Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Virol ; 96(4): e0160021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1759291

ABSTRACT

A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2-reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , B-Lymphocytes/immunology , COVID-19/genetics , Immunoglobulin G/genetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Immunoglobulin G/immunology , Receptors, Antigen, B-Cell/immunology
2.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719435

ABSTRACT

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
3.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/drug therapy , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
4.
Nat Methods ; 18(6): 627-630, 2021 06.
Article in English | MEDLINE | ID: covidwho-1550331

ABSTRACT

We introduce the TRUST4 open-source algorithm for reconstruction of immune receptor repertoires in αß/γδ T cells and B cells from RNA-sequencing (RNA-seq) data. Compared with competing methods, TRUST4 supports both FASTQ and BAM format and is faster and more sensitive in assembling longer-even full-length-receptor repertoires. TRUST4 can also call repertoire sequences from single-cell RNA-seq (scRNA-seq) data without V(D)J enrichment, and is compatible with both SMART-seq and 5' 10x Genomics platforms.


Subject(s)
Algorithms , Receptors, Immunologic/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , V(D)J Recombination
5.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470549

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) manifests as a severe and uncontrolled inflammatory response with multiorgan involvement, occurring weeks after SARS-CoV-2 infection. Here, we utilized proteomics, RNA sequencing, autoantibody arrays, and B cell receptor (BCR) repertoire analysis to characterize MIS-C immunopathogenesis and identify factors contributing to severe manifestations and intensive care unit admission. Inflammation markers, humoral immune responses, neutrophil activation, and complement and coagulation pathways were highly enriched in MIS-C patient serum, with a more hyperinflammatory profile in severe than in mild MIS-C cases. We identified a strong autoimmune signature in MIS-C, with autoantibodies targeted to both ubiquitously expressed and tissue-specific antigens, suggesting autoantigen release and excessive antigenic drive may result from systemic tissue damage. We further identified a cluster of patients with enhanced neutrophil responses as well as high anti-Spike IgG and autoantibody titers. BCR sequencing of these patients identified a strong imprint of antigenic drive with substantial BCR sequence connectivity and usage of autoimmunity-associated immunoglobulin heavy chain variable region (IGHV) genes. This cluster was linked to a TRBV11-2 expanded T cell receptor (TCR) repertoire, consistent with previous studies indicating a superantigen-driven pathogenic process. Overall, we identify a combination of pathogenic pathways that culminate in MIS-C and may inform treatment.


Subject(s)
Autoimmunity , COVID-19/complications , Systemic Inflammatory Response Syndrome/immunology , Adaptive Immunity , Adolescent , Biomarkers/metabolism , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokine Release Syndrome/immunology , Female , Humans , Infant , Inflammation/immunology , Male , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/metabolism , Neutrophil Activation , Proteomics , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Severity of Illness Index , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/metabolism
6.
J Immunol ; 207(10): 2581-2588, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1450886

ABSTRACT

SARS-CoV-2 is a respiratory pathogen that can cause severe disease in at-risk populations but results in asymptomatic infections or a mild course of disease in the majority of cases. We report the identification of SARS-CoV-2-reactive B cells in human tonsillar tissue obtained from children who were negative for coronavirus disease 2019 prior to the pandemic and the generation of mAbs recognizing the SARS-CoV-2 Spike protein from these B cells. These Abs showed reduced binding to Spike proteins of SARS-CoV-2 variants and did not recognize Spike proteins of endemic coronaviruses, but subsets reacted with commensal microbiota and exhibited SARS-CoV-2-neutralizing potential. Our study demonstrates pre-existing SARS-CoV-2-reactive Abs in various B cell populations in the upper respiratory tract lymphoid tissue that may lead to the rapid engagement of the pathogen and contribute to prevent manifestations of symptomatic or severe disease.


Subject(s)
Adenoids/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Mucous Membrane/immunology , Receptors, Antigen, B-Cell/genetics , Respiratory System/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Child , HEK293 Cells , Humans , Immunologic Memory , Lymphocyte Activation , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcriptome
7.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415923

ABSTRACT

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Subject(s)
COVID-19 , Carrier State/immunology , Lymphocytes/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Transcriptome/immunology , Adolescent , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/genetics
8.
Front Immunol ; 12: 701085, 2021.
Article in English | MEDLINE | ID: covidwho-1332120

ABSTRACT

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adaptive Immunity , Adult , Aged , Cells, Cultured , Convalescence , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis , Transcriptome , Young Adult
9.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1236217

ABSTRACT

The world is facing a pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Adaptive immune responses are essential for SARS-CoV-2 virus clearance. Although a large body of studies have been conducted to investigate the immune mechanism in COVID-19 patients, we still lack a comprehensive understanding of the BCR repertoire in patients. In this study, we used the single-cell V(D)J sequencing to characterize the BCR repertoire across convalescent COVID-19 patients. We observed that the BCR diversity was significantly reduced in disease compared with healthy controls. And BCRs tend to skew toward different V gene segments in COVID-19 and healthy controls. The CDR3 sequences of heavy chain in clonal BCRs in patients were more convergent than that in healthy controls. In addition, we discovered increased IgG and IgA isotypes in the disease, including IgG1, IgG3 and IgA1. In all clonal BCRs, IgG isotypes had the most frequent class switch recombination events and the highest somatic hypermutation rate, especially IgG3. Moreover, we found that an IgG3 cluster from different clonal groups had the same IGHV, IGHJ and CDR3 sequences (IGHV4-4-CARLANTNQFYDSSSYLNAMDVW-IGHJ6). Overall, our study provides a comprehensive characterization of the BCR repertoire in COVID-19 patients, which contributes to the understanding of the mechanism for the immune response to SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , VDJ Exons/genetics , B-Lymphocytes/immunology , COVID-19/genetics , COVID-19/virology , Female , Humans , Immunoglobulin A/genetics , Immunoglobulin A/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/pathogenicity , Sequence Analysis , Single-Cell Analysis , VDJ Exons/immunology
10.
Cell Rep ; 35(8): 109173, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1227991

ABSTRACT

Individuals with the 2019 coronavirus disease (COVID-19) show varying severity of the disease, ranging from asymptomatic to requiring intensive care. Although monoclonal antibodies specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified, we still lack an understanding of the overall landscape of B cell receptor (BCR) repertoires in individuals with COVID-19. We use high-throughput sequencing of bulk and plasma B cells collected at multiple time points during infection to characterize signatures of the B cell response to SARS-CoV-2 in 19 individuals. Using principled statistical approaches, we associate differential features of BCRs with different disease severity. We identify 38 significantly expanded clonal lineages shared among individuals as candidates for responses specific to SARS-CoV-2. Using single-cell sequencing, we verify the reactivity of BCRs shared among individuals to SARS-CoV-2 epitopes. Moreover, we identify the natural emergence of a BCR with cross-reactivity to SARS-CoV-1 and SARS-CoV-2 in some individuals. Our results provide insights important for development of rational therapies and vaccines against COVID-19.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Cross Reactions , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19/genetics , Epitopes , High-Throughput Nucleotide Sequencing , Humans , Severity of Illness Index , Sf9 Cells , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology
11.
Emerg Microbes Infect ; 10(1): 1097-1111, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1214429

ABSTRACT

Monoclonal antibodies (mAbs) encoded by IGHV3-53 (VH3-53) targeting the spike receptor-binding domain (RBD) have been isolated from different COVID-19 patients. However, the existence and prevalence of shared VH3-53-encoded antibodies in the antibody repertoires is not clear. Using antibody repertoire sequencing, we found that the usage of VH3-53 increased after SARS-CoV-2 infection. A highly shared VH3-53-J6 clonotype was identified in 9 out of 13 COVID-19 patients. This clonotype was derived from convergent gene rearrangements with few somatic hypermutations and was evolutionary conserved. We synthesized 34 repertoire-deduced novel VH3-53-J6 heavy chains and paired with a common IGKV1-9 light chain to produce recombinant mAbs. Most of these recombinant mAbs (23/34) possess RBD binding and virus-neutralizing activities, and recognize ACE2 binding site via the same molecular interface. Our computational analysis, validated by laboratory experiments, revealed that VH3-53 antibodies targeting RBD are commonly present in COVID-19 patients' antibody repertoires, indicating many people have germline-like precursor sequences to rapidly generate SARS-CoV-2 neutralizing antibodies. Moreover, antigen-specific mAbs can be digitally obtained through antibody repertoire sequencing and computational analysis.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/immunology , Base Sequence , COVID-19/blood , Case-Control Studies , Epitopes, B-Lymphocyte , Female , HEK293 Cells , Humans , Male , Middle Aged , Models, Molecular , Phylogeny , Protein Conformation , Receptors, Antigen, B-Cell/genetics
12.
Signal Transduct Target Ther ; 6(1): 110, 2021 03 06.
Article in English | MEDLINE | ID: covidwho-1118799

ABSTRACT

The 2019 coronavirus disease (COVID-19) outbreak caused by the SARS-CoV-2 virus is an ongoing global health emergency. However, the virus' pathogenesis remains unclear, and there is no cure for the disease. We investigated the dynamic changes of blood immune response in patients with COVID-19 at different stages by using 5' gene expression, T cell receptor (TCR), and B cell receptors (BCR) V(D)J transcriptome analysis at a single-cell resolution. We obtained single-cell mRNA sequencing (scRNA-seq) data of 341,420 peripheral blood mononuclear cells (PBMCs) and 185,430 clonotypic T cells and 28,802 clonotypic B cells from 25 samples of 16 patients with COVID-19 for dynamic studies. In addition, we used three control samples. We found expansion of dendritic cells (DCs), CD14+ monocytes, and megakaryocytes progenitor cells (MP)/platelets and a reduction of naïve CD4+ T lymphocytes in patients with COVID-19, along with a significant decrease of CD8+ T lymphocytes, and natural killer cells (NKs) in patients in critical condition. The type I interferon (IFN-I), mitogen-activated protein kinase (MAPK), and ferroptosis pathways were activated while the disease was active, and recovered gradually after patient conditions improved. Consistent with this finding, the mRNA level of IFN-I signal-induced gene IFI27 was significantly increased in patients with COVID-19 compared with that of the controls in a validation cohort that included 38 patients and 35 controls. The concentration of interferon-α (IFN-α) in the serum of patients with COVID-19 increased significantly compared with that of the controls in an additional cohort of 215 patients with COVID-19 and 106 controls, further suggesting the important role of the IFN-I pathway in the immune response of COVID-19. TCR and BCR sequences analyses indicated that patients with COVID-19 developed specific immune responses against SARS-CoV-2 antigens. Our study reveals a dynamic landscape of human blood immune responses to SARS-CoV-2 infection, providing clues for therapeutic potentials in treating COVID-19.


Subject(s)
COVID-19/immunology , Leukocytes/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Adult , COVID-19/genetics , Female , Ferroptosis/genetics , Ferroptosis/immunology , Humans , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Male , Middle Aged , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/genetics
13.
J Autoimmun ; 118: 102596, 2021 03.
Article in English | MEDLINE | ID: covidwho-1062442

ABSTRACT

Forty-seven samples of peripheral blood mononuclear cells from four groups of coronavirus disease (COVID)-19 patients (mild, severe, convalescent, retesting-positive) and healthy controls were applied to profile the immune repertoire of COVID-19 patients in acute infection or convalescence by transcriptome sequencing and immune-receptor repertoire (IRR) sequencing. Transcriptome analyses showed that genes within principal component group 1 (PC1) were associated with infection and disease severity whereas genes within PC2 were associated with recovery from COVID-19. A "dual-injury mechanism" of COVID-19 severity was related to an increased number of proinflammatory pathways and activated hypercoagulable pathways. A machine-learning model based on the genes associated with inflammatory and hypercoagulable pathways had the potential to be employed to monitor COVID-19 severity. Signature analyses of B-cell receptors (BCRs) and T-cell receptors (TCRs) revealed the dominant selection of longer V-J pairs (e.g., IGHV3-9-IGHJ6 and IGHV3-23-IGHJ6) and continuous tyrosine motifs in BCRs and lower diversity of TCRs. These findings provide potential predictors for COVID-19 outcomes, and new potential targets for COVID-19 treatment.


Subject(s)
COVID-19/genetics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Adult , COVID-19/drug therapy , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology
14.
Front Immunol ; 11: 605170, 2020.
Article in English | MEDLINE | ID: covidwho-1004679

ABSTRACT

Deep sequencing of B cell receptor (BCR) heavy chains from a cohort of 31 COVID-19 patients from the UK reveals a stereotypical naive immune response to SARS-CoV-2 which is consistent across patients. Clonal expansion of the B cell population is also observed and may be the result of memory bystander effects. There was a strong convergent sequence signature across patients, and we identified 1,254 clonotypes convergent between at least four of the COVID-19 patients, but not present in healthy controls or individuals following seasonal influenza vaccination. A subset of the convergent clonotypes were homologous to known SARS and SARS-CoV-2 spike protein neutralizing antibodies. Convergence was also demonstrated across wide geographies by comparison of data sets between patients from UK, USA, and China, further validating the disease association and consistency of the stereotypical immune response even at the sequence level. These convergent clonotypes provide a resource to identify potential therapeutic and prophylactic antibodies and demonstrate the potential of BCR profiling as a tool to help understand patient responses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Female , High-Throughput Nucleotide Sequencing , Humans , Lymphopenia/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology
15.
Front Immunol ; 11: 582010, 2020.
Article in English | MEDLINE | ID: covidwho-886168

ABSTRACT

Severe COVID-19 is associated with profound lymphopenia and an elevated neutrophil to lymphocyte ratio. We applied a novel dimer avoidance multiplexed polymerase chain reaction next-generation sequencing assay to analyze T (TCR) and B cell receptor (BCR) repertoires. Surprisingly, TCR repertoires were markedly diminished during the early onset of severe disease but recovered during the convalescent stage. Monitoring TCR repertoires could serve as an indicative biomarker to predict disease progression and recovery. Panoramic concurrent assessment of BCR repertoires demonstrated isotype switching and a transient but dramatic early IgA expansion. Dominant B cell clonal expansion with decreased diversity occurred following recovery from infection. Profound changes in T cell homeostasis raise critical questions about the early events in COVID-19 infection and demonstrate that immune repertoire analysis is a promising method for evaluating emergent host immunity to SARS-CoV-2 viral infection, with great implications for assessing vaccination and other immunological therapies.


Subject(s)
B-Lymphocytes/immunology , Betacoronavirus/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , CD4 Lymphocyte Count , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Lymphopenia/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2
16.
Signal Transduct Target Ther ; 5(1): 156, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-717099

ABSTRACT

The global Coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has affected more than eight million people. There is an urgent need to investigate how the adaptive immunity is established in COVID-19 patients. In this study, we profiled adaptive immune cells of PBMCs from recovered COVID-19 patients with varying disease severity using single-cell RNA and TCR/BCR V(D)J sequencing. The sequencing data revealed SARS-CoV-2-specific shuffling of adaptive immune repertories and COVID-19-induced remodeling of peripheral lymphocytes. Characterization of variations in the peripheral T and B cells from the COVID-19 patients revealed a positive correlation of humoral immune response and T-cell immune memory with disease severity. Sequencing and functional data revealed SARS-CoV-2-specific T-cell immune memory in the convalescent COVID-19 patients. Furthermore, we also identified novel antigens that are responsive in the convalescent patients. Altogether, our study reveals adaptive immune repertories underlying pathogenesis and recovery in severe versus mild COVID-19 patients, providing valuable information for potential vaccine and therapeutic development against SARS-CoV-2 infection.


Subject(s)
B-Lymphocytes/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Immunity, Cellular , Immunity, Humoral , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , B-Lymphocytes/classification , B-Lymphocytes/virology , Betacoronavirus/immunology , COVID-19 , Case-Control Studies , China , Convalescence , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Progression , Gene Expression , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Receptors, Antigen, B-Cell/classification , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/classification , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis , T-Lymphocytes/classification , T-Lymphocytes/virology
17.
Immunity ; 53(2): 442-455.e4, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-626455

ABSTRACT

We profiled adaptive immunity in COVID-19 patients with active infection or after recovery and created a repository of currently >14 million B and T cell receptor (BCR and TCR) sequences from the blood of these patients. The B cell response showed converging IGHV3-driven BCR clusters closely associated with SARS-CoV-2 antibodies. Clonality and skewing of TCR repertoires were associated with interferon type I and III responses, early CD4+ and CD8+ T cell activation, and counterregulation by the co-receptors BTLA, Tim-3, PD-1, TIGIT, and CD73. Tfh, Th17-like, and nonconventional (but not classical antiviral) Th1 cell polarizations were induced. SARS-CoV-2-specific T cell responses were driven by TCR clusters shared between patients with a characteristic trajectory of clonotypes and traceability over the disease course. Our data provide fundamental insight into adaptive immunity to SARS-CoV-2 with the actively updated repository providing a resource for the scientific community urgently needed to inform therapeutic concepts and vaccine development.


Subject(s)
Coronavirus Infections , Cytokines , High-Throughput Nucleotide Sequencing , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL