Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Med Chem ; 64(19): 14332-14343, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1621195

ABSTRACT

In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.


Subject(s)
Calixarenes/chemistry , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/metabolism , Glycoproteins/antagonists & inhibitors , Hydroxamic Acids/chemistry , Lectins, C-Type/antagonists & inhibitors , Phenols/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Adhesion Molecules/metabolism , Cell Line , Cytomegalovirus/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Ebolavirus/physiology , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Jurkat Cells , Lectins, C-Type/metabolism , Models, Biological , Protein Binding , Receptors, Cell Surface/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism
2.
PLoS Pathog ; 17(11): e1009743, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526705

ABSTRACT

Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.


Subject(s)
COVID-19/etiology , Receptors, Cell Surface/physiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/drug therapy , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Receptors, Cell Surface/antagonists & inhibitors , Virus Internalization
3.
Biomolecules ; 11(11)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488476

ABSTRACT

Glycosylation is an important post-translational modification that affects a wide variety of physiological functions. DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) is a protein expressed in antigen-presenting cells that recognizes a variety of glycan epitopes. Until now, the binding of DC-SIGN to SARS-CoV-2 Spike glycoprotein has been reported in various articles and is regarded to be a factor in systemic infection and cytokine storm. The mechanism of DC-SIGN recognition offers an alternative method for discovering new medication for COVID-19 treatment. Here, we discovered three potential pockets that hold different glycan epitopes by performing molecular dynamics simulations of previously reported oligosaccharides. The "EPN" motif, "NDD" motif, and Glu354 form the most critical pocket, which is known as the Core site. We proposed that the type of glycan epitopes, rather than the precise amino acid sequence, determines the recognition. Furthermore, we deduced that oligosaccharides could occupy an additional site, which adds to their higher affinity than monosaccharides. Based on our findings and previously described glycoforms on the SARS-CoV-2 Spike, we predicted the potential glycan epitopes for DC-SIGN. It suggested that glycan epitopes could be recognized at multiple sites, not just Asn234, Asn149 and Asn343. Subsequently, we found that Saikosaponin A and Liquiritin, two plant glycosides, were promising DC-SIGN antagonists in silico.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Epitopes/chemistry , Glycosides/chemistry , Lectins, C-Type/antagonists & inhibitors , Polysaccharides/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Amino Acid Motifs , Binding Sites , COVID-19/metabolism , Computer Simulation , Cytokines/metabolism , Flavanones/chemistry , Glucosides/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , Saponins/chemistry , Spike Glycoprotein, Coronavirus/chemistry
4.
ChemMedChem ; 16(15): 2345-2353, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1248684

ABSTRACT

The C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents. Here, we demonstrate that mannose-functionalized poly-l-lysine glycoconjugates efficiently inhibit the attachment of viral glycoproteins to DC-SIGN-presenting cells with picomolar affinity. Treatment of these cells leads to prolonged receptor internalization and inhibition of virus binding for up to 6 h. Furthermore, the polymers are fully bio-compatible and readily cleared by target cells. The thermodynamic analysis of the multivalent interactions reveals enhanced enthalpy-driven affinities and promising perspectives for the future development of multivalent therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/pharmacology , Lectins, C-Type/antagonists & inhibitors , Receptors, Cell Surface/antagonists & inhibitors , Virus Attachment/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Cell Adhesion Molecules/metabolism , Glycoconjugates/chemical synthesis , Glycoconjugates/metabolism , Humans , Lectins, C-Type/metabolism , Mannose/analogs & derivatives , Mannose/metabolism , Mannose/pharmacology , Microbial Sensitivity Tests , Polylysine/analogs & derivatives , Polylysine/metabolism , Polylysine/pharmacology , Protein Binding/drug effects , Receptors, Cell Surface/metabolism , SARS-CoV-2/drug effects , THP-1 Cells , Thermodynamics , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL