Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585255

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
2.
Int J Mol Sci ; 22(19)2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-1444234

ABSTRACT

Our objective is to reveal the molecular mechanism of the anti-inflammatory action of low-molecular-weight heparin (LMWH) based on its influence on the activity of two key cytokines, IFNγ and IL-6. The mechanism of heparin binding to IFNγ and IL-6 and the resulting inhibition of their activity were studied by means of extensive molecular-dynamics simulations. The effect of LMWH on IFNγ signalling inside stimulated WISH cells was investigated by measuring its antiproliferative activity and the translocation of phosphorylated STAT1 in the nucleus. We found that LMWH binds with high affinity to IFNγ and is able to fully inhibit the interaction with its cellular receptor. It also influences the biological activity of IL-6 by binding to either IL-6 or IL-6/IL-6Rα, thus preventing the formation of the IL-6/IL-6Rα/gp130 signalling complex. These findings shed light on the molecular mechanism of the anti-inflammatory action of LMWH and underpin its ability to influence favourably conditions characterised by overexpression of these two cytokines. Such conditions are not only associated with autoimmune diseases, but also with inflammatory processes, in particular with COVID-19. Our results put forward heparin as a promising means for the prevention and suppression of severe CRS and encourage further investigations on its applicability as an anti-inflammatory agent.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anticoagulants/pharmacology , Heparin, Low-Molecular-Weight/pharmacology , Interferon-gamma/immunology , Interleukin-6/immunology , COVID-19/drug therapy , COVID-19/immunology , Cell Line , Humans , Models, Molecular , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology
4.
Exp Mol Med ; 53(7): 1116-1123, 2021 07.
Article in English | MEDLINE | ID: covidwho-1307318

ABSTRACT

Interleukin-6 (IL-6) plays a crucial role in host defense against infection and tissue injuries and is a bioindicator of multiple distinct types of cytokine storms. In this review, we present the current understanding of the diverse roles of IL-6, its receptors, and its signaling during acute severe systemic inflammation. IL-6 directly affects vascular endothelial cells, which produce several types of cytokines and chemokines and activate the coagulation cascade. Endothelial cell dysregulation, characterized by abnormal coagulation and vascular leakage, is a common complication in cytokine storms. Emerging evidence indicates that a humanized anti-IL-6 receptor antibody, tocilizumab, can effectively block IL-6 signaling and has beneficial effects in rheumatoid arthritis, juvenile systemic idiopathic arthritis, and Castleman's disease. Recent work has also demonstrated the beneficial effect of tocilizumab in chimeric antigen receptor T-cell therapy-induced cytokine storms as well as coronavirus disease 2019 (COVID-19). Here, we highlight the distinct contributions of IL-6 signaling to the pathogenesis of several types of cytokine storms and discuss potential therapeutic strategies for the management of cytokine storms, including those associated with sepsis and COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Antibodies, Monoclonal, Humanized/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Cytokines/genetics , Cytokines/metabolism , Endothelium, Vascular/immunology , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Sepsis/genetics , Sepsis/immunology , Sepsis/pathology , Sepsis/prevention & control
5.
Lancet Respir Med ; 9(6): 655-664, 2021 06.
Article in English | MEDLINE | ID: covidwho-1209411

ABSTRACT

The pleiotropic cytokine interleukin-6 (IL-6) has been implicated in the pathogenesis of COVID-19, but uncertainty remains about the potential benefits and harms of targeting IL-6 signalling in patients with the disease. The efficacy and safety of tocilizumab and sarilumab, which block the binding of IL-6 to its receptor, have been tested in adults with COVID-19-related acute respiratory illness in randomised trials, with important differences in trial design, characteristics of included patients, use of co-interventions, and outcome measurement scales. In this Series paper, we review the clinical and methodological heterogeneity of studies of IL-6 receptor antagonists, and consider how this heterogeneity might have influenced reported treatment effects. Timing from clinical presentation to treatment, severity of illness, and concomitant use of corticosteroids are among the factors that might have contributed to apparently inconsistent results. With an understanding of the sources of variability in these trials, available evidence could be applied to guide clinical decision making and to inform the enrichment of future studies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , COVID-19 , Clinical Trials as Topic , Receptors, Interleukin-6/antagonists & inhibitors , Antibodies, Monoclonal, Humanized/immunology , COVID-19/immunology , COVID-19/therapy , Clinical Trials as Topic/methods , Clinical Trials as Topic/statistics & numerical data , Humans , Patient Selection , Receptors, Interleukin-6/immunology , SARS-CoV-2
6.
J Med Virol ; 93(2): 831-842, 2021 02.
Article in English | MEDLINE | ID: covidwho-1206798

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to a massive cytokine release. The use of the anti-interleukin-6 receptor monoclonal antibody tocilizumab (TCZ) has been proposed in this hyperinflammatory phase, although supporting evidence is limited. We retrospectively analyzed 88 consecutive patients with COVID-19 pneumonia that received at least one dose of intravenous TCZ in our institution between 16 and 27 March 2020. Clinical status from day 0 (first TCZ dose) through day 14 was assessed by a 6-point ordinal scale. The primary outcome was clinical improvement (hospital discharge and/or a decrease of ≥2 points on the 6-point scale) by day 7. Secondary outcomes included clinical improvement by day 14 and dynamics of vital signs and laboratory values. Rates of clinical improvement by days 7 and 14 were 44.3% (39/88) and 73.9% (65/88). Previous or concomitant receipt of subcutaneous interferon-ß (adjusted odds ratio [aOR]: 0.23; 95% confidence interval [CI]: 0.06-0.94; P = .041) and serum lactate dehydrogenase more than 450 U/L at day 0 (aOR: 0.25; 95% CI: 0.06-0.99; P = .048) were negatively associated with clinical improvement by day 7. All-cause mortality was 6.8% (6/88). Body temperature and respiratory and cardiac rates significantly decreased by day 1 compared to day 0. Lymphocyte count and pulse oximetry oxygen saturation/FiO2 ratio increased by days 3 and 5, whereas C-reactive protein levels dropped by day 2. There were no TCZ-attributable adverse events. In this observational single-center study, TCZ appeared to be useful and safe as immunomodulatory therapy for severe COVID-19 pneumonia.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/prevention & control , Immunologic Factors/therapeutic use , SARS-CoV-2/pathogenicity , Administration, Intravenous , Adult , Body Temperature/drug effects , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Female , Heart Rate/drug effects , Humans , Interferon-beta/adverse effects , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , Respiratory Rate/drug effects , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Survival Analysis
7.
Immunity ; 54(2): 235-246.e5, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-988081

ABSTRACT

The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.


Subject(s)
Dendritic Cells/immunology , Interleukin-6/blood , Interleukin-6/immunology , ADAM17 Protein , Animals , Cell Differentiation , Immunity, Humoral , Immunoglobulin M/immunology , Inflammation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interleukin-6/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Cells/immunology , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 7/immunology
8.
Clin Immunol ; 223: 108631, 2021 02.
Article in English | MEDLINE | ID: covidwho-919716

ABSTRACT

Although the starting event in COVID-19 is a viral infection some patients present with an over-exuberant inflammatory response, leading to acute lung injury (ALI) and adult respiratory distress syndrome (ARDS). Since IL-6 plays a critical role in the inflammatory response, we assessed the efficacy and safety of tocilizumab (TCZ) in this single-centre, observational study in all Covid-19 in-patient with a proven SARS-CoV-2 rapidly progressing infection to prevent ALI and ARDS. 104 patients with COVID-19 treated with TCZ had a lower mortality rate (5·8%) compared with the regional mortality rate (11%), hospitalized patient's mortality (10%), and slightly lower than hospitalized patients treated with our standard of care alone (6%). We found that TCZ rapidly decreased acute phase reactants, ferritin and liver release of proteins. D-Dimer decreased slowly. We did not observe specific safety concerns. Early administration of IL6-R antagonists in COVID-19 patients with impending hyperinflammatory response, may be safe and effective treatment to prevent, ICU admission and further complications.


Subject(s)
Acute Lung Injury/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Inflammation/drug therapy , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2/physiology , Acute Lung Injury/mortality , Aged , COVID-19/mortality , Cohort Studies , Cytokine Release Syndrome/mortality , Female , Ferritins/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Inflammation/mortality , Male , Middle Aged , Receptors, Interleukin-6/immunology , Respiratory Distress Syndrome/mortality , Survival Analysis
10.
Sci Rep ; 10(1): 17100, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-867596

ABSTRACT

Off-label tocilizumab use in COVID-19 patients reflects concern for cytokine release syndrome. Comparison of matched COVID-19 pneumonia patients found elevated IL-6 levels correlated with mortality that did not change with tocilizumab administration. Correlating mortality with increased IL-6 doesn't imply causality however lack of improvement by tocilizumab requires further clinical trial alterations.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/immunology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/virology , Female , Ferritins/analysis , Humans , Interleukin-6/analysis , Male , Middle Aged , Odds Ratio , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Proportional Hazards Models , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Survival Rate
11.
Eur Cytokine Netw ; 31(2): 44-49, 2020 Jun 01.
Article in English | MEDLINE | ID: covidwho-771671

ABSTRACT

BACKGROUND: Evidence links COVID-19 severity to hyper-inflammation. Treatment with tocilizumab, a monoclonal antibody directed against the interleukin-6 (IL-6) receptor, was shown to lead to clinical improvement in patients with severe COVID-19. We, therefore, performed the present systematic review and meta-analysis to investigate whether the circulating levels of IL-6 is a reliable indicator of disease severity among patients affected with COVID-19. METHODS: A systematic search was conducted in PubMed, Scopus, Web of Science, and Google Scholar on April 19, 2020. RESULTS: Eleven studies provided data of IL-6 levels in patients with severe to critical COVID-19 (severe) and patients with mild to moderate COVID-19 (non-severe). The included studies were of moderate to high quality. The mean patients' age was 60.9 years, ranging from 45.2 to 76.7 years in the severe group and 46.8 years, ranging from 37.9 to 61 years, in the nonsevere group. Fifty-two percent were male in the severe group, as compared to 46% in the non-severe group. An overall random effects meta-analysis showed significantly higher serum levels of IL-6 in the severe group than in the non-severe group with a mean difference of +23.1 pg/mL (95% CI: 12.42-33.79) and the overall effect of 4.24 (P-value < 0.001). Meta-regressions showed that neither age nor sex significantly influenced the mean difference of IL-6 between the groups. CONCLUSIONS: Meta-analysis and meta-regression reveal a reliable relationship between IL-6 and COVID-19 severity, independent of age and sex. Future research is, however, required to assess the effect of BMI on the pattern of IL-6 production in patients with COVID-19. Also, there might be confounding factors that influence the relationship between IL-6 and COVID-19 severity and remain as yet unknown.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Interleukin-6/antagonists & inhibitors , Pneumonia, Viral/drug therapy , Aged , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Female , Gene Expression , Humans , Intensive Care Units , Interleukin-6/genetics , Interleukin-6/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , Treatment Outcome
12.
Biosensors (Basel) ; 10(9)2020 Aug 24.
Article in English | MEDLINE | ID: covidwho-727396

ABSTRACT

Cytokines are a family of proteins which play a major role in the regulation of the immune system and the development of several diseases, from rheumatoid arthritis to cancer and, more recently, COVID-19. Therefore, many efforts are currently being developed to improve therapy and diagnosis, as well as to produce inhibitory drugs and biosensors for a rapid, minimally invasive, and effective detection. In this regard, even more efficient cytokine receptors are under investigation. In this paper we analyze a set of IL-6 cytokine receptors, investigating their topological features by means of a theoretical approach. Our results suggest a topological indicator that may help in the identification of those receptors having the highest complementarity with the protein, a feature expected to ensure a stable binding. Furthermore, we propose and discuss the use of these receptors in an idealized experimental setup.


Subject(s)
Biosensing Techniques/methods , Interleukin-6/analysis , Receptors, Interleukin-6/analysis , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Aptamers, Nucleotide/chemistry , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/immunology , Interleukin-6/immunology , Limit of Detection , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Receptors, Interleukin-6/immunology , SARS-CoV-2
13.
Nat Commun ; 11(1): 3924, 2020 08 06.
Article in English | MEDLINE | ID: covidwho-695765

ABSTRACT

Several studies show that the immunosuppressive drugs targeting the interleukin-6 (IL-6) receptor, including tocilizumab, ameliorate lethal inflammatory responses in COVID-19 patients infected with SARS-CoV-2. Here, by employing single-cell analysis of the immune cell composition of two severe-stage COVID-19 patients prior to and following tocilizumab-induced remission, we identify a monocyte subpopulation that contributes to the inflammatory cytokine storms. Furthermore, although tocilizumab treatment attenuates the inflammation, immune cells, including plasma B cells and CD8+ T cells, still exhibit robust humoral and cellular antiviral immune responses. Thus, in addition to providing a high-dimensional dataset on the immune cell distribution at multiple stages of the COVID-19, our work also provides insights into the therapeutic effects of tocilizumab, and identifies potential target cell populations for treating COVID-19-related cytokine storms.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Betacoronavirus/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Monocytes/immunology , Pneumonia, Viral/immunology , Antibodies, Monoclonal, Humanized/administration & dosage , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Computational Biology , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cytokines/blood , Humans , Inflammation/drug therapy , Macrophages/drug effects , Macrophages/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Single-Cell Analysis/methods
14.
Rev Med Virol ; 30(5): e2123, 2020 09.
Article in English | MEDLINE | ID: covidwho-639361

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) and pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major concern globally. As of 14 April 2020, more than 1.9 million COVID-19 cases have been reported in 185 countries. Some patients with COVID-19 develop severe clinical manifestations, while others show mild symptoms, suggesting that dysregulation of the host immune response contributes to disease progression and severity. In this review, we have summarized and discussed recent immunological studies focusing on the response of the host immune system and the immunopathology of SARS-CoV-2 infection as well as immunotherapeutic strategies for COVID-19. Immune evasion by SARS-CoV-2, functional exhaustion of lymphocytes, and cytokine storm have been discussed as part of immunopathology mechanisms in SARS-CoV-2 infection. Some potential immunotherapeutic strategies to control the progression of COVID-19, such as passive antibody therapy and use of interferon αß and IL-6 receptor (IL-6R) inhibitor, have also been discussed. This may help us to understand the immune status of patients with COVID-19, particularly those with severe clinical presentation, and form a basis for further immunotherapeutic investigations.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Immune Evasion/drug effects , Immunologic Factors/therapeutic use , Interferon Type I/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Disease Progression , Gene Expression Regulation , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive/methods , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Molecular Targeted Therapy/methods , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Signal Transduction
16.
Eur Rev Med Pharmacol Sci ; 24(10): 5783-5787, 2020 May.
Article in English | MEDLINE | ID: covidwho-542679

ABSTRACT

In December 2019, Coronavirus disease 2019 (COVID-19) emerged in Wuhan and rapidly spread throughout China and the rest of the world. COVID-19 is currently a global pandemic. There are cytokine storms in severe COVID-19 patients. Interleukin-6 plays an important role in cytokine storm. Tocilizumab is a blocker of interleukin-6 receptor, which is likely to become an effective drug for patients with severe COVID-19. Here, we reported a case in which tocilizumab was effective for a critical COVID-19 patient.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/isolation & purification , C-Reactive Protein/analysis , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Tomography, X-Ray Computed
17.
Trials ; 21(1): 468, 2020 Jun 03.
Article in English | MEDLINE | ID: covidwho-506033

ABSTRACT

OBJECTIVES: The purpose of this study is to test the safety and effectiveness of individually or simultaneously blocking IL-6, IL-6 receptor and IL-1 versus standard of care on blood oxygenation and systemic cytokine release syndrome in patients with COVID-19 coronavirus infection and acute hypoxic respiratory failure and systemic cytokine release syndrome. TRIAL DESIGN: A phase 3 prospective, multi-center, interventional, open label, 6-arm 2x2 factorial design study. PARTICIPANTS: Subjects will be recruited at the specialized COVID-19 wards and/or ICUs at 16 Belgian participating hospitals. Only adult (≥18y old) patients will be recruited with recent (≤16 days) COVID-19 infection and acute hypoxia (defined as PaO2/FiO2 below 350mmHg or PaO2/FiO2 below 280 on supplemental oxygen and immediately requiring high flow oxygen device or mechanical ventilation) and signs of systemic cytokine release syndrome characterized by high serum ferritin, or high D-dimers, or high LDH or deep lymphopenia or a combination of those, who have not been on mechanical ventilation for more than 24 hours before randomisation. Patients should have had a chest X-ray and/or CT scan showing bilateral infiltrates within the last 2 days before randomisation. Patients with active bacterial or fungal infection will be excluded. INTERVENTION AND COMPARATOR: Patients will be randomized to 1 of 5 experimental arms versus usual care. The experimental arms consist of Anakinra alone (anti-IL-1 binding the IL-1 receptor), Siltuximab alone (anti-IL-6 chimeric antibody), a combination of Siltuximab and Anakinra, Tocilizumab alone (humanised anti-IL-6 receptor antibody) or a combination of Anakinra with Tocilizumab in addition to standard care. Patients treated with Anakinra will receive a daily subcutaneous injection of 100mg for a maximum of 28 days or until hospital discharge, whichever comes first. Siltuximab (11mg/kg) or Tocilizumab (8mg/kg, with a maximum dose of 800mg) are administered as a single intravenous injection immediately after randomization. MAIN OUTCOMES: The primary end point is the time to clinical improvement defined as the time from randomization to either an improvement of two points on a six-category ordinal scale measured daily till day 28 or discharge from the hospital or death. This ordinal scale is composed of (1) Death; (2) Hospitalized, on invasive mechanical ventilation or ECMO; (3) Hospitalized, on non-invasive ventilation or high flow oxygen devices; (4) Hospitalized, requiring supplemental oxygen; (5) Hospitalized, not requiring supplemental oxygen; (6) Not hospitalized. RANDOMISATION: Patients will be randomized using an Interactive Web Response System (REDCap). A 2x2 factorial design was selected with a 2:1 randomization regarding the IL-1 blockade (Anakinra) and a 1:2 randomization regarding the IL-6 blockade (Siltuximab and Tocilizumab). BLINDING (MASKING): In this open-label trial neither participants, caregivers, nor those assessing the outcomes are blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 342 participants will be enrolled: 76 patients will receive usual care, 76 patients will receive Siltuximab alone, 76 patients will receive Tocilizumab alone, 38 will receive Anakinra alone, 38 patients will receive Anakinra and Siltuximab and 38 patients will receive Anakinra and Tocilizumab. TRIAL STATUS: COV-AID protocol version 3.0 (15 Apr 2020). Participant recruitment is ongoing and started on April 4th 2020. Given the current decline of the COVID-19 pandemic in Belgium, it is difficult to anticipate the rate of participant recruitment. TRIAL REGISTRATION: The trial was registered on Clinical Trials.gov on April 1st, 2020 (ClinicalTrials.gov Identifier: NCT04330638) and on EudraCT on April 3rd 2020 (Identifier: 2020-001500-41). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Betacoronavirus/drug effects , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Belgium , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Clinical Trials, Phase III as Topic , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Therapy, Combination , Host-Pathogen Interactions , Humans , Interleukin 1 Receptor Antagonist Protein/adverse effects , Interleukin-1/antagonists & inhibitors , Interleukin-1/blood , Interleukin-1/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Interleukin-6/immunology , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Prospective Studies , Randomized Controlled Trials as Topic , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...