Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Nature ; 603(7899): 25-27, 2022 03.
Article in English | MEDLINE | ID: covidwho-1730273

Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Clinical Trials as Topic , Drug Repositioning , Host-Pathogen Interactions/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Administration, Oral , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/economics , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , COVID-19/economics , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , COVID-19 Vaccines , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Drug Combinations , Drug Synergism , Esters/pharmacology , Esters/therapeutic use , Guanidines/pharmacology , Guanidines/therapeutic use , Hospitalization , Humans , Hydroxylamines/therapeutic use , Internationality , Lactams/therapeutic use , Leucine/therapeutic use , Mice , National Institutes of Health (U.S.)/organization & administration , Nitriles/therapeutic use , Peptide Elongation Factor 1/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Proline/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors
2.
Commun Biol ; 5(1): 154, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1699831

ABSTRACT

SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Exonucleases/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Anilides/pharmacology , Animals , Base Sequence , Benzimidazoles/pharmacology , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Drug Synergism , Exonucleases/genetics , Exonucleases/metabolism , Humans , Proline/pharmacology , Pyrrolidines/pharmacology , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Valine/pharmacology , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Virus Replication/genetics
3.
Nat Commun ; 13(1): 621, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1671551

ABSTRACT

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Guanosine Monophosphate/analogs & derivatives , Phosphoramides/chemistry , Phosphoramides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , COVID-19/virology , Cryoelectron Microscopy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/pharmacology , Humans , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Proteins/genetics
4.
Antiviral Res ; 198: 105254, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654045

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid global emergence of SARS-CoV-2 highlights the importance and urgency for potential drugs to control the pandemic. The functional importance of RNA-dependent RNA polymerase (RdRp) in the viral life cycle, combined with structural conservation and absence of closely related homologs in humans, makes it an attractive target for designing antiviral drugs. Nucleos(t)ide analogs (NAs) are still the most promising broad-spectrum class of viral RdRp inhibitors. In this study, using our previously developed cell-based SARS-CoV-2 RdRp report system, we screened 134 compounds in the Selleckchemicals NAs library. Four candidate compounds, Fludarabine Phosphate, Fludarabine, 6-Thio-20-Deoxyguanosine (6-Thio-dG), and 5-Iodotubercidin, exhibit remarkable potency in inhibiting SARS-CoV-2 RdRp. Among these four compounds, 5-Iodotubercidin exhibited the strongest inhibition upon SARS-CoV-2 RdRp, and was resistant to viral exoribonuclease activity, thus presenting the best antiviral activity against coronavirus from a different genus. Further study showed that the RdRp inhibitory activity of 5-Iodotubercidin is closely related to its capacity to inhibit adenosine kinase (ADK).


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Nucleic Acid Synthesis Inhibitors/pharmacology , SARS-CoV-2/drug effects , Tubercidin/analogs & derivatives , Cell Line , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/pharmacology , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , Microbial Sensitivity Tests , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/genetics , Thionucleosides/pharmacology , Tubercidin/pharmacology , Vidarabine/analogs & derivatives , Vidarabine/pharmacology , Vidarabine Phosphate/analogs & derivatives , Vidarabine Phosphate/pharmacology
5.
Antiviral Res ; 198: 105252, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654043

ABSTRACT

We assessed the in vitro antiviral activity of remdesivir and its parent nucleoside GS-441524, molnupiravir and its parent nucleoside EIDD-1931 and the viral protease inhibitor nirmatrelvir against the ancestral SARS-CoV2 strain and the five variants of concern including Omicron. VeroE6-GFP cells were pre-treated overnight with serial dilutions of the compounds before infection. The GFP signal was determined by high-content imaging on day 4 post-infection. All molecules have equipotent antiviral activity against the ancestral virus and the VOCs Alpha, Beta, Gamma, Delta and Omicron. These findings are in line with the observation that the target proteins of these antivirals (respectively the viral RNA dependent RNA polymerase and the viral main protease Mpro) are highly conserved.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Lactams/therapeutic use , Leucine/therapeutic use , Nitriles/therapeutic use , Proline/therapeutic use , SARS-CoV-2/drug effects , Adenosine/analogs & derivatives , Adenosine/therapeutic use , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cytidine/therapeutic use , Humans , Microbial Sensitivity Tests , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Vero Cells , Virus Replication/drug effects
6.
J Microbiol ; 60(3): 347-354, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1652455

