Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Clin Immunol ; 244: 109130, 2022 11.
Article in English | MEDLINE | ID: covidwho-2177621

ABSTRACT

Here, we report a case of atopic dermatitis (AD) in a patient who received biweekly doses of dupilumab, an antibody against the IL-4 receptor α chain (IL-4Rα). Single cell RNA-sequencing showed that naïve B cells expressed the highest levels of IL4R compared to other B cell subpopulations. Compared to controls, the dupilumab-treated patient exhibited diminished percentages of IL4R+IGHD+ naïve B cells and down-regulation of IL4R, FCER2 (CD23), and IGHD. Dupilumab treatment resulted in upregulation of genes associated with apoptosis and inhibition of B cell receptor signaling and down-regulation of class-switch and memory B cell development genes. The dupilumab-treated patient exhibited a rapid decline in COVID-19 anti-spike and anti-receptor binding domain antibodies between 4 and 8 and 11 months post COVID-19 vaccination. Our data suggest that intact and persistent IL-4 signaling is necessary for maintaining robust survival and development of naïve B cells, and maintaining a long term vaccine response.


Subject(s)
COVID-19 , Receptors, Interleukin-4 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , COVID-19/drug therapy , COVID-19 Vaccines , Humans , Interleukin-4 , RNA , Receptors, Antigen, B-Cell
2.
Front Immunol ; 13: 964976, 2022.
Article in English | MEDLINE | ID: covidwho-2123414

ABSTRACT

Amid the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, vaccination and early therapeutic interventions are the most effective means to combat and control the severity of the disease. Host immune responses to SARS-CoV-2 and its variants, particularly adaptive immune responses, should be fully understood to develop improved strategies to implement these measures. Single-cell multi-omic technologies, including flow cytometry, single-cell transcriptomics, and single-cell T-cell receptor (TCR) and B-cell receptor (BCR) profiling, offer a better solution to examine the protective or pathological immune responses and molecular mechanisms associated with SARS-CoV-2 infection, thus providing crucial support for the development of vaccines and therapeutics for COVID-19. Recent reviews have revealed the overall immune landscape of natural SARS-CoV-2 infection, and this review will focus on adaptive immune responses (including T cells and B cells) to SARS-CoV-2 revealed by single-cell multi-omics technologies. In addition, we explore how the single-cell analyses disclose the critical components of immune protection and pathogenesis during SARS-CoV-2 infection through the comparison between the adaptive immune responses induced by natural infection and by vaccination.


Subject(s)
COVID-19 , Adaptive Immunity , COVID-19/prevention & control , Humans , Receptors, Antigen, B-Cell , SARS-CoV-2 , Single-Cell Analysis , Vaccination
3.
Mol Immunol ; 151: 231-241, 2022 11.
Article in English | MEDLINE | ID: covidwho-2049678

ABSTRACT

The antibody repertoire (Rep-seq) sequencing revolutionized the diversity of antigen B cell receptor studies, allowing deep and quantitative analysis to decipher the role of adaptive immunity in health and disease. Particularly, horse (Equus caballus) polyclonal antibodies have been produced and used since the century XIX to treat and prophylaxis diphtheria, tuberculosis, tetanus, pneumonia, and, more recently, COVID-19. However, our knowledge about the horse B cell receptors repertories is minimal. We present a deep horse antibody heavy chain repertoire (IGH) characterization of non-infected horses using NGS (Next generation sequencing). This study obtained a mean of 248,169 unique IgM clones and 66,141 unique IgG clones from four domestic adult horses. Rarefaction analysis showed sequence coverage was between 52 % and 82 % in IgM and IgG isotypes. We observed that besides horses antibody can use all functional IGHV genes, around 80 % of their antibodies use only three IGHV gene segments, and around 55 % use only one IGHJ gene segment. This limited VJ diversity seems to be compensated by the junctional diversity of these antibodies. We observed that the junctional diversity in horse antibodies is widespread, present in more than 90 % of horse antibodies. Besides this, the length of this region seems to be higher in horse antibodies than in other species. N1 and N2 nucleotides addition range from 0 to 111 nucleotides. In addition, around 45 % of the antibody clones have more than ten nucleotides in both the N1 and N2 junction regions. This diversity mechanism may be one of the most important in providing variability to the equine antibody repertoire. This study provides new insights regarding horse antibody composition, diversity generation, and particularities compared to other species, such as the frequency and length of N nucleotide addition. This study also points out the urgent need to better characterize TdT in horses and other species to better understand antibody repertoire characteristics.


Subject(s)
COVID-19 , Animals , Antibody Diversity , Horses , Immunoglobulin G/genetics , Immunoglobulin M/genetics , Nucleotides , Receptors, Antigen, B-Cell/genetics
4.
BMB Rep ; 55(9): 465-471, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2045789

ABSTRACT

Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of largescale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment. [BMB Reports 2022; 55(9): 465-471].


Subject(s)
COVID-19 , Cytokines , Humans , Pandemics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics
5.
PLoS Comput Biol ; 18(9): e1010052, 2022 09.
Article in English | MEDLINE | ID: covidwho-2039220

ABSTRACT

The sequencing of antibody repertoires of B-cells at increasing coverage and depth has led to the identification of vast numbers of immunoglobulin heavy and light chains. However, the size and complexity of these Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) datasets makes it difficult to perform exploratory analyses. To aid in data exploration, we have developed AIRRscape, an R Shiny-based interactive web browser application that enables B-cell receptor (BCR) and antibody feature discovery through comparisons among multiple repertoires. Using AIRR-seq data as input, AIRRscape starts by aggregating and sorting repertoires into interactive and explorable bins of germline V-gene, germline J-gene, and CDR3 length, providing a high-level view of the entire repertoire. Interesting subsets of repertoires can be quickly identified and selected, and then network topologies of CDR3 motifs can be generated for further exploration. Here we demonstrate AIRRscape using patient BCR repertoires and sequences of published monoclonal antibodies to investigate patterns of humoral immunity to three viral pathogens: SARS-CoV-2, HIV-1, and DENV (dengue virus). AIRRscape reveals convergent antibody sequences among datasets for all three pathogens, although HIV-1 antibody datasets display limited convergence and idiosyncratic responses. We have made AIRRscape available as a web-based Shiny application, along with code on GitHub to encourage its open development and use by immuno-informaticians, virologists, immunologists, vaccine developers, and other scientists that are interested in exploring and comparing multiple immune receptor repertoires.


Subject(s)
Antibody Formation , COVID-19 , Antibodies, Monoclonal , High-Throughput Nucleotide Sequencing , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/genetics
6.
Immunol Lett ; 249: 23-32, 2022 09.
Article in English | MEDLINE | ID: covidwho-2004148

ABSTRACT

B cell-mediated immune responses play important roles in controlling SARS-CoV infection. Here, we performed the single-cell B cell receptor sequencing (scBCR-seq) of the PBMC samples from eleven healthy controls, five asymptomatic subjects and 33 symptomatic COVID-19 patients with various clinical presentations, and subsequently analyzed the abundance and diversity of the BCR repertoires in different groups, respectively. We revealed the skewed usage of the IGHV, IGLV and IGKV genes and identified a number of heavy or light chain VDJ gene pairs and combinational preference in each group, such as IGKV3-7 and IGKV2-24 enriched in the asymptomatic subjects, whereas IGHV3-13, IGHV3-23-IGHJ4, IGHV1-18-IGLV3-19, IGHV1-18-IGLV3-21, and IGHV1-18-IGLV3-25 enriched in the recovery patients with severe diseases. We also observed the differential expression of IGHV3-23 in various B cell clusters by analysis of the scRNA-seq data. Additional dock analysis indicated that IGHV3-13 could bind to the spike protein of SARS-CoV-2. These findings may advance our understanding of the humoral immune responses in COVID-19 patients and help develop novel vaccine candidates as well as therapeutical antibodies against SASR-CoV-2 infections.


Subject(s)
COVID-19 , COVID-19/genetics , Humans , Leukocytes, Mononuclear , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
BMB Rep ; 55(9): 465-471, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1998890

ABSTRACT

Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of largescale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment. [BMB Reports 2022; 55(9): 465-471].


Subject(s)
COVID-19 , Cytokines , Humans , Pandemics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics
8.
Sci Immunol ; 7(76): eadd5446, 2022 10 28.
Article in English | MEDLINE | ID: covidwho-1992933

ABSTRACT

SARS-CoV-2 Omicron subvariants have generated a worldwide health crisis due to resistance to most approved SARS-CoV-2 neutralizing antibodies and evasion of vaccination-induced antibodies. To manage Omicron subvariants and prepare for new ones, additional means of isolating broad and potent humanized SARS-CoV-2 neutralizing antibodies are desirable. Here, we describe a mouse model in which the primary B cell receptor (BCR) repertoire is generated solely through V(D)J recombination of a human VH1-2 heavy chain (HC) and, substantially, a human Vκ1-33 light chain (LC). Thus, primary humanized BCR repertoire diversity in these mice derives from immensely diverse HC and LC antigen-contact CDR3 sequences generated by nontemplated junctional modifications during V(D)J recombination. Immunizing this mouse model with SARS-CoV-2 (Wuhan-Hu-1) spike protein immunogens elicited several VH1-2/Vκ1-33-based neutralizing antibodies that bound RBD in a different mode from each other and from those of many prior patient-derived VH1-2-based neutralizing antibodies. Of these, SP1-77 potently and broadly neutralized all SARS-CoV-2 variants through BA.5. Cryo-EM studies revealed that SP1-77 bound RBD away from the receptor-binding motif via a CDR3-dominated recognition mode. Lattice light-sheet microscopy-based studies showed that SP1-77 did not block ACE2-mediated viral attachment or endocytosis but rather blocked viral-host membrane fusion. The broad and potent SP1-77 neutralization activity and nontraditional mechanism of action suggest that it might have therapeutic potential. Likewise, the SP1-77 binding epitope may inform vaccine strategies. Last, the type of humanized mouse models that we have described may contribute to identifying therapeutic antibodies against future SARS-CoV-2 variants and other pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , Membrane Fusion , Antibodies, Viral , Antibodies, Neutralizing , Epitopes , Receptors, Antigen, B-Cell
9.
Front Immunol ; 13: 809264, 2022.
Article in English | MEDLINE | ID: covidwho-1979036

ABSTRACT

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.


Subject(s)
Malaria , Merozoite Surface Protein 1 , Adult , Animals , Antibodies, Protozoan , Antibody Formation , Child , Humans , Immunoglobulin G , Immunoglobulin M/metabolism , Memory B Cells , Merozoites , Plasmodium falciparum , Receptors, Antigen, B-Cell/metabolism , Uganda
10.
Nat Commun ; 13(1): 4539, 2022 08 04.
Article in English | MEDLINE | ID: covidwho-1972604

ABSTRACT

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Epitopes , Humans , Immunoglobulin Isotypes , Receptors, Antigen, B-Cell , Spike Glycoprotein, Coronavirus
11.
Emerg Microbes Infect ; 11(1): 2007-2020, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1960867

