Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
BMC Res Notes ; 14(1): 401, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1486593

ABSTRACT

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus causing severe respiratory illness (COVID-19). This virus was initially identified in Wuhan city, a populated area of the Hubei province in China, and still remains one of the major global health challenges. RNA interference (RNAi) is a mechanism of post-transcriptional gene silencing that plays a crucial role in innate viral defense mechanisms by inhibiting the virus replication as well as expression of various viral proteins. Dicer, Drosha, Ago2, and DGCR8 are essential components of the RNAi system, which is supposed to be dysregulated in COVID-19 patients. This study aimed to assess the expression level of the mentioned mRNAs in COVID-19patients compared to healthy individuals. RESULTS: Our findings demonstrated that the expression of Dicer, Drosha, and Ago2 was statistically altered in COVID-19 patients compared to healthy subjects. Ultimately, the RNA interference mechanism as a crucial antiviral defense system was suggested to be dysregulated in COVID-19 patients.


Subject(s)
COVID-19 , MicroRNAs , Humans , RNA Interference , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2
2.
PLoS Pathog ; 17(10): e1009726, 2021 10.
Article in English | MEDLINE | ID: covidwho-1484867

ABSTRACT

The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.


Subject(s)
Prenylation/physiology , RNA Viruses/drug effects , RNA-Binding Proteins/pharmacology , Virus Replication/physiology , CpG Islands/physiology , HEK293 Cells , HIV-1/physiology , HeLa Cells , Humans , RNA Viruses/physiology , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Binding Motifs/physiology , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Transfection , Virus Replication/drug effects
3.
ACS Chem Biol ; 16(5): 844-856, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1457790

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs) are S-palmitoylated proteins in vertebrates that restrict a diverse range of viruses. S-palmitoylated IFITM3 in particular engages incoming virus particles, prevents their cytoplasmic entry, and accelerates their lysosomal clearance by host cells. However, how S-palmitoylation modulates the structure and biophysical characteristics of IFITM3 to promote its antiviral activity remains unclear. To investigate how site-specific S-palmitoylation controls IFITM3 antiviral activity, we employed computational, chemical, and biophysical approaches to demonstrate that site-specific lipidation of cysteine 72 enhances the antiviral activity of IFITM3 by modulating its conformation and interaction with lipid membranes. Collectively, our results demonstrate that site-specific S-palmitoylation of IFITM3 directly alters its biophysical properties and activity in cells to prevent virus infection.


Subject(s)
Antiviral Agents/chemistry , Cell Membrane/metabolism , Interferons/chemistry , Lipids/chemistry , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Antiviral Agents/pharmacology , Binding Sites , Cell Membrane/ultrastructure , Computational Biology , Drug Design , Humans , Interferons/pharmacology , Lipoylation , Lysosomes/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Signal Transduction
4.
Int J Biol Macromol ; 147: 513-520, 2020 Mar 15.
Article in English | MEDLINE | ID: covidwho-1454163

ABSTRACT

The alternative splicing is a mechanism increasing the number of expressed proteins and a variety of these functions. We uncovered the protein domains most frequently lacked or occurred in the splice variants. Proteins presented by several isoforms participate in such processes as transcription regulation, immune response, etc. Our results displayed the association of alternative splicing with branched regulatory pathways. By considering the published data on the protein proteins encoded by the 18th human chromosome, we noted that alternative products display the differences in several functional features, such as phosphorylation, subcellular location, ligand specificity, protein-protein interactions, etc. The investigation of alternative variants referred to the protein kinase domain was performed by comparing the alternative sequences with 3D structures. It was shown that large enough insertions/deletions could be compatible with the kinase fold if they match between the conserved secondary structures. Using the 3D data on human proteins, we showed that conformational flexibility could accommodate fold alterations in splice variants. The investigations of structural and functional differences in splice isoforms are required to understand how to distinguish the isoforms expressed as functioning proteins from the non-realized transcripts. These studies allow filling the gap between genomic and proteomic data.


Subject(s)
Alternative Splicing , Chromosomes, Human, Pair 18 , Databases, Protein , RNA-Binding Proteins , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 18/metabolism , Humans , Protein Structure, Secondary , Proteomics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
5.
Int J Biol Macromol ; 190: 636-648, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1401500

ABSTRACT

SARS-CoV-2 nucleocapsid (N) protein undergoes RNA-induced phase separation (LLPS) and sequesters the host key stress granule (SG) proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and 2 (G3BP1 and G3BP2) to inhibit SG formation. This will allow viral packaging and propagation in host cells. Based on a genomic-guided meta-analysis, here we identify upstream regulatory elements modulating the expression of G3BP1 and G3BP2 (collectively called G3BP1/2). Using this strategy, we have identified FOXA1, YY1, SYK, E2F-1, and TGFBR2 as activators and SIN3A, SRF, and AKT-1 as repressors of G3BP1/2 genes. Panels of the activators and repressors were then used to identify drugs that change their gene expression signatures. Two drugs, imatinib, and decitabine have been identified as putative modulators of G3BP1/2 genes and their regulators, suggesting their role as COVID-19 mitigation agents. Molecular docking analysis suggests that both drugs bind to G3BP1/2 with a much higher affinity than the SARS-CoV-2 N protein. This study reports imatinib and decitabine as candidate drugs against N protein and G3BP1/2 protein.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , COVID-19/drug therapy , Coronavirus Nucleocapsid Proteins/chemistry , DNA Helicases/chemistry , Decitabine/chemistry , Imatinib Mesylate/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Poly-ADP-Ribose Binding Proteins/chemistry , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry , RNA-Binding Proteins/chemistry , SARS-CoV-2/chemistry , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism , Decitabine/pharmacology , Drug Delivery Systems , Genomics , Imatinib Mesylate/pharmacology , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA Recognition Motif Proteins/antagonists & inhibitors , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism
6.
Viruses ; 13(7)2021 06 25.
Article in English | MEDLINE | ID: covidwho-1389549

ABSTRACT

The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.


Subject(s)
Codon, Terminator/genetics , Coronavirus/genetics , Frameshifting, Ribosomal/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Base Sequence , Escherichia coli/genetics , Gene Expression Regulation, Viral , Humans , Leukemia Virus, Murine/genetics , RNA Recognition Motif Proteins , RNA, Viral/genetics , Virus Replication
7.
Cell ; 184(1): 184-193.e10, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1385213

ABSTRACT

Transcription of SARS-CoV-2 mRNA requires sequential reactions facilitated by the replication and transcription complex (RTC). Here, we present a structural snapshot of SARS-CoV-2 RTC as it transitions toward cap structure synthesis. We determine the atomic cryo-EM structure of an extended RTC assembled by nsp7-nsp82-nsp12-nsp132-RNA and a single RNA-binding protein, nsp9. Nsp9 binds tightly to nsp12 (RdRp) NiRAN, allowing nsp9 N terminus inserting into the catalytic center of nsp12 NiRAN, which then inhibits activity. We also show that nsp12 NiRAN possesses guanylyltransferase activity, catalyzing the formation of cap core structure (GpppA). The orientation of nsp13 that anchors the 5' extension of template RNA shows a remarkable conformational shift, resulting in zinc finger 3 of its ZBD inserting into a minor groove of paired template-primer RNA. These results reason an intermediate state of RTC toward mRNA synthesis, pave a way to understand the RTC architecture, and provide a target for antiviral development.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/chemistry , Cryoelectron Microscopy , RNA, Messenger/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Viral Replicase Complex Proteins/chemistry , Amino Acid Sequence , Coronavirus/chemistry , Coronavirus/classification , Coronavirus/enzymology , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Methyltransferases/metabolism , Models, Molecular , RNA Helicases/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/enzymology , Sequence Alignment , Transcription, Genetic , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication
8.
Nat Microbiol ; 6(3): 339-353, 2021 03.
Article in English | MEDLINE | ID: covidwho-1387365

ABSTRACT

Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spectrometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections. We demonstrated by genetic perturbation that cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1), two of the most strongly enriched viral RNA binders, restrict SARS-CoV-2 replication in infected cells and provide a global map of their direct RNA contact sites. Pharmacological inhibition of three other RNA interactome members, PPIA, ATP1A1, and the ARP2/3 complex, reduced viral replication in two human cell lines. The identification of host dependency factors and defence strategies as presented in this work will improve the design of targeted therapeutics against SARS-CoV-2.


Subject(s)
COVID-19/metabolism , COVID-19/virology , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Autoantigens/metabolism , Cell Line , Host-Pathogen Interactions , Humans , Protein Interaction Maps , Proteome , RNA, Viral/genetics , Ribonucleoproteins/metabolism , SARS-CoV-2/genetics , Virus Replication/physiology
9.
Nat Commun ; 12(1): 4584, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1387354

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antigens, Differentiation/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/pharmacology , Antigens, Differentiation/metabolism , Binding Sites , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Interferon-beta/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects
10.
Scand J Immunol ; 94(5): e13100, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1388399

ABSTRACT

The SARS-CoV-2 epidemic infections in Australia during 2020 were small in number in epidemiological terms and are well described. The SARS-CoV-2 genomic sequence data of many infected patients have been largely curated in a number of publicly available databases, including the corresponding epidemiological data made available by the Victorian Department of Health and Human Services. We have critically analysed the available SARS-CoV-2 haplotypes and genomic sequences in the context of putative deficits in innate immune APOBEC and ADAR deaminase anti-viral responses. It is now known that immune impaired elderly co-morbid patients display clear deficits in interferon type 1 (α/ß) and III (λ) stimulated innate immune gene cascades, of which APOBEC and ADAR induced expression are part. These deficiencies may help explain some of the clear genetic patterns in SARS-CoV-2 genomes isolated in Victoria, Australia, during the 2nd Wave (June-September, 2020). We tested the hypothesis that predicted lowered innate immune APOBEC and ADAR anti-viral deaminase responses in a significant proportion of elderly patients would be consistent with/reflected in a low level of observed mutagenesis in many isolated SARS-CoV-2 genomes. Our findings are consistent with this expectation. The analysis also supports the conclusions of the Victorian government's Department of Health that essentially one variant or haplotype infected Victorian aged care facilities where the great majority (79%) of all 820 SARS-CoV-2 associated deaths occurred. The implications of our data analysis for other localized epidemics and efficient coronavirus vaccine design and delivery are discussed.


Subject(s)
APOBEC Deaminases/genetics , Adenosine Deaminase/genetics , COVID-19 Vaccines/immunology , COVID-19/immunology , RNA-Binding Proteins/genetics , SARS-CoV-2/physiology , APOBEC Deaminases/metabolism , Adenosine Deaminase/metabolism , Age Factors , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Female , Gene Regulatory Networks , Haplotypes , Humans , Immunity, Innate , Immunologic Deficiency Syndromes , Interferon Type I/genetics , Male , RNA-Binding Proteins/metabolism , Victoria/epidemiology
11.
J Biol Chem ; 297(3): 101018, 2021 09.
Article in English | MEDLINE | ID: covidwho-1380706

ABSTRACT

The coronaviral nonstructural protein 9 (Nsp9) is essential for viral replication; it is the primary substrate of Nsp12's pseudokinase domain within the viral replication transcription complex, an association that also recruits other components during different stages of RNA reproduction. In the unmodified state, Nsp9 forms an obligate homodimer via an essential GxxxG protein-interaction motif, but its ssRNA-binding mechanism remains unknown. Using structural biological techniques, here we show that a base-mimicking compound identified from a small molecule fragment screen engages Nsp9 via a tetrameric Pi-Pi stacking interaction that induces the formation of a parallel trimer-of-dimers. This oligomerization mechanism allows an interchange of "latching" N-termini, the charges of which contribute to a series of electropositive channels that suggests a potential interface for viral RNA. The identified pyrrolo-pyrimidine compound may also serve as a potential starting point for the development of compounds seeking to probe Nsp9's role within SARS-CoV-2 replication.


Subject(s)
COVID-19/virology , Pyrimidine Nucleotides/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding , RNA/metabolism , SARS-CoV-2/physiology , Virus Replication
12.
Viruses ; 13(6)2021 05 21.
Article in English | MEDLINE | ID: covidwho-1359299

ABSTRACT

Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.


Subject(s)
Host-Pathogen Interactions , RNA Viruses/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Response Elements , Biological Transport , Cytoplasmic Granules/metabolism , Gene Expression Regulation, Viral , Humans , Protein Biosynthesis , RNA Virus Infections/metabolism , RNA Virus Infections/virology , RNA, Viral/chemistry , Stress, Physiological , Transport Vesicles/metabolism , Virus Replication
13.
Nucleic Acids Res ; 49(15): 8822-8835, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1343703

ABSTRACT

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.


Subject(s)
Nidovirales/enzymology , Nucleotides/metabolism , Protein Domains , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Catalytic Domain , Coenzymes/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Diphosphates/pharmacology , Diphosphonates/pharmacology , Guanosine Triphosphate/metabolism , Manganese , Models, Molecular , Nidovirales/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Uridine Triphosphate/metabolism
14.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1334329

ABSTRACT

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Subject(s)
Coronavirus OC43, Human/physiology , RNA Processing, Post-Transcriptional/genetics , SARS-CoV-2/physiology , Virus Replication/genetics , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Cell Line , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Humans , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Nucleocapsid Proteins , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Virus Replication/drug effects
15.
Cell Death Dis ; 12(8): 732, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1322464

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is characterized by symptoms of lymphopenia and multiorgan damage, but the underlying mechanisms remain unclear. To explore the function of N6-methyladenosine (m6A) modifications in COVID-19, we performed microarray analyses to comprehensively characterize the m6A epitranscriptome. The results revealed distinct global m6A profiles in severe and mild COVID-19 patients. Programmed cell death and inflammatory response were the major biological processes modulated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Further, RBM15, a major m6A methyltransferase, was significantly elevated and positively correlated with disease severity. Silencing RBM15 drastically reduced lymphocyte death in vitro. Knockdown of RBM15 remarkably suppressed the expression levels of multitarget genes related to programmed cell death and inflammatory response. This study shows that SARS-CoV-2 infection alters the m6A epitranscriptome of lymphocytes, particularly in the case of severe patients. RBM15 regulated host immune response to SARS-CoV-2 by elevating m6A modifications of multitarget genes. These findings indicate that RBM15 can serve as a target for the treatment of COVID-19.


Subject(s)
Adenosine/analogs & derivatives , COVID-19/genetics , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/metabolism , Transcriptome , Adenosine/metabolism , COVID-19/pathology , Cell Line, Tumor , Epigenesis, Genetic , Female , Humans , Lymphocytes/metabolism , Male , Middle Aged , RNA-Binding Proteins/genetics , THP-1 Cells
16.
Methods Mol Biol ; 2099: 9-20, 2020.
Article in English | MEDLINE | ID: covidwho-1292544

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic pathogen with a broad host range. The extent of MERS-CoV in nature can be traced to its adaptable cell entry steps. The virus can bind host-cell carbohydrates as well as proteinaceous receptors. Following receptor interaction, the virus can utilize diverse host proteases for cleavage activation of virus-host cell membrane fusion and subsequent genome delivery. The fusion and genome delivery steps can be completed at variable times and places, either at or near cell surfaces or deep within endosomes. Investigators focusing on the CoVs have developed several methodologies that effectively distinguish these different cell entry pathways. Here we describe these methods, highlighting virus-cell entry factors, entry inhibitors, and viral determinants that specify the cell entry routes. While the specific methods described herein were utilized to reveal MERS-CoV entry pathways, they are equally suited for other CoVs, as well as other protease-dependent viral species.


Subject(s)
Coronavirus Infections/virology , Genome, Viral/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Virus Internalization , Cell Membrane/virology , Endosomes/virology , HEK293 Cells , Humans , Membrane Proteins/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Peptide Hydrolases/metabolism , RNA-Binding Proteins/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
17.
Biochem J ; 478(13): 2499-2515, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1291175

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Azoles/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Enzyme Assays , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Isoindoles , Leupeptins/pharmacology , Organoselenium Compounds/pharmacology , Peptidomimetics , RNA-Binding Proteins/metabolism , Reproducibility of Results , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Vero Cells , Viral Nonstructural Proteins/metabolism
18.
PLoS One ; 16(6): e0253458, 2021.
Article in English | MEDLINE | ID: covidwho-1286869

ABSTRACT

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Dopa Decarboxylase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Area Under Curve , Aromatic-L-Amino-Acid Decarboxylases , COVID-19/virology , Dopa Decarboxylase/genetics , Down-Regulation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Erythropoietin/genetics , Erythropoietin/metabolism , Female , Humans , Male , Middle Aged , Nasopharynx/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , ROC Curve , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Up-Regulation , Viral Load
19.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1134-1141, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1280062

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health threat since December 2019, and there is still no highly effective drug to control the pandemic. To facilitate drug target identification for drug development, studies on molecular mechanisms, such as SARS-CoV-2 protein interactions, are urgently needed. In this study, we focused on Nsp2, a non-structural protein with largely unknown function and mechanism. The interactome of Nsp2 was revealed through the combination of affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), and 84 proteins of high-confidence were identified. Gene ontology analysis demonstrated that Nsp2-interacting proteins are involved in several biological processes such as endosome transport and translation. Network analysis generated two clusters, including ribosome assembly and vesicular transport. Bio-layer interferometry (BLI) assay confirmed the bindings between Nsp2- and 4-interacting proteins, i.e. STAU2 (Staufen2), HNRNPLL, ATP6V1B2, and RAP1GDS1 (SmgGDS), which were randomly selected from the list of 84 proteins. Our findings provide insights into the Nsp2-host interplay and indicate that Nsp2 may play important roles in SARS-CoV-2 infection and serve as a potential drug target for anti-SARS-CoV-2 drug development.


Subject(s)
COVID-19/drug therapy , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/chemistry , Drug Delivery Systems , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Binding , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Viral Nonstructural Proteins/metabolism
20.
Mol Cell ; 81(13): 2851-2867.e7, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1240514

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 relies on cellular RNA-binding proteins (RBPs) to replicate and spread, although which RBPs control its life cycle remains largely unknown. Here, we employ a multi-omic approach to identify systematically and comprehensively the cellular and viral RBPs that are involved in SARS-CoV-2 infection. We reveal that SARS-CoV-2 infection profoundly remodels the cellular RNA-bound proteome, which includes wide-ranging effects on RNA metabolic pathways, non-canonical RBPs, and antiviral factors. Moreover, we apply a new method to identify the proteins that directly interact with viral RNA, uncovering dozens of cellular RBPs and six viral proteins. Among them are several components of the tRNA ligase complex, which we show regulate SARS-CoV-2 infection. Furthermore, we discover that available drugs targeting host RBPs that interact with SARS-CoV-2 RNA inhibit infection. Collectively, our results uncover a new universe of host-virus interactions with potential for new antiviral therapies against COVID-19.


Subject(s)
COVID-19/metabolism , Proteome/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/physiology , Viral Proteins/metabolism , Virus Replication/physiology , A549 Cells , COVID-19/genetics , Humans , Proteome/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...