ABSTRACT

Coronavirus disease (COVID-19) can cause critical conditions that require efficient therapeutics. Several medicines are derived from plants, and researchers are seeking natural compounds to ameliorate the symptoms of COVID-19. Viral enzymes are popular targets of antiviral medicines; the genome of coronaviruses encodes several enzymes, including RNA-dependent RNA polymerase and viral proteases. Various screening systems have been developed to identify potential inhibitors. In this review, we describe the natural compounds that have been shown to exert inhibitory effects on coronavirus enzymes. Although computer-aided molecular structural studies have predicted several antiviral compound candidates, the current review focuses on experimentally proven natural compounds.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 , Enzyme Inhibitors , Phytochemicals/pharmacology , COVID-19/drug therapy , Enzyme Inhibitors/pharmacology , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
7.
Molecules ; 27(2)2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1635108

ABSTRACT

The design of novel nucleoside triphosphate (NTP) analogues bearing an all-carbon quaternary center at C2' or C3' is described. The construction of this all-carbon stereogenic center involves the use of an intramoleculer photoredox-catalyzed reaction. The nucleoside analogues (NA) hydroxyl functional group at C2' was generated by diastereoselective epoxidation. In addition, highly enantioselective and diastereoselective Mukaiyama aldol reactions, diastereoselective N-glycosylations and regioselective triphosphorylation reactions were employed to synthesize the novel NTPs. Two of these compounds are inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, the causal virus of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Carbon/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Nucleotides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Nucleotides/chemical synthesis , Nucleotides/chemistry , SARS-CoV-2/drug effects , Stereoisomerism
8.
Antiviral Res ; 198: 105247, 2022 02.
Article in English | MEDLINE | ID: covidwho-1632314

ABSTRACT

Massive usage of antiviral compounds during a pandemic creates an ideal ground for emergence of resistant strains. Remdesivir, a broad-spectrum inhibitor of the viral RNA-dependent RNA polymerase (RdRp), was extensively prescribed under emergency use authorization during the first 18 months of the COVID19 pandemic, before randomized controlled trials showed poor efficacy in hospitalized patients. RdRp mutations conferring resistance to remdesivir are well known from in vitro studies, and the huge SARS-CoV-2 sequencing effort during the ongoing COVID19 pandemic represents an unprecedented opportunity to assess emergence and fitness of antiviral resistance in vivo. We mined the GISAID database to extrapolate the frequency of remdesivir escape mutations. Our analysis reveals very low levels of remdesivir resistance worldwide despite massive usage.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Resistance, Viral/genetics , SARS-CoV-2/genetics , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Drug Repositioning , Genome, Viral/genetics , Humans , Polyproteins/genetics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Viral Proteins/genetics
9.
J Biol Chem ; 298(2): 101529, 2022 02.
Article in English | MEDLINE | ID: covidwho-1587355

ABSTRACT

Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Models, Molecular , RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Negative-Sense RNA Viruses/drug effects , Negative-Sense RNA Viruses/enzymology , Nipah Virus/drug effects , Nipah Virus/enzymology , Positive-Strand RNA Viruses/drug effects , Positive-Strand RNA Viruses/enzymology , RNA Viruses/drug effects , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Virus Replication/drug effects
10.
Mol Aspects Med ; 81: 101005, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1562128

ABSTRACT

Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.


Subject(s)
Antiviral Agents , RNA Viruses , RNA-Dependent RNA Polymerase , Antiviral Agents/therapeutic use , Humans , RNA Viruses/drug effects , RNA Viruses/genetics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/genetics
11.
Biomed Pharmacother ; 146: 112517, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1561313

ABSTRACT

Rapid changes in the viral genome allow viruses to evade threats posed by the host immune response or antiviral drugs, and can lead to viral persistence in the host cells. RNA-dependent RNA polymerase (RdRp) is an essential enzyme in RNA viruses, which is involved in RNA synthesis through the formation of phosphodiester bonds. Therefore, in RNA viral infections such as SARS-CoV-2, RdRp could be a crucial therapeutic target. The present review discusses the promising application of RdRp inhibitors, previously approved or currently being tested in human clinical trials, in the treatment of RNA virus infections. Nucleoside inhibitors (NIs) bind to the active site of RdRp, while nonnucleoside inhibitors (NNIs) bind to allosteric sites. Given the absence of highly effective drugs for the treatment of COVID-19, the discovery of an efficient treatment for this pandemic is an urgent concern for researchers around the world. We review the evidence for molnupiravir (MK-4482, EIDD-2801), an antiviral drug originally designed for Alphavirus infections, as a potential preventive and therapeutic agent for the management of COVID-19. At the beginning of this pandemic, molnupiravir was in preclinical development for seasonal influenza. When COVID-19 spread dramatically, the timeline for development was accelerated to focus on the treatment of this pandemic. Real time consultation with regulators took place to expedite this program. We summarize the therapeutic potential of RdRp inhibitors, and highlight molnupiravir as a new small molecule drug for COVID-19 treatment.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/enzymology , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Clinical Trials as Topic/methods , Cytidine/pharmacology , Cytidine/therapeutic use , Humans , Hydroxylamines/pharmacology , RNA-Dependent RNA Polymerase/metabolism
12.
Antiviral Res ; 196: 105209, 2021 12.
Article in English | MEDLINE | ID: covidwho-1520691