ABSTRACT

Dynamic changes of the paired heavy and light chain B cell receptor (BCR) repertoire provide an essential insight into understanding the humoral immune response post-SARS-CoV-2 infection and vaccination. However, differences between the endogenous paired BCR repertoire kinetics in SARS-CoV-2 infection and previously recovered/naïve subjects treated with the inactivated vaccine remain largely unknown. We performed single-cell V(D)J sequencing of B cells from six healthy donors with three shots of inactivated SARS-CoV-2 vaccine (BBIBP-CorV), five people who received the BBIBP-CorV vaccine after having recovered from COVID-19, five unvaccinated COVID-19 recovered patients and then integrated with public data of B cells from four SARS-CoV-2-infected subjects. We discovered that BCR variable (V) genes were more prominently used in the SARS-CoV-2 exposed groups (both in the group with active infection and in the group that had recovered) than in the vaccinated groups. The VH gene that expanded the most after SARS-CoV-2 infection was IGHV3-33, while IGHV3-23 in the vaccinated groups. SARS-CoV-2-infected group enhanced more BCR clonal expansion and somatic hypermutation than the vaccinated healthy group. A small proportion of public clonotypes were shared between the SARS-CoV-2 infected, vaccinated healthy, and recovered groups. Moreover, several public antibodies had been identified against SARS-CoV-2 spike protein. We comprehensively characterize the paired heavy and light chain BCR repertoire from SARS-CoV-2 infection to vaccination, providing further guidance for the development of the next-generation precision vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
12.
FEBS Open Bio ; 12(9): 1634-1643, 2022 09.
Article in English | MEDLINE | ID: covidwho-1958661

ABSTRACT

B cells recognize antigens via membrane-expressed B-cell receptors (BCR) and antibodies. Similar human BCR sequences are frequently found at a significantly higher frequency than that theoretically calculated. Patients infected with SARS-CoV2 and HIV or with autoimmune diseases share very similar BCRs. Therefore, in silico reconstitution of BCR repertoires and identification of stereotypical BCR sequences related to human pathology have diagnostic potential. Furthermore, monitoring changes of clinically significant BCR sequences and isotype conversion has prognostic potential. For BCR repertoire analysis, peripheral blood (PB) is the most convenient source. However, the optimal human PB volume for in silico reconstitution of the BCR repertoire has not been studied in detail. Here, we sampled 5, 10, and 20 mL PB from the left arm and 40 mL PB from the right arm of two volunteers, reconstituted in silico PB BCR repertoires, and compared their composition. In both volunteers, PB sampling over 20 mL resulted in slight increases in functional unique sequences (FUSs) or almost no increase in repertoire diversity. All FUSs with a frequency above 0.08% or 0.03% in the 40 mL PB BCR repertoire were detected even in the 5 mL PB BCR repertoire from each volunteer. FUSs with a higher frequency were more likely to be found in BCR repertoires from reduced PB volume, and those coexisting in two repertoires showed a statistically significant correlation in frequency irrespective of sampled anatomical site. The correlation was more significant in higher-frequency FUSs. These observations support the potential of BCR repertoire analysis for diagnosis.


Subject(s)
COVID-19 , RNA, Viral , Blood Volume , High-Throughput Nucleotide Sequencing/methods , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2
13.
Immunol Invest ; 51(7): 1994-2008, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1921964

ABSTRACT

The outbreak and persistence of coronavirus disease 2019 (COVID-19) threaten human health. B cells play a vital role in fighting the infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite many studies on the immune responses in COVID-19 patients, it is still unclear how B cell receptor (BCR) constituents, including immunoglobulin heavy (IGHs) and light chains (IGLs), respond to SARS-CoV-2 in patients with varying symptoms. In this study, we conducted complementarity-determining region 3 (CDR3) sequencing of BCR IGHs and IGLs from the peripheral blood of COVID-19 patients and healthy donors. The results showed significantly reduced clonal diversity, more expanded clones, and longer CDR3 lengths of IGH and IGL in COVID-19 patients than those in healthy individuals. The IGLs had a much higher percentage of VJ skew usage (47.83% IGLV and 42.86% IGLJ were significantly regulated) than the IGHs (12.09% IGHV and 0% IGHJ) between the healthy individuals and patients, which indicated the importance of BCR light chains. Furthermore, we found a largely expanded IGLV3-25 gene cluster mostly pairing with IGLJ1 and ILGJ2 in COVID-19 patients and a newly identified upregulated IGLJ1 gene and IGLJ2+IGLV13-21 recombination, both of which are potential sources of SARS-CoV-2-targeting antibodies. Our findings on specific immune B-cell signatures associated with COVID-19 have clinical implications for vaccine and biomarker development for disease diagnosis.


Subject(s)
COVID-19 , Complementarity Determining Regions , B-Lymphocytes , COVID-19/genetics , Complementarity Determining Regions/genetics , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2
14.
J Virol ; 96(4): e0160021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1759291

ABSTRACT

A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2-reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , B-Lymphocytes/immunology , COVID-19/genetics , Immunoglobulin G/genetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Immunoglobulin G/immunology , Receptors, Antigen, B-Cell/immunology
15.
Nat Biotechnol ; 40(8): 1270-1275, 2022 08.
Article in English | MEDLINE | ID: covidwho-1730301

ABSTRACT

Although several monoclonal antibodies (mAbs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been approved for coronavirus disease 2019 (COVID-19) therapy, development was generally inefficient, with lead generation often requiring the production and testing of numerous antibody candidates. Here, we report that the integration of target-ligand blocking with a previously described B cell receptor-sequencing approach (linking B cell receptor to antigen specificity through sequencing (LIBRA-seq)) enables the rapid and efficient identification of multiple neutralizing mAbs that prevent the binding of SARS-CoV-2 spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The combination of target-ligand blocking and high-throughput antibody sequencing promises to increase the throughput of programs aimed at discovering new neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/therapeutic use , Humans , Ligands , Peptidyl-Dipeptidase A , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
16.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719435

ABSTRACT

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
17.
Emerg Microbes Infect ; 11(1): 452-464, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1672032

ABSTRACT

Breakthrough infection of SARS-CoV-2 is a serious challenge, as increased infections were documented in fully-vaccinated individuals. Recipients with poor antibody response are highly vulnerable to reinfection, whereas those with strong antibody responses achieve sterilizing immunity. Thus far, biomarkers associated with levels of vaccine-elicited antibody response are still lacking. Here, we studied the antibody response of age- and gender-controlled healthy cohort, who received inactivated SARS-CoV-2 vaccines and profiled the B cell receptor repertoires in longitudinally consecutive samples. Upon vaccination, all vaccinated individuals displayed a convergent antibody response with shared common antibody clones and public neutralizing antibodies. Strikingly, poor vaccine-responders are distinguishable from strong vaccine-responders by a biased V-usage before vaccination and IgG to IgM mRNA ratio. These findings reveal molecular signatures associated with the different levels of vaccine-induced antibody response, which could be further developed into biomarkers for the design of vaccination strategies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Receptors, Antigen, B-Cell , SARS-CoV-2 , Vaccination
18.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/drug therapy , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
19.
Nat Methods ; 18(6): 627-630, 2021 06.
Article in English | MEDLINE | ID: covidwho-1550331

ABSTRACT

We introduce the TRUST4 open-source algorithm for reconstruction of immune receptor repertoires in αß/γδ T cells and B cells from RNA-sequencing (RNA-seq) data. Compared with competing methods, TRUST4 supports both FASTQ and BAM format and is faster and more sensitive in assembling longer-even full-length-receptor repertoires. TRUST4 can also call repertoire sequences from single-cell RNA-seq (scRNA-seq) data without V(D)J enrichment, and is compatible with both SMART-seq and 5' 10x Genomics platforms.


Subject(s)
Algorithms , Receptors, Immunologic/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , V(D)J Recombination
20.
Hum Immunol ; 83(2): 119-129, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1499900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However, the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here, we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion, and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones 2-3 weeks after the onset of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34, and IGHV4-39 in COVID-19 patients were more abundant than those of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged, 80 and over , Antibodies, Neutralizing/immunology , Female , Humans , Immunoglobulin Heavy Chains/immunology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL