Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
PLoS Comput Biol ; 19(5): e1011124, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326149

ABSTRACT

Coronaviruses (CoVs) use -1 programmed ribosomal frameshifting stimulated by RNA pseudoknots in the viral genome to control expression of enzymes essential for replication, making CoV pseudoknots a promising target for anti-coronaviral drugs. Bats represent one of the largest reservoirs of CoVs and are the ultimate source of most CoVs infecting humans, including those causing SARS, MERS, and COVID-19. However, the structures of bat-CoV frameshift-stimulatory pseudoknots remain largely unexplored. Here we use a combination of blind structure prediction followed by all-atom molecular dynamics simulations to model the structures of eight pseudoknots that, together with the SARS-CoV-2 pseudoknot, are representative of the range of pseudoknot sequences in bat CoVs. We find that they all share some key qualitative features with the pseudoknot from SARS-CoV-2, notably the presence of conformers with two distinct fold topologies differing in whether or not the 5' end of the RNA is threaded through a junction, and similar conformations for stem 1. However, they differed in the number of helices present, with half sharing the 3-helix architecture of the SARS-CoV-2 pseudoknot but two containing 4 helices and two others only 2. These structure models should be helpful for future work studying bat-CoV pseudoknots as potential therapeutic targets.


Subject(s)
COVID-19 , Chiroptera , Humans , Animals , SARS-CoV-2/genetics , Frameshift Mutation , RNA , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/chemistry
2.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2251271

ABSTRACT

RNA-dependent RNA polymerase (RdRP) is essential for the replication and expression of RNA viral genomes. This class of viruses comprise a large number of highly pathogenic agents that infect essentially all species of plants and animals including humans. Infections often lead to epidemics and pandemics that have remained largely out of control due to the lack of specific and reliable preventive and therapeutic regimens. This unmet medical need has led to the exploration of new antiviral targets, of which RdRP is a major one, due to the fact of its obligatory need in virus growth. Recent studies have demonstrated the ability of several synthetic nucleoside analogs to serve as mimics of the corresponding natural nucleosides. These mimics cause stalling/termination of RdRP, or misincorporation, preventing virus replication or promoting large-scale lethal mutations. Several such analogs have received clinical approval and are being routinely used in therapy. In parallel, the molecular structural basis of their inhibitory interactions with RdRP is being elucidated, revealing both traditional and novel mechanisms including a delayed chain termination effect. This review offers a molecular commentary on these mechanisms along with their clinical implications based on analyses of recent results, which should facilitate the rational design of structure-based antiviral drugs.


Subject(s)
Nucleosides , RNA-Dependent RNA Polymerase , Humans , Animals , Nucleosides/pharmacology , SARS-CoV-2 , Antiviral Agents/therapeutic use , RNA , RNA, Viral/chemistry
3.
Biosystems ; 226: 104888, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2274359

ABSTRACT

In this paper, we investigate the Casimir effect within a virus RNA, particularizing the study to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Then, we discuss the possibility of occurring damage or mutation in its genome due to the presence of quantum vacuum fluctuations inside and around the RNA ribbon. For this, we consider the geometry and the nontrivial topology of the viral RNA as having a simple helical structure. We initially compute the non-thermal Casimir energy associated to that geometry, considering boundary conditions that constrain the zero point oscillations of a massless scalar field to the cylindrical cavity containing a helix pitch of RNA ribbon. Then we extend the obtained result to the electromagnetic field and, following, we calculate the probability of occurring damage or mutation in RNA by using the normalized inverse exponential distribution, which suppresses very low energies, and consider cutoff (threshold) energies corresponding to UV-A and UV-C rays, surely responsible by mutations. Then, by taking into account UV-A, we arrive at a mutation rate per base per infection cycle, which in the case of the SARS-CoV-2 is non-negligible. We find a maximum value of this mutation rate for an RNA ribbon radius, applying it for SARS-CoV-2, in particular. We also calculate a characteristic longitudinal oscillation frequency for the helix pitch value corresponding to the local minimum of the Casimir energy. Finally, we consider thermal fluctuations of classical and quantum nature and show that the corresponding probability of mutation is completely negligible for that virus. Therefore, we conclude that only the nontrivial topology and the geometric attributes of the RNA molecule contribute to the possible mutations caused by quantum vacuum fluctuations in the viral genome.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Mutation , Mutation Rate , RNA, Viral/genetics , RNA, Viral/chemistry
4.
J Biochem ; 173(6): 447-457, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-2235398

ABSTRACT

The interaction of the ß-coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid (N) protein with genomic RNA is initiated by specific RNA regions and subsequently induces the formation of a continuous polymer with characteristic structural units for viral formation. We hypothesized that oligomeric RNAs, whose sequences are absent in the 29.9-kb genome sequence of SARS-CoV-2, might affect RNA-N protein interactions. We identified two such hexameric RNAs, In-1 (CCGGCG) and G6 (GGGGGG), and investigated their effects on the small filamentous/droplet-like structures (< a few µm) of N protein-genomic RNA formed by liquid-liquid phase separation. The small N protein structures were sequence-specifically enhanced by In-1, whereas G6 caused them to coalesce into large droplets. Moreover, we found that a guanosine 12-mer (G12, GGGGGGGGGGGG) expelled preexisting genomic RNA from the small N protein structures. The presence of G12 with the genomic RNA suppressed the formation of the small N protein structures, and alternatively apparently altered phase separation to induce the formation of large droplets with unclear phase boundaries. We showed that the N-terminal RNA-binding domain is required for the stability of the small N protein structures. Our results suggest that G12 may be a strong inhibitor of the RNA-N protein interaction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/metabolism , Protein Binding
5.
Nature ; 614(7949): 781-787, 2023 02.
Article in English | MEDLINE | ID: covidwho-2221840

ABSTRACT

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , SARS-CoV-2 , Humans , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Coronavirus RNA-Dependent RNA Polymerase/ultrastructure , COVID-19/virology , Nucleosides/metabolism , Nucleosides/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Substrate Specificity , Guanosine Triphosphate/metabolism , RNA Caps
6.
Nucleic Acids Res ; 51(2): 728-743, 2023 01 25.
Article in English | MEDLINE | ID: covidwho-2189414

ABSTRACT

The RNA genome of SARS-CoV-2 contains a frameshift stimulatory element (FSE) that allows access to an alternative reading frame through -1 programmed ribosomal frameshifting (PRF). -1PRF in the 1a/1b gene is essential for efficient viral replication and transcription of the viral genome. -1PRF efficiency relies on the presence of conserved RNA elements within the FSE. One of these elements is a three-stemmed pseudoknot, although alternative folds of the frameshift site might have functional roles as well. Here, by complementing ensemble and single-molecule structural analysis of SARS-CoV-2 frameshift RNA variants with functional data, we reveal a conformational interplay of the 5' and 3' immediate regions with the FSE and show that the extended FSE exists in multiple conformations. Furthermore, limiting the base pairing of the FSE with neighboring nucleotides can favor or impair the formation of the alternative folds, including the pseudoknot. Our results demonstrate that co-existing RNA structures can function together to fine-tune SARS-CoV-2 gene expression, which will aid efforts to design specific inhibitors of viral frameshifting.


Subject(s)
Frameshifting, Ribosomal , SARS-CoV-2 , Humans , COVID-19 , Frameshifting, Ribosomal/genetics , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology
7.
Int J Mol Sci ; 24(2)2023 Jan 08.
Article in English | MEDLINE | ID: covidwho-2166609

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.


Subject(s)
COVID-19 , Influenza A virus , Orthomyxoviridae , Humans , SARS-CoV-2 , Influenza A virus/genetics , Nucleotide Motifs , Pandemics , RNA , RNA, Viral/genetics , RNA, Viral/chemistry
8.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: covidwho-2163440

ABSTRACT

The relationship between conserved structural motifs and their biological function in the virus replication cycle is the interest of many researchers around the world. RNA structure is closely related to RNA function. Therefore, technological progress in high-throughput approaches for RNA structure analysis and the development of new ones are very important. In this mini review, we discuss a few perspectives on the structural elements of viral genomes and some methods used for RNA structure prediction and characterization. Based on the recent literature, we describe several examples of studies concerning the viral genomes, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV). Herein, we emphasize that a better understanding of viral genome architecture allows for the discovery of the structure-function relationship, and as a result, the discovery of new potential antiviral therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Genome, Viral , RNA, Viral/genetics , RNA, Viral/chemistry , Antiviral Agents , Virus Replication/genetics
9.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2123704

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic that broke out in 2020 and continues to be the cause of massive global upheaval. Coronaviruses are positive-strand RNA viruses with a genome of ~30 kb. The genome is replicated and transcribed by RNA-dependent RNA polymerase together with accessory factors. One of the latter is the protein helicase (NSP13), which is essential for viral replication. The recently solved helicase structure revealed a tertiary structure composed of five domains. Here, we investigated NSP13 from a structural point of view, comparing its RNA-free form with the RNA-engaged form by using atomistic molecular dynamics (MD) simulations at the microsecond timescale. Structural analyses revealed conformational changes that provide insights into the contribution of the different domains, identifying the residues responsible for domain-domain interactions in both observed forms. The RNA-free system appears to be more flexible than the RNA-engaged form. This result underlies the stabilizing role of the nucleic acid and the functional core role of these domains.


Subject(s)
RNA Helicases , SARS-CoV-2 , RNA Helicases/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , RNA, Viral/chemistry
10.
Protein Sci ; 31(9): e4409, 2022 09.
Article in English | MEDLINE | ID: covidwho-2003635

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein is an essential structural component of mature virions, encapsulating the genomic RNA and modulating RNA transcription and replication. Several of its activities might be associated with the protein's ability to undergo liquid-liquid phase separation. NSARS-CoV-2 contains an intrinsically disordered region at its N-terminus (NTE) that can be phosphorylated and is affected by mutations found in human COVID-19 infections, including in the Omicron variant of concern. Here, we show that NTE deletion decreases the range of RNA concentrations that can induce phase separation of NSARS-CoV-2 . In addition, deletion of the prion-like NTE allows NSARS-CoV-2 droplets to retain their liquid-like nature during incubation. We further demonstrate that RNA-binding engages multiple parts of the NTE and changes NTE's structural properties. The results form the foundation to characterize the impact of N-terminal mutations and post-translational modifications on the molecular properties of the SARS-CoV-2 nucleocapsid protein. STATEMENT: The nucleocapsid protein of SARS-CoV-2 plays an important role in both genome packaging and viral replication upon host infection. Replication has been associated with RNA-induced liquid-liquid phase separation of the nucleocapsid protein. We present insights into the role of the N-terminal part of the nucleocapsid protein in the protein's RNA-mediated liquid-liquid phase separation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/chemistry , SARS-CoV-2/genetics
11.
Viruses ; 14(8)2022 08 16.
Article in English | MEDLINE | ID: covidwho-1988001

ABSTRACT

Most pandemics of recent decades can be traced to RNA viruses, including HIV, SARS, influenza, dengue, Zika, and SARS-CoV-2. These RNA viruses impose considerable social and economic burdens on our society, resulting in a high number of deaths and high treatment costs. As these RNA viruses utilize an RNA genome, which is important for different stages of the viral life cycle, including replication, translation, and packaging, studying how the genome folds is important to understand virus function. In this review, we summarize recent advances in computational and high-throughput RNA structure-mapping approaches and their use in understanding structures within RNA virus genomes. In particular, we focus on the genome structures of the dengue, Zika, and SARS-CoV-2 viruses due to recent significant outbreaks of these viruses around the world.


Subject(s)
COVID-19 , Dengue , RNA Viruses , Zika Virus Infection , Zika Virus , Dengue/genetics , Genome, Viral , Humans , RNA , RNA Viruses/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , Zika Virus/genetics , Zika Virus Infection/genetics
12.
Nature ; 609(7928): 793-800, 2022 09.
Article in English | MEDLINE | ID: covidwho-1984402

ABSTRACT

The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2'-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.


Subject(s)
RNA Caps , RNA, Viral , SARS-CoV-2 , Viral Proteins , Antiviral Agents , COVID-19/virology , Catalytic Domain , Guanosine Diphosphate/metabolism , Humans , Methyltransferases/metabolism , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Protein Domains , RNA Caps/chemistry , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , COVID-19 Drug Treatment
14.
J Phys Chem Lett ; 13(31): 7197-7205, 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1972509

ABSTRACT

Remdesivir is one nucleotide analogue prodrug capable to terminate RNA synthesis in SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by two distinct mechanisms. Although the "delayed chain termination" mechanism has been extensively investigated, the "template-dependent" inhibitory mechanism remains elusive. In this study, we have demonstrated that remdesivir embedded in the template strand seldom directly disrupted the complementary NTP incorporation at the active site. Instead, the translocation of remdesivir from the +2 to the +1 site was hindered due to the steric clash with V557. Moreover, we have elucidated the molecular mechanism characterizing the drug resistance upon V557L mutation. Overall, our studies have provided valuable insight into the "template-dependent" inhibitory mechanism exerted by remdesivir on SARS-CoV-2 RdRp and paved venues for an alternative antiviral strategy for the COVID-19 pandemic. As the "template-dependent" inhibition occurs across diverse viral RdRps, our findings may also shed light on a common acting mechanism of inhibitors.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Humans , Pandemics , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase , Viral Transcription
15.
Biochem Biophys Res Commun ; 625: 53-59, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-1966378

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) has caused a global pandemic. The SARS-CoV-2 RNA genome is replicated by a conserved "core" replication-transcription complex (RTC) containing an error-prone RNA-dependent RNA polymerase holoenzyme (holo-RdRp, nsp12-nsp7-nsp8) and a RNA proofreading nuclease (nsp14-nsp10). Although structures and functions of SARS-CoV-2 holo-RdRp have been extensively studied and ribonucleotide-analog inhibitors, such as Remdesivir, have been treated for COVID-19 patients, the substrate and nucleotide specificity of SARS-CoV-2 holo-RdRp remain unknown. Here, our biochemical analysis of SARS-CoV-2 holo-RdRp reveals that it has a robust DNA-dependent RNA polymerase activity, in addition to its intrinsic RNA-dependent RNA polymerase activity. Strikingly, SARS-CoV-2 holo-RdRp fully extends RNAs with a low-fidelity even when only ATP and pyrimidine nucleotides, in particular CTP, are provided. This ATP-dependent error-prone ribonucleotide incorporation by SARS-CoV-2 holo-RdRp resists excision by the RNA proofreading nuclease in vitro. Our collective results suggest that a physiological concentration of ATP likely contributes to promoting the error-prone incorporation of ribonucleotides and ribonucleotide-analogs by SARS-CoV-2 holo-RdRp and provide a useful foundation to develop ribonucleotide analogs as an effective therapeutic strategy to combat coronavirus-mediated outbreak.


Subject(s)
COVID-19 , SARS-CoV-2 , Adenosine Triphosphate , Antiviral Agents/chemistry , DNA-Directed RNA Polymerases , Humans , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Ribonucleotides , SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry
16.
Nat Commun ; 13(1): 4284, 2022 07 25.
Article in English | MEDLINE | ID: covidwho-1956403

ABSTRACT

The SARS-CoV-2 frameshifting element (FSE), a highly conserved mRNA region required for correct translation of viral polyproteins, defines an excellent therapeutic target against Covid-19. As discovered by our prior graph-theory analysis with SHAPE experiments, the FSE adopts a heterogeneous, length-dependent conformational landscape consisting of an assumed 3-stem H-type pseudoknot (graph motif 3_6), and two alternative motifs (3_3 and 3_5). Here, for the first time, we build and simulate, by microsecond molecular dynamics, 30 models for all three motifs plus motif-stabilizing mutants at different lengths. Our 3_6 pseudoknot systems, which agree with experimental structures, reveal interconvertible L and linear conformations likely related to ribosomal pausing and frameshifting. The 3_6 mutant inhibits this transformation and could hamper frameshifting. Our 3_3 systems exhibit length-dependent stem interactions that point to a potential transition pathway connecting the three motifs during ribosomal elongation. Together, our observations provide new insights into frameshifting mechanisms and anti-viral strategies.


Subject(s)
COVID-19 , Frameshifting, Ribosomal , Base Sequence , Humans , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics
17.
PLoS One ; 17(3): e0264855, 2022.
Article in English | MEDLINE | ID: covidwho-1896450

ABSTRACT

Since December 2019 the world has been facing the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Identification of infected patients and discrimination from other respiratory infections have so far been accomplished by using highly specific real-time PCRs. Here we present a rapid multiplex approach (RespiCoV), combining highly multiplexed PCRs and MinION sequencing suitable for the simultaneous screening for 41 viral and five bacterial agents related to respiratory tract infections, including the human coronaviruses NL63, HKU1, OC43, 229E, Middle East respiratory syndrome coronavirus, SARS-CoV, and SARS-CoV-2. RespiCoV was applied to 150 patient samples with suspected SARS-CoV-2 infection and compared with specific real-time PCR. Additionally, several respiratory tract pathogens were identified in samples tested positive or negative for SARS-CoV-2. Finally, RespiCoV was experimentally compared to the commercial RespiFinder 2SMART multiplex screening assay (PathoFinder, The Netherlands).


Subject(s)
Bacteria/genetics , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA Viruses/genetics , Respiratory Tract Infections/diagnosis , SARS-CoV-2/genetics , Bacteria/isolation & purification , COVID-19/virology , Coronavirus/genetics , Coronavirus/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Humans , Multiplex Polymerase Chain Reaction , Nanopores , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA Viruses/isolation & purification , RNA, Viral/chemistry , RNA, Viral/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification
18.
Sci Rep ; 12(1): 3860, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1799576

ABSTRACT

Non-structural protein 15 (Nsp15) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) forms a homo hexamer and functions as an endoribonuclease. Here, we propose that Nsp15 activity may be inhibited by preventing its hexamerization through drug binding. We first explored the stable conformation of the Nsp15 monomer as the global free energy minimum conformation in the free energy landscape using a combination of parallel cascade selection molecular dynamics (PaCS-MD) and the Markov state model (MSM), and found that the Nsp15 monomer forms a more open conformation with larger druggable pockets on the surface. Targeting the pockets with high druggability scores, we conducted ligand docking and identified compounds that tightly bind to the Nsp15 monomer. The top poses with Nsp15 were subjected to binding free energy calculations by dissociation PaCS-MD and MSM (dPaCS-MD/MSM), indicating the stability of the complexes. One of the identified pockets, which is distinctively bound by inosine analogues, may be an alternative binding site to stabilize viral RNA binding and/or an alternative catalytic site. We constructed a stable RNA structure model bound to both UTP and alternative binding sites, providing a reasonable proposed model of the Nsp15/RNA complex.


Subject(s)
Endoribonucleases/metabolism , RNA, Viral/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Endoribonucleases/antagonists & inhibitors , Humans , Markov Chains , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Multimerization , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Static Electricity , Viral Nonstructural Proteins/antagonists & inhibitors
19.
Radiat Res ; 198(1): 68-80, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1793416

ABSTRACT

Here we show an interplay between the structures present in ionization tracks and nucleocapsid RNA structural biology, using fast ion-beam inactivation of the severe acute respiratory syndrome coronavirus (SARS-CoV) virion as an example. This interplay could be a key factor in predicting dose-inactivation curves for high-energy ion-beam inactivation of virions. We also investigate the adaptation of well-established cross-section data derived from radiation interactions with water to the interactions involving the components of a virion, going beyond the density-scaling approximation developed previously. We conclude that solving one of the grand challenges of structural biology - the determination of RNA tertiary/quaternary structure - is linked to predicting ion-beam inactivation of viruses and that the two problems can be mutually informative. Indeed, our simulations show that fast ion beams have a key role to play in elucidating RNA tertiary/quaternary structure.


Subject(s)
Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2 , Virus Inactivation , Ions , Models, Molecular , RNA, Viral/metabolism , Radiobiology/methods , SARS-CoV-2/chemistry , Viral Proteins/chemistry , Viral Proteins/metabolism , Virion/chemistry
20.
Immunogenetics ; 74(5): 455-463, 2022 10.
Article in English | MEDLINE | ID: covidwho-1750684

ABSTRACT

G-quadruplex structure or Putative Quadruplex Sequences (PQSs) are abundant in human, microbial, DNA, or RNA viral genomes. These sequences in RNA viral genome play critical roles in integration into human genome as LTR (Long Terminal Repeat), genome replication, chromatin rearrangements, gene regulation, antigen variation (Av), and virulence. Here, we investigated whether the genome of SARS-CoV2, an RNA virus, contained such potential G-quadruplex structures. Using bioinformatic tools, we searched for such sequences and found thirty-seven (forward strand (twenty-five) + reverse strand (Twelve)) QGRSs (Quadruplex forming G-Rich Sequences)/PQSs in SARS-CoV2 genome. These sequences are dispersed mainly in the upstream of SARS-CoV2 genes. We discuss whether existing PQS/QGRS ligands could inhibit the SARS-CoV2 replication and gene transcription as has been observed in other RNA viruses. Further experimental validation would determine the role of these G-quadruplex sequences in SARS-CoV2 genome function to survive in the host cells and identify therapeutic agents to destabilize these PQSs/QGRSs.


Subject(s)
COVID-19 , G-Quadruplexes , COVID-19/genetics , DNA , Humans , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL