Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1686808

ABSTRACT

After solid-organ transplantation, reactivation of the cytomegalovirus (CMV) is often observed in seronegative patients and associated with a high risk of disease and mortality. CMV-specific T cells can prevent CMV reactivation. In a phase 1 trial, CMV-seronegative patients with end-stage renal disease listed for kidney transplantation were subjected to CMV phosphoprotein 65 (CMVpp65) peptide vaccination and further investigated for T-cell responses. To this end, CMV-specific CD8+ T cells were characterized by bulk T-cell-receptor (TCR) repertoire sequencing and combined single-cell RNA and TCR sequencing. In patients mounting an immune response to the vaccine, a common SYE(N)E TCR motif known to bind CMVpp65 was detected. CMV-peptide-vaccination-responder patients had TCR features distinct from those of non-responders. In a non-responder patient, a monoclonal inflammatory T-cell response was detected upon CMV reactivation. The identification of vaccine-induced CMV-reactive TCRs motifs might facilitate the development of cellular therapies for patients wait-listed for kidney transplantation.


Subject(s)
Cytomegalovirus Infections/prevention & control , Kidney Failure, Chronic/therapy , Receptors, Antigen, T-Cell/genetics , Viral Matrix Proteins/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Clinical Trials, Phase I as Topic , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/administration & dosage , Cytomegalovirus Vaccines/immunology , Humans , Kidney Failure, Chronic/immunology , Kidney Transplantation , Sequence Analysis, RNA , Single Molecule Imaging , Viral Matrix Proteins/immunology
2.
Front Immunol ; 12: 769442, 2021.
Article in English | MEDLINE | ID: covidwho-1686473

ABSTRACT

The prevention of the COVID-19 pandemic is highly complicated by the prevalence of asymptomatic and recurrent infection. Many previous immunological studies have focused on symptomatic and convalescent patients, while the immune responses in asymptomatic patients and re-detectable positive cases remain unclear. Here we comprehensively analyzed the peripheral T-cell receptor (TCR) repertoire of 54 COVID-19 patients in different courses, including asymptomatic, symptomatic, convalescent, and re-detectable positive cases. We identified a set of V-J gene combinations characterizing the upward immune responses through asymptomatic and symptomatic courses. Furthermore, some of these V-J combinations could be awakened in the re-detectable positive cases, which may help predict the risk of recurrent infection. Therefore, TCR repertoire examination has the potential to strengthen the clinical surveillance and the immunotherapy development for COVID-19.


Subject(s)
COVID-19/pathology , Immunoglobulin J-Chains/genetics , Immunoglobulin Variable Region/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/genetics , Adaptive Immunity/immunology , Adult , Aged , Asymptomatic Infections , COVID-19/immunology , Female , Gene Expression/genetics , Histocompatibility Antigens Class I/genetics , Humans , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Young Adult
3.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641960

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/drug therapy , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
4.
Cells ; 11(1)2021 12 27.
Article in English | MEDLINE | ID: covidwho-1580992

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global infectious disease caused by the SARS-CoV-2 coronavirus. T cells play an essential role in the body's fighting against the virus invasion, and the T cell receptor (TCR) is crucial in T cell-mediated virus recognition and clearance. However, little has been known about the features of T cell response in convalescent COVID-19 patients. In this study, using 5'RACE technology and PacBio sequencing, we analyzed the TCR repertoire of COVID-19 patients after recovery for 2 weeks and 6 months compared with the healthy donors. The TCR clustering and CDR3 annotation were exploited to discover groups of patient-specific TCR clonotypes with potential SARS-CoV-2 antigen specificities. We first identified CD4+ and CD8+ T cell clones with certain clonal expansion after infection, and then observed the preferential recombination usage of V(D) J gene segments in CD4+ and CD8+ T cells of COVID-19 patients with different convalescent stages. More important, the TRBV6-5-TRBD2-TRBJ2-7 combination with high frequency was shared between CD4+ T and CD8+ T cells of different COVID-19 patients. Finally, we found the dominant characteristic motifs of the CDR3 sequence between recovered COVID-19 and healthy control. Our study provides novel insights on TCR in COVID-19 with different convalescent phases, contributing to our understanding of the immune response induced by SARS-CoV-2.