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of Coronavirus Disease 2019 (COVID-19) pandemic. Despite intensive and global efforts to discover and develop novel antiviral therapies, only Remdesivir has been approved as a treatment for COVID-19. Therefore, effective antiviral therapeutics are still urgently needed to combat and halt the pandemic. Viral RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 demonstrates high potential as a reliable target for the development of antivirals. We previously developed a cell-based assay to assess the efficiency of compounds that target SARS-CoV-2 RdRp, as well as their tolerance to viral exoribonuclease-mediated proof-reading. In our previous study, we discovered that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides specifically targets the RdRp of both respiratory syncytial virus (RSV) and influenza A virus. Thus, we hypothesize that 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides may also have the ability to inhibit SARS-CoV-2 replication by targeting its RdRp activity. In this research, we test a compound library containing 103 of 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides against SARS-CoV-2 RdRp, using our cell-based assay. Among these compounds, the top five candidates strongly inhibit SARS-CoV-2 RdRp activity while exhibiting low cytotoxicity and resistance to viral exoribonuclease. Compound 6-72-2a is the most promising candidate with the lowest EC50 value of 1.41 µM and highest selectivity index (CC50/EC50) (above 70.92). Furthermore, our data suggests that 4-46b and 6-72-2a also inhibit the replication of HCoV-OC43 and HCoV-NL63 virus in a dose-dependent manner. Compounds 4-46b and 6-72-2a exhibit EC50 values of 1.13 µM and 0.94 µM, respectively, on HCoV-OC43 viral replication. However, higher concentrations of these compounds are needed to effectively block HCoV-NL63 replication. Together, our findings successfully identified 4-46b and 6-72-2a as promising inhibitors against SARS-CoV-2 RdRp.


Subject(s)
Acetamides/pharmacology , COVID-19/drug therapy , RNA-Dependent RNA Polymerase , Antiviral Agents/pharmacology , Drug Delivery Systems , Humans , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/drug effects , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Viral Proteins/drug effects , Virus Replication/drug effects
13.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1470891

ABSTRACT

SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Amides/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Catalytic Domain , Databases, Chemical , Drug Design , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Guanidine/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Sulfides/chemistry , Thermodynamics , Viral Proteins/metabolism
14.
Enzymes ; 49: 315-354, 2021.
Article in English | MEDLINE | ID: covidwho-1464553

ABSTRACT

The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.


Subject(s)
Antiviral Agents/pharmacology , Nucleotides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Replicase Complex Proteins/antagonists & inhibitors , Viruses/enzymology , Virus Replication
15.
Eur J Med Chem ; 221: 113494, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1446590

ABSTRACT

In the search for new anti-influenza virus (IV) compounds, we have identified the 1,2,4-triazolo[1,5-a]pyrimidine (TZP) as a very suitable scaffold to obtain compounds able to disrupt IV RNA-dependent RNA polymerase (RdRP) PA-PB1 subunits heterodimerization. In this work, in order to acquire further SAR insights for this class of compounds and identify more potent derivatives, we designed and synthesized additional series of analogues to investigate the role of the substituents around the TZP core. To this aim, we developed four facile and efficient one-step procedures for the synthesis of 5-phenyl-, 6-phenyl- and 7-phenyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines, and 2-amino-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Two analogues having the ethyl carboxylate moiety at the C-2 position of the TZP were also prepared in good yields. Then, the scaffolds herein synthesized and two previous scaffolds were functionalized and evaluated for their anti-IAV activity, leading to the identification of compound 22 that showed both anti-PA-PB1 (IC50 = 19.5 µM) and anti-IAV activity (EC50 = 16 µM) at non-toxic concentrations, thus resulting among the most active TZP derivatives reported to date by us. A selection of the synthesized compounds, along with a set of in-house available analogues, was also tested against SARS-CoV-2. The most promising compound 49 from this series displayed an EC50 value of 34.47 µM, highlighting the potential of the TPZ scaffold in the search for anti-CoV agents.


Subject(s)
Antiviral Agents/pharmacology , Protein Multimerization/drug effects , Pyrimidines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Triazoles/pharmacology , Viral Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Chlorocebus aethiops , Dogs , Drug Design , HEK293 Cells , Humans , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Pyrimidines/chemical synthesis , SARS-CoV-2/drug effects , Triazoles/chemical synthesis , Vero Cells
16.
Cell ; 184(6): 1604-1620, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1392179

ABSTRACT

Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.


Subject(s)
Antiviral Agents/therapeutic use , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/epidemiology , Molecular Targeted Therapy/methods , Pandemics , Virus Diseases/drug therapy , Virus Diseases/epidemiology , Viruses/enzymology , Animals , Antiviral Agents/pharmacology , Communicable Diseases, Emerging/virology , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Envelope Proteins/antagonists & inhibitors , Virus Diseases/virology , Virus Internalization/drug effects
17.
Curr Med Chem ; 29(1): 152-162, 2022.
Article in English | MEDLINE | ID: covidwho-1369588

ABSTRACT

BACKGROUND: SARS-CoV-2, which emerged in Wuhan, China, is a new global threat that has killed millions of people and continues to do so. This pandemic has not only threatened human life but has also triggered economic downturns across the world. Researchers have made significant strides in discovering molecular insights into SARSCoV- 2 pathogenesis and developing vaccines, but there is still no successful cure for SARS-CoV-2 infected patients. OBJECTIVE: The present study has proposed a drug-repositioning pipeline for the design and discovery of an effective fungal-derived bioactive metabolite as a drug candidate against SARS-CoV-2. METHODS: Fungal derivative "Cordycepin" was selected for this study to investigate the inhibitory properties against RNA-dependent RNA polymerase (RdRp) (PDB ID: 6M71) of SARS-CoV-2. The pharmacological profile, intermolecular interactions, binding energy, and stability of the compound were determined utilizing cheminformatic approaches. Subsequently, molecular dynamic simulation was performed to better understand the binding mechanism of cordycepin to RdRp. RESULTS: The pharmacological data and retrieved molecular dynamics simulations trajectories suggest excellent drug-likeliness and greater structural stability of cordycepin, while the catalytic residues (Asp760, Asp761), as well as other active site residues (Trp617, Asp618, Tyr619, Trp800, Glu811) of RdRp, showed better stability during the overall simulation span. CONCLUSION: Promising results of pharmacological investigation along with molecular simulations revealed that cordycepin exhibited strong inhibitory potential against SARSCoV- 2 polymerase enzyme (RdRp). Hence, cordycepin should be highly recommended to test in a laboratory to confirm its inhibitory potential against the SARS-CoV-2 polymerase enzyme (RdRp).


Subject(s)
Antiviral Agents , Deoxyadenosines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19 , Humans , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
18.
Nucleic Acids Res ; 49(15): 8822-8835, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1343703

ABSTRACT

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.


Subject(s)
Nidovirales/enzymology , Nucleotides/metabolism , Protein Domains , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Catalytic Domain , Coenzymes/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Diphosphates/pharmacology , Diphosphonates/pharmacology , Guanosine Triphosphate/metabolism , Manganese , Models, Molecular , Nidovirales/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Uridine Triphosphate/metabolism
19.
J Biomol Struct Dyn ; 39(10): 3771-3779, 2021 07.
Article in English | MEDLINE | ID: covidwho-1343544

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative representative of a severe respiratory illness resulted in widespread human infections and deaths in nearly all of the countries since late 2019. There is no therapeutic FDA-approved drug against SARS-CoV-2 infection, although a combination of anti-viral drugs is directly being practiced in some countries. A broad-spectrum of antiviral agents are being currently evaluated in clinical trials, and in this review, we specifically focus on the application of Remdesivir (RVD) as a potential anti-viral compound against Middle East respiratory syndrome (MERS) -CoV, SARS-CoV and SARS-CoV-2. First, we overview the general information about SARS-CoV-2, followed by application of RDV as a nucleotide analogue which can potentially inhibits RNA-dependent RNA polymerase of COVs. Afterwards, we discussed the kinetics of SARS- or MERS-CoV proliferation in animal models which is significantly different compared to that in humans. Finally, some ongoing challenges and future perspective on the application of RDV either alone or in combination with other anti-viral agents against CoVs infection were surveyed to determine the efficiency of RDV in preclinical trials. As a result, this paper provides crucial evidence of the potency of RDV to prevent SARS-CoV-2 infections.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiviral Agents , COVID-19 , RNA-Dependent RNA Polymerase , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects
20.
PLoS One ; 16(7): e0253364, 2021.
Article in English | MEDLINE | ID: covidwho-1315884

ABSTRACT

Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.


Subject(s)
Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Single-Chain Antibodies/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , A549 Cells , Antigen-Antibody Complex , Humans , Inhibitory Concentration 50 , RNA-Dependent RNA Polymerase/immunology , RNA-Dependent RNA Polymerase/metabolism , Single-Chain Antibodies/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL