT (quercetin and kaempferol) had similar binding affinities for SARS-CoV-2 3CLpro and SARS-CoV-2 RdRp, primary COVID-19 target proteins as did clinically used drugs. These results were confirmed with molecular dynamics simulation. In conclusion, multiple components of HCT, especially quercetin and kaempferol, have the potential to treat COVID-19 infection and COVID-19-induced cytokine storm by targeting multiple proteins.
Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Houttuynia , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , NF-kappa B , Network Pharmacology , Quercetin , RNA-Dependent RNA Polymerase , SARS-CoV-2ABSTRACT
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Subject(s)
Flavonoids/chemistry , Flavonoids/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cardiovascular System/drug effects , Flavonoids/economics , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Nervous System/drug effects , Neurons/drug effects , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plants/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Quercetin/chemistry , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Stroke/drug therapy , Stroke/prevention & controlABSTRACT
Kidneys are one of the targets for SARS-CoV-2, it is reported that up to 36% of patients with SARS-CoV-2 infection would develop into acute kidney injury (AKI). AKI is associated with high mortality in the clinical setting and contributes to the transition of AKI to chronic kidney disease (CKD). Up to date, the underlying mechanisms are obscure and there is no effective and specific treatment for COVID-19-induced AKI. In the present study, we investigated the mechanisms and interactions between Quercetin and SARS-CoV-2 targets proteins by using network pharmacology and molecular docking. The renal protective effects of Quercetin on COVID-19-induced AKI may be associated with the blockade of the activation of inflammatory, cell apoptosis-related signaling pathways. Quercetin may also serve as SARS-CoV-2 inhibitor by binding with the active sites of SARS-CoV-2 main protease 3CL and ACE2, therefore suppressing the functions of the proteins to cut the viral life cycle. In conclusion, Quercetin may be a novel therapeutic agent for COVID-19-induced AKI. Inhibition of inflammatory, cell apoptosis-related signaling pathways may be the critical mechanisms by which Quercetin protects kidney from SARS-CoV-2 injury.
Subject(s)
Acute Kidney Injury/drug therapy , Acute Kidney Injury/virology , COVID-19 Drug Treatment , COVID-19/physiopathology , Quercetin/pharmacology , Databases, Factual , Databases, Genetic , Humans , Molecular Docking Simulation , Protein Interaction Mapping/methods , Protein Interaction Maps , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purificationABSTRACT
OBJECTIVE: ´Three formulas and three medicines,' namely, Jinhua Qinggan Granule, Lianhua Qingwen Capsule, Xuebijing Injection, Qingfei Paidu Decoction, HuaShi BaiDu Formula, and XuanFei BaiDu Granule, were proven to be effective for coronavirus disease 2019 (COVID-19) treatment. The present study aimed to identify the active chemical constituents of this traditional Chinese medicine (TCM) and investigate their mechanisms through interleukin-6 (IL-6) integrating network pharmacological approaches. METHODS: We collected the compounds from all herbal ingredients of the previously mentioned TCM, but those that could down-regulate IL-6 were screened through the network pharmacology approach. Then, we modeled molecular docking to evaluate the binding affinity between compounds and IL-6. Furthermore, we analyzed the biological processes and pathways of compounds. Finally, we screened out the core genes of compounds through the construction of the protein-protein interaction network and the excavation of gene clusters of compounds. RESULTS: The network pharmacology research showed that TCM could decrease IL-6 using several compounds, such as quercetin, ursolic acid, luteolin, and rutin. Molecular docking results showed that the molecular binding affinity with IL-6 of all compounds except γ-aminobutyric acid was < -5.0 kJ/mol, indicating the potential of numerous active compounds in TCM to directly interact with IL-6, leading to an anti-inflammation effect. Finally, Cytoscape 3.7.2 was used to topologize the biological processes and pathways of compounds, revealing potential mechanisms for COVID-19 treatment. CONCLUSION: These results indicated the positive effect of TCM on the prevention and rehabilitation of COVID-19 in at-risk people. Quercetin, ursolic acid, luteolin, and rutin could inhibit COVID-19 by down-regulating IL-6.
Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacology , Interleukin-6/immunology , Anti-Inflammatory Agents/chemistry , COVID-19/immunology , Drug Discovery , Drugs, Chinese Herbal/chemistry , Humans , Interleukin-6/antagonists & inhibitors , Luteolin/analysis , Luteolin/pharmacology , Medicine, Chinese Traditional , Molecular Docking Simulation , Protein Interaction Maps/drug effects , Quercetin/analysis , Quercetin/pharmacology , Rutin/analysis , Rutin/pharmacology , Triterpenes/analysis , Triterpenes/pharmacologyABSTRACT
The medical burden caused by respiratory manifestations of influenza virus (IV) outbreak as an infectious respiratory disease is so great that governments in both developed and developing countries have allocated significant national budget toward the development of strategies for prevention, control, and treatment of this infection, which is seemingly common and treatable, but can be deadly. Frequent mutations in its genome structure often result in resistance to standard medications. Thus, new generations of treatments are critical to combat this ever-evolving infection. Plant materials and active compounds have been tested for many years, including, more recently, active compounds like flavonoids. Quercetin is a compound belonging to the flavonols class and has shown therapeutic effects against influenza virus. The focus of this review includes viral pathogenesis as well as the application of quercetin and its derivatives as a complementary therapy in controlling influenza and its related symptoms based on the targets. We also touch on the potential of this class of compounds for treatment of SARS-COV-2, the cause of new pandemic.
Subject(s)
COVID-19 Drug Treatment , COVID-19 , Disease Outbreaks , Influenza A virus/metabolism , Influenza, Human , Quercetin/therapeutic use , SARS-CoV-2/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza, Human/metabolismABSTRACT
The inflammatory mediator and oxidant agent storm caused by the SARS-CoV-2 infection has been strongly associated with the failure of vital organs observed in critically ill patients with coronavirus disease 2019 (COVID-19) and the death of thousands of infected people around the world. Acute kidney injury (AKI) is a common renal disorder characterized by a sudden and sustained decrease in renal function with a critical influence on poor prognosis and lethal clinical outcomes of various etiologies, including some viral infection diseases. It is known that oxidative stress and inflammation play key roles in the pathogenesis and development of AKI. Quercetin is a natural substance that has multiple pharmacological properties, such as anti-inflammatory action, and is used as a dietary supplement. There is evidence of the anti-coronavirus activities of this compound, including against the target SARS-CoV-2 3CLpro. The ability to inhibit coronavirus and its inflammatory processes is strongly desired in a new drug for the treatment of COVID-19. Therefore, in this review, the dual effect of quercetin is discussed from a mechanistic perspective in relation to AKI kidney injury and its nephroprotective potential to SARS-CoV-2 patients.
Subject(s)
Acute Kidney Injury/drug therapy , COVID-19/complications , Quercetin/pharmacology , Acute Kidney Injury/etiology , Animals , COVID-19/epidemiology , Humans , Morbidity , Protective Agents/pharmacology , Protective Agents/therapeutic use , Quercetin/therapeutic use , COVID-19 Drug TreatmentABSTRACT
Recent articles report elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased COVID-19 patients. However, there has been no discussion of what may induce intravascular coagulation. Platelets are critical in the formation of thrombi and their most potent trigger is platelet activating factor (PAF), first characterized by Demopoulos and colleagues in 1979. PAF is produced by cells involved in host defense and its biological actions bear similarities with COVID-19 disease manifestations. PAF can also stimulate perivascular mast cell activation, leading to inflammation implicated in severe acute respiratory syndrome (SARS). Mast cells are plentiful in the lungs and are a rich source of PAF and of inflammatory cytokines, such as IL-1ß and IL-6, which may contribute to COVID-19 and especially SARS. The histamine-1 receptor antagonist rupatadine was developed to have anti-PAF activity, and also inhibits activation of human mast cells in response to PAF. Rupatadine could be repurposed for COVID-19 prophylaxis alone or together with other PAF-inhibitors of natural origin such as the flavonoids quercetin and luteolin, which have antiviral, anti-inflammatory, and anti-PAF actions.
Subject(s)
COVID-19/prevention & control , Cyproheptadine/analogs & derivatives , Disseminated Intravascular Coagulation/prevention & control , Platelet Activating Factor/antagonists & inhibitors , Pulmonary Embolism/prevention & control , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/prevention & control , Antiviral Agents/therapeutic use , Blood Platelets/drug effects , Blood Platelets/pathology , Blood Platelets/virology , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Cyproheptadine/therapeutic use , Disseminated Intravascular Coagulation/blood , Disseminated Intravascular Coagulation/pathology , Disseminated Intravascular Coagulation/virology , Gene Expression Regulation , Humans , Inflammation , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lung/drug effects , Lung/pathology , Lung/virology , Luteolin/therapeutic use , Mast Cells/drug effects , Mast Cells/pathology , Mast Cells/virology , Platelet Activating Factor/genetics , Platelet Activating Factor/metabolism , Pulmonary Embolism/blood , Pulmonary Embolism/pathology , Pulmonary Embolism/virology , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Severe Acute Respiratory Syndrome/blood , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virologyABSTRACT
Although vaccine development is being undertaken at a breakneck speed, there is currently no effective antiviral drug for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19. Therefore, the present study aims to explore the possibilities offered by naturally available and abundant flavonoid compounds, as a prospective antiviral drug to combat the virus. A library of 44 citrus flavonoids was screened against the highly conserved Main Protease (Mpro) of SARS-CoV-2 using molecular docking. The compounds which showed better CDocker energy than the co-crystal inhibitor of Mpro were further revalidated by flexible docking within the active site; followed by assessment of drug likeness and toxicity parameters. The non-toxic compounds were further subjected to molecular dynamics simulation and predicted activity (IC50) using 3D-QSAR analysis. Subsequently, hydrogen bonds and dehydration analysis of the best compound were performed to assess the binding affinity to Mpro. It was observed that out of the 44 citrus flavonoids, five compounds showed lower binding energy with Mpro than the co-crystal ligand. Moreover, these compounds also formed H-bonds with two important catalytic residues His41 and Cys145 of the active sites of Mpro. Three compounds which passed the drug likeness filter showed stable conformation during MD simulations. Among these, the lowest predicted IC50 value was observed for Taxifolin. Therefore, this study suggests that Taxifolin, could be a potential inhibitor against SARS-CoV-2 main protease and can be further analysed by in vitro and in vivo experiments for management of the ongoing pandemic.
Subject(s)
Citrus/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Discovery , Flavonoids/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Flavonoids/metabolism , Molecular Docking Simulation , Protease Inhibitors/metabolism , Protein Conformation , Quercetin/analogs & derivatives , Quercetin/metabolism , Quercetin/pharmacology , SARS-CoV-2/drug effectsABSTRACT
Angiotensin-converting enzyme 2 (ACE2) is a host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Inhibiting the interaction between the envelope spike glycoproteins (S-proteins) of SARS-CoV-2 and ACE2 is a potential antiviral therapeutic approach, but little is known about how dietary compounds interact with ACE2. The objective of this study was to determine if flavonoids and other polyphenols with B-ring 3',4'-hydroxylation inhibit recombinant human (rh)ACE2 activity. rhACE2 activity was assessed with the fluorogenic substrate Mca-APK(Dnp). Polyphenols reduced rhACE2 activity by 15-66% at 10 µM. Rutin, quercetin-3-O-glucoside, tamarixetin, and 3,4-dihydroxyphenylacetic acid inhibited rhACE2 activity by 42-48%. Quercetin was the most potent rhACE2 inhibitor among the polyphenols tested, with an IC50 of 4.48 µM. Thus, quercetin, its metabolites, and polyphenols with 3',4'-hydroxylation inhibited rhACE2 activity at physiologically relevant concentrations in vitro.
Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Peptidyl-Dipeptidase A/chemistry , Polyphenols/chemistry , Quercetin/chemistry , Angiotensin-Converting Enzyme 2 , Enzyme Assays , Humans , Kinetics , Recombinant Proteins/chemistry , TemperatureABSTRACT
Several months ago, an outbreak of pneumonia of unknown aetiology was detected in Wuhan City (China) and the aetiological agent of the atypical pneumonia was isolated by the Chinese authorities as novel coronavirus (2019-nCoV or SARS-CoV-2). The WHO announced this new disease was to be known as "COVID-19." When looking for new antiviral compounds, knowledge of the main viral proteins is fundamental. The major druggable targets of SARS-CoV-2 include 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase, and spike (S) protein. Quercetin inhibits 3CLpro and PLpro with a docking binding energy corresponding to -6.25 and -4.62 kcal/mol, respectively. Quercetin has a theoretical, but significant, capability to interfere with SARS-CoV-2 replication, with the results showing this to be the fifth best compound out of 18 candidates. On the basis of the clinical COVID-19 manifestations, the multifaceted aspect of quercetin as both antiinflammatory and thrombin-inhibitory actions, should be taken into consideration.
Subject(s)
Quercetin/pharmacology , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19 , China , Humans , SARS-CoV-2/physiology , Virus Replication/drug effectsABSTRACT
COVID-19 is an emerging disease that is a major threat to the global community. The main challenge in this disease is the lack of proper or proven medication. The drugs used to treat this disease are only for symptomatic treatment. Studies of other coronaviruses, such as SARS and MERS, suggest that quercetin has sufficient potential to treat COVID-19. Previous studies have shown that quercetin reduces the entry of the virus into the cell by blocking the ACE2 receptor, as well as reducing the level of interleukin-6 in SARS and MERS patients. Therefore, the aim of this review was to scrutinize the potential of quercetin as a drug in the treatment of COVID-19 from a molecular perspective.