Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
PLoS One ; 16(12): e0261656, 2021.
Article in English | MEDLINE | ID: covidwho-1623659


SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.

COVID-19/immunology , Receptors, Fc/metabolism , T-Box Domain Proteins/metabolism , Adult , Aged , Antibodies, Viral/blood , B-Lymphocytes/metabolism , Biomarkers/analysis , COVID-19/metabolism , Female , Flow Cytometry/methods , Hospitalization/trends , Humans , Immunoglobulin G/blood , Immunologic Memory , Male , /metabolism , Middle Aged , Receptors, Fc/blood , Receptors, Fc/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , T-Box Domain Proteins/blood
Genes (Basel) ; 12(7)2021 06 25.
Article in English | MEDLINE | ID: covidwho-1295802


Peripheral blood transcriptome is a highly promising area for biomarker development. However, transcript abundances (TA) in these cell mixture samples are confounded by proportions of the component leukocyte subpopulations. This poses a challenge to clinical applications, as the cell of origin of any change in TA is not known without prior cell separation procedure. We developed a framework to develop a cell-type informative TA biomarkers which enable determination of TA of a single cell-type (B lymphocytes) directly in cell mixture samples of peripheral blood (e.g., peripheral blood mononuclear cells, PBMC) without the need for subpopulation separation. It is applicable to a panel of genes called B cell informative genes. Then a ratio of two B cell informative genes (a target gene and a stably expressed reference gene) obtained in PBMC was used as a new biomarker to represent the target gene expression in purified B lymphocytes. This approach, which eliminates the tedious procedure of cell separation and directly determines TA of a leukocyte subpopulation in peripheral blood samples, is called the Direct LS-TA method. This method is applied to gene expression datasets collected in influenza vaccination trials as early predictive biomarkers of seroconversion. By using TNFRSF17 or TXNDC5 as the target genes and TNFRSF13C or FCRLA as the reference genes, the Direct LS-TA B cell biomarkers were determined directly in the PBMC transcriptome data and were highly correlated with TA of the corresponding target genes in purified B lymphocytes. Vaccination responders had almost a 2-fold higher Direct LS-TA biomarker level of TNFRSF17 (log 2 SMD = 0.84, 95% CI = 0.47-1.21) on day 7 after vaccination. The sensitivity of these Direct LS-TA biomarkers in the prediction of seroconversion was greater than 0.7 and area-under curves (AUC) were over 0.8 in many datasets. In this paper, we report a straightforward approach to directly estimate B lymphocyte gene expression in PBMC, which could be used in a routine clinical setting. Moreover, the method enables the practice of precision medicine in the prediction of vaccination response. More importantly, seroconversion could now be predicted as early as day 7. As the acquired immunology pathway is common to vaccination against influenza and COVID-19, these biomarkers could also be useful to predict seroconversion for the new COVID-19 vaccines.

B-Lymphocytes/physiology , Gene Expression , Influenza Vaccines/immunology , Seroconversion/genetics , B-Cell Activation Factor Receptor/genetics , Biomarkers/analysis , COVID-19 Vaccines/immunology , Computational Biology/methods , Databases, Genetic , Humans , Leukocytes, Mononuclear/physiology , Models, Theoretical , Network Meta-Analysis , Protein Disulfide-Isomerases/genetics , ROC Curve , Receptors, Fc/genetics , Seroconversion/physiology