Subject(s)
COVID-19/immunology , High-Throughput Nucleotide Sequencing/methods , Immunity/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Aged , Amino Acid Sequence , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Convalescence , Female , Humans , Male , Middle Aged , Patient Acuity , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , SARS-CoV-2/physiology , T-Lymphocytes/metabolism , T-Lymphocytes/virology
5.
Nat Methods ; 18(6): 627-630, 2021 06.
Article in English | MEDLINE | ID: covidwho-1550331

ABSTRACT

We introduce the TRUST4 open-source algorithm for reconstruction of immune receptor repertoires in αß/γδ T cells and B cells from RNA-sequencing (RNA-seq) data. Compared with competing methods, TRUST4 supports both FASTQ and BAM format and is faster and more sensitive in assembling longer-even full-length-receptor repertoires. TRUST4 can also call repertoire sequences from single-cell RNA-seq (scRNA-seq) data without V(D)J enrichment, and is compatible with both SMART-seq and 5' 10x Genomics platforms.


Subject(s)
Algorithms , Receptors, Immunologic/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , V(D)J Recombination
6.
Elife ; 102021 11 30.
Article in English | MEDLINE | ID: covidwho-1542951

ABSTRACT

T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes - groups of biochemically similar TCRs - that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.


Subject(s)
Antigens, Viral/genetics , COVID-19/immunology , HLA Antigens/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/immunology , Antigens, Viral/immunology , Biomarkers , COVID-19/genetics , Complementarity Determining Regions/immunology , Computational Biology/methods , Epitopes/genetics , Epitopes/immunology , Genotype , HLA Antigens/immunology , Humans , Receptors, Antigen, T-Cell/immunology
7.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: covidwho-1493347

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID-19, the disease caused by SARS-CoV-2, it has become increasingly apparent that T cell responses are equally if not more important than humoral responses in mediating recovery and immune protection. One major challenge in developing T cell-based therapies for infectious and malignant diseases has been the identification of immunogenic epitopes that can elicit a meaningful T cell response. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes deduced from binding affinities. Our studies find that, in contrast to current convention, "immunodominant" SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing naturally presented SARS-CoV-2 epitopes. We postulated that immunogenic epitopes for SARS-CoV-2 are best defined empirically by directly analyzing peptides eluted from the naturally processed peptide-major histocompatibility complex (MHC) and then validating immunogenicity by determining whether such peptides can elicit T cells recognizing SARS-CoV-2 antigen-expressing cells. Using a tandem mass spectrometry approach, we identified epitopes derived from not only structural but also nonstructural genes in regions highly conserved among SARS-CoV-2 strains, including recently recognized variants. Finally, there are no reported T cell receptor-engineered T cell technology that can redirect T cell specificity to recognize and kill SARS-CoV-2 target cells. We report here several SARS-CoV-2 epitopes defined by mass spectrometric analysis of MHC-eluted peptides, provide empiric evidence for their immunogenicity, and demonstrate engineered TCR-redirected killing.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/isolation & purification , Epitopes/isolation & purification , Mass Spectrometry/methods , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Cell Line , Epitopes/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Major Histocompatibility Complex , Peptides , Receptors, Antigen, T-Cell/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
8.
Int J Infect Dis ; 113: 308-317, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1474623

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health emergency. T-cell receptors (TCRs) are crucial mediators of antiviral adaptive immunity. This study sought to comprehensively characterize the TCR repertoire changes in patients with COVID-19. METHODS: A large sample size multi-center randomized controlled trial was implemented to study the features of the TCR repertoire and identify COVID-19 disease-related TCR sequences. RESULTS: It was found that some T-cell receptor beta chain (TCRß) features differed markedly between COVID-19 patients and healthy controls, including decreased repertoire diversity, longer complementarity-determining region 3 (CDR3) length, skewed utilization of the TCRß variable gene/joining gene (TRBV/J), and a high degree of TCRß sharing in COVID-19 patients. Moreover, this analysis showed that TCR repertoire diversity declines with aging, which may be a cause of the higher infection and mortality rates in elderly patients. Importantly, a set of TCRß clones that can distinguish COVID-19 patients from healthy controls with high accuracy was identified. Notably, this diagnostic model demonstrates 100% specificity and 82.68% sensitivity at 0-3 days post diagnosis. CONCLUSIONS: This study lays the foundation for immunodiagnosis and the development of medicines and vaccines for COVID-19 patients.


Subject(s)
COVID-19 , Aged , COVID-19 Vaccines , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , SARS-CoV-2
9.
Signal Transduct Target Ther ; 6(1): 342, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415923

ABSTRACT

While some individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) present mild-to-severe disease, many SARS-CoV-2-infected individuals are asymptomatic. We sought to identify the distinction of immune response between asymptomatic and moderate patients. We performed single-cell transcriptome and T-cell/B-cell receptor (TCR/BCR) sequencing in 37 longitudinal collected peripheral blood mononuclear cell samples from asymptomatic, moderate, and severe patients with healthy controls. Asymptomatic patients displayed increased CD56briCD16- natural killer (NK) cells and upregulation of interferon-gamma in effector CD4+ and CD8+ T cells and NK cells. They showed more robust TCR clonal expansion, especially in effector CD4+ T cells, but lack strong BCR clonal expansion compared to moderate patients. Moreover, asymptomatic patients have lower interferon-stimulated genes (ISGs) expression in general but large interpatient variability, whereas moderate patients showed various magnitude and temporal dynamics of the ISGs expression across multiple cell populations but lower than a patient with severe disease. Our data provide evidence of different immune signatures to SARS-CoV-2 in asymptomatic infections.


Subject(s)
COVID-19 , Carrier State/immunology , Lymphocytes/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Transcriptome/immunology , Adolescent , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/genetics
10.
Curr Opin Virol ; 50: 183-191, 2021 10.
Article in English | MEDLINE | ID: covidwho-1401390

ABSTRACT

Immunodominance is a complex and highly debated topic of T cell biology. The current SARS-CoV-2 pandemic has provided the opportunity to profile adaptive immune responses and determine molecular factors contributing to emerging responses towards immunodominant viral epitopes. Here, we discuss parameters that alter the dynamics of CD8 viral epitope processing, generation and T-cell responses, and how immunodominance counteracts viral immune escape mechanisms that develop in the context of emerging SARS-CoV-2 variants.


Subject(s)
Immunodominant Epitopes/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Antigen Presentation , Cytosol/metabolism , Humans , Proteasome Endopeptidase Complex/physiology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes, Cytotoxic/immunology
11.
Sci Rep ; 11(1): 14275, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1387486

ABSTRACT

SARS-CoV-2 infection is characterized by a highly variable clinical course with patients experiencing asymptomatic infection all the way to requiring critical care support. This variation in clinical course has led physicians and scientists to study factors that may predispose certain individuals to more severe clinical presentations in hopes of either identifying these individuals early in their illness or improving their medical management. We sought to understand immunogenomic differences that may result in varied clinical outcomes through analysis of T-cell receptor sequencing (TCR-Seq) data in the open access ImmuneCODE database. We identified two cohorts within the database that had clinical outcomes data reflecting severity of illness and utilized DeepTCR, a multiple-instance deep learning repertoire classifier, to predict patients with severe SARS-CoV-2 infection from their repertoire sequencing. We demonstrate that patients with severe infection have repertoires with higher T-cell responses associated with SARS-CoV-2 epitopes and identify the epitopes that result in these responses. Our results provide evidence that the highly variable clinical course seen in SARS-CoV-2 infection is associated to certain antigen-specific responses.


Subject(s)
COVID-19/immunology , Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Asymptomatic Infections/epidemiology , COVID-19/pathology , COVID-19/virology , Deep Learning , Humans , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology
12.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1367012

ABSTRACT

Accurate prediction of immunogenic peptide recognized by T cell receptor (TCR) can greatly benefit vaccine development and cancer immunotherapy. However, identifying immunogenic peptides accurately is still a huge challenge. Most of the antigen peptides predicted in silico fail to elicit immune responses in vivo without considering TCR as a key factor. This inevitably causes costly and time-consuming experimental validation test for predicted antigens. Therefore, it is necessary to develop novel computational methods for precisely and effectively predicting immunogenic peptide recognized by TCR. Here, we described DLpTCR, a multimodal ensemble deep learning framework for predicting the likelihood of interaction between single/paired chain(s) of TCR and peptide presented by major histocompatibility complex molecules. To investigate the generality and robustness of the proposed model, COVID-19 data and IEDB data were constructed for independent evaluation. The DLpTCR model exhibited high predictive power with area under the curve up to 0.91 on COVID-19 data while predicting the interaction between peptide and single TCR chain. Additionally, the DLpTCR model achieved the overall accuracy of 81.03% on IEDB data while predicting the interaction between peptide and paired TCR chains. The results demonstrate that DLpTCR has the ability to learn general interaction rules and generalize to antigen peptide recognition by TCR. A user-friendly webserver is available at http://jianglab.org.cn/DLpTCR/. Additionally, a stand-alone software package that can be downloaded from https://github.com/jiangBiolab/DLpTCR.


Subject(s)
COVID-19/drug therapy , Epitopes/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Amino Acid Sequence/genetics , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Computer Simulation , Deep Learning , Epitopes/genetics , Humans , Peptides/genetics , Peptides/therapeutic use , Protein Binding/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Software
13.
Front Immunol ; 12: 701085, 2021.
Article in English | MEDLINE | ID: covidwho-1332120

ABSTRACT

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adaptive Immunity , Adult , Aged , Cells, Cultured , Convalescence , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis , Transcriptome , Young Adult
14.
Nat Commun ; 12(1): 4515, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327196

ABSTRACT

The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 'reverse phenotyping'. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


Subject(s)
COVID-19/immunology , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , T-Lymphocytes/metabolism , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , COVID-19/epidemiology , COVID-19/virology , Cells, Cultured , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/physiology , T-Lymphocytes/virology
15.
Eur J Immunol ; 51(8): 1992-2005, 2021 08.
Article in English | MEDLINE | ID: covidwho-1251932

ABSTRACT

The phenotype of infused cells is a major determinant of Adoptive T-cell therapy (ACT) efficacy. Yet, the difficulty in deciphering multiparametric cytometry data limited the fine characterization of cellular products. To allow the analysis of dynamic and complex flow cytometry samples, we developed cytoChain, a novel dataset mining tool and a new analytical workflow. CytoChain was challenged to compare state-of-the-art and innovative culture conditions to generate stem-like memory cells (TSCM ) suitable for ACT. Noticeably, the combination of IL-7/15 and superoxides scavenging sustained the emergence of a previously unidentified nonexhausted Fit-TSCM signature, overlooked by manual gating and endowed with superior expansion potential. CytoChain proficiently traced back this population in independent datasets, and in T-cell receptor engineered lymphocytes. CytoChain flexibility and function were then further validated on a published dataset from circulating T cells in COVID-19 patients. Collectively, our results support the use of cytoChain to identify novel, functionally critical immunophenotypes for ACT and patients immunomonitoring.


Subject(s)
Data Mining/methods , Flow Cytometry/methods , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , COVID-19/blood , COVID-19/immunology , Cytokines/metabolism , Genetic Engineering , Humans , Immunologic Memory , Immunophenotyping , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , SARS-CoV-2/immunology
18.
Immunity ; 54(5): 1066-1082.e5, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1216346

ABSTRACT

To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαß repertoires and promiscuous αß-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαß diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Aged , Amino Acid Motifs , CD4-Positive T-Lymphocytes , Child , Convalescence , Coronavirus Nucleocapsid Proteins/chemistry , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/chemistry , Male , Middle Aged , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
19.
J Clin Immunol ; 41(6): 1131-1145, 2021 08.
Article in English | MEDLINE | ID: covidwho-1216234

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a public health emergency. The most common symptoms of COVID-19 are fever, cough, and fatigue. While most patients with COVID-19 present with mild illness, some patients develop pneumonia, an important risk factor for mortality, at early stage of viral infection, putting these patients at increased risk of death. So far, little has been known about differences in the T cell repertoires between COVID-19 patients with and without pneumonia during SARS-CoV-2 infection. Herein, we aimed to investigate T cell receptor (TCR) repertoire profiles and patient-specific SARS-CoV-2-associated TCR clusters between COVID-19 patients with mild disease (no sign of pneumonia) and pneumonia. The TCR sequencing was conducted to characterize the peripheral TCR repertoire profile and diversity. The TCR clustering and CDR3 annotation were exploited to further discover groups of patient-specific TCR clonotypes with potential SARS-CoV-2 antigen specificities. Our study indicated a slight decrease in the TCR repertoire diversity and a skewed CDR3 length usage in patients with pneumonia compared to those with mild disease. The SARS-CoV-2-associated TCR clusters enriched in patients with mild disease exhibited significantly higher TCR generation probabilities and most of which were highly shared among patients, compared with those from pneumonia patients. Importantly, using similarity network-based clustering followed by the sequence conservation analysis, we found different patterns of CDR3 sequence motifs between mild disease- and pneumonia-specific SARS-CoV-2-associated public TCR clusters. Our results showed that characteristics of overall TCR repertoire and SARS-CoV-2-associated TCR clusters/clonotypes were divergent between COVID-19 patients with mild disease and patients with pneumonia. These findings provide important insights into the correlation between the TCR repertoire and disease severity in COVID-19 patients.


Subject(s)
COVID-19/immunology , Pneumonia/immunology , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Adult , Aged , Disease Progression , Female , Humans , Male , Middle Aged , Pandemics , Receptors, Antigen, T-Cell/metabolism , Sequence Analysis, DNA , Severity of Illness Index
20.
J Biol Chem ; 296: 100745, 2021.
Article in English | MEDLINE | ID: covidwho-1213326

ABSTRACT

Fifty years ago, the first landmark structures of antibodies heralded the dawn of structural immunology. Momentum then started to build toward understanding how antibodies could recognize the vast universe of potential antigens and how antibody-combining sites could be tailored to engage antigens with high specificity and affinity through recombination of germline genes (V, D, J) and somatic mutation. Equivalent groundbreaking structures in the cellular immune system appeared some 15 to 20 years later and illustrated how processed protein antigens in the form of peptides are presented by MHC molecules to T cell receptors. Structures of antigen receptors in the innate immune system then explained their inherent specificity for particular microbial antigens including lipids, carbohydrates, nucleic acids, small molecules, and specific proteins. These two sides of the immune system act immediately (innate) to particular microbial antigens or evolve (adaptive) to attain high specificity and affinity to a much wider range of antigens. We also include examples of other key receptors in the immune system (cytokine receptors) that regulate immunity and inflammation. Furthermore, these antigen receptors use a limited set of protein folds to accomplish their various immunological roles. The other main players are the antigens themselves. We focus on surface glycoproteins in enveloped viruses including SARS-CoV-2 that enable entry and egress into host cells and are targets for the antibody response. This review covers what we have learned over the past half century about the structural basis of the immune response to microbial pathogens and how that information can be utilized to design vaccines and therapeutics.


Subject(s)
Adaptive Immunity , Antibodies, Viral/chemistry , Antigens, Viral/chemistry , Immunity, Innate , Receptors, Antigen, T-Cell/chemistry , Receptors, Cytokine/chemistry , SARS-CoV-2/immunology , Allergy and Immunology/history , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibody Specificity , Antigen Presentation , Antigens, Viral/genetics , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/virology , Crystallography/history , Crystallography/methods , History, 20th Century , History, 21st Century , Humans , Protein Folding , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , SARS-CoV-2/pathogenicity , V(D)J Recombination
SELECTION OF CITATIONS
SEARCH DETAIL