Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 12(6)2020 05 30.
Article in English | MEDLINE | ID: covidwho-645642

ABSTRACT

Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Genes, Reporter/physiology , RNA Viruses/drug effects , Replicon/physiology , Animals , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Cricetinae , Humans , RNA Viruses/genetics , Transfection , Vero Cells
2.
Front Cell Infect Microbiol ; 10: 181, 2020.
Article in English | MEDLINE | ID: covidwho-266348

ABSTRACT

The availability of pathogen-specific treatment options for respiratory tract infections (RTIs) increased the need for rapid diagnostic tests. Besides, retrospective studies, improved lab-based detection methods and the intensified search for new viruses since the beginning of the twenty-first century led to the discovery of several novel respiratory viruses. Among them are human bocavirus (HBoV), human coronaviruses (HCoV-HKU1, -NL63), human metapneumovirus (HMPV), rhinovirus type C (RV-C), and human polyomaviruses (KIPyV, WUPyV). Additionally, new viruses like SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), novel strains of influenza virus A and B, and (most recently) SARS coronavirus 2 (SARS-CoV-2) have emerged. Although clinical presentation may be similar among different viruses, associated symptoms may range from a mild cold to a severe respiratory illness, and thus require a fast and reliable diagnosis. The increasing number of commercially available rapid point-of-care tests (POCTs) for respiratory viruses illustrates both the need for this kind of tests but also the problem, i.e., that the majority of such assays has significant limitations. In this review, we summarize recently published characteristics of POCTs and discuss their implications for the treatment of RTIs. The second key aspect of this work is a description of new and innovative diagnostic techniques, ranging from biosensors to novel portable and current lab-based nucleic acid amplification methods with the potential future use in point-of-care settings. While prototypes for some methods already exist, other ideas are still experimental, but all of them give an outlook of what can be expected as the next generation of POCTs.


Subject(s)
Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/virology , Point-of-Care Testing , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Biosensing Techniques/methods , DNA Viruses/isolation & purification , Humans , Polymerase Chain Reaction/methods , RNA Viruses/isolation & purification
3.
Cell ; 181(5): 1036-1045.e9, 2020 05 28.
Article in English | MEDLINE | ID: covidwho-72372

ABSTRACT

Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , RNA Viruses/immunology , Animals , Cells, Cultured , Chemokines/genetics , Chemokines/immunology , Coronavirus Infections/genetics , Disease Models, Animal , Host-Pathogen Interactions , Humans , Immunity, Innate , Inflammation/virology , Interferons/genetics , Interferons/immunology , Pandemics , Pneumonia, Viral/genetics , RNA Viruses/classification , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL