Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
Add filters

Document Type
Year range
1.
Int J Mol Med ; 49(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1594678

ABSTRACT

The pathophysiology of coronavirus disease 2019 (COVID­19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide­repertoire of possible cell entry mediators that appear to co­localise in a cell­ and tissue­specific manner. The present study provides an overview of the 'canonical' SARS­CoV­2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin­1, expanding on the involvement of novel candidates, including glucose­regulated protein 78, basigin, kidney injury molecule­1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor­α convertase) and Toll­like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID­19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS­CoV­2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID­19 warrants further investigation.


Subject(s)
COVID-19/metabolism , MicroRNAs/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/virology , /metabolism , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , Neuropilin-1/genetics , Neuropilin-1/metabolism , Receptors, Virus/genetics , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Viral Tropism
2.
J Chem Inf Model ; 62(1): 129-141, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1593565

ABSTRACT

Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells.


Subject(s)
Cysteine/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Humans , Reactive Nitrogen Species , Reactive Oxygen Species , Receptors, Virus/metabolism , SARS-CoV-2
3.
Elife ; 102021 12 20.
Article in English | MEDLINE | ID: covidwho-1592091

ABSTRACT

Infection and viral entry of SARS-CoV-2 crucially depends on the binding of its Spike protein to angiotensin converting enzyme 2 (ACE2) presented on host cells. Glycosylation of both proteins is critical for this interaction. Recombinant soluble human ACE2 can neutralize SARS-CoV-2 and is currently undergoing clinical tests for the treatment of COVID-19. We used 3D structural models and molecular dynamics simulations to define the ACE2 N-glycans that critically influence Spike-ACE2 complex formation. Engineering of ACE2 N-glycosylation by site-directed mutagenesis or glycosidase treatment resulted in enhanced binding affinities and improved virus neutralization without notable deleterious effects on the structural stability and catalytic activity of the protein. Importantly, simultaneous removal of all accessible N-glycans from recombinant soluble human ACE2 yields a superior SARS-CoV-2 decoy receptor with promise as effective treatment for COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Molecular Dynamics Simulation , Polysaccharides/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , COVID-19/virology , Glycosylation , Humans , Polysaccharides/chemistry , Protein Binding , Protein Engineering , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
4.
Emerg Microbes Infect ; 11(1): 208-211, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1598042

ABSTRACT

We performed an annotation of 35 mutations in the spike protein of the SARS-CoV-2 Omicron variant. Our analysis of the mutations indicates that Omicron has gained prominent immune evasion and potential for enhanced transmissibility. Previous modeling study has revealed that continued evolution in both immune evasion and enhanced transmissibility by SARS-CoV-2 would compromise vaccines as tools for the pandemic control. To combat the future variants of SARS-CoV-2, the world needs novel antiviral drugs that are effective at curb viral spreading without introducing additional selective pressure towards resistant variants.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , Drug Design/methods , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antiviral Agents/chemical synthesis , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Humans , Immune Evasion , Mutation , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
5.
Sci Rep ; 11(1): 24336, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1585788

ABSTRACT

ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform (deltaACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent 'Long COVID'. Critically, deltaACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus deltaACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that deltaACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Bile Ducts/metabolism , Bile Ducts/virology , Binding Sites , COVID-19/pathology , COVID-19/virology , Humans , Lung/metabolism , Lung/virology , Microscopy, Fluorescence, Multiphoton , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
6.
Rev Med Virol ; 31(5): 1-9, 2021 09.
Article in English | MEDLINE | ID: covidwho-1575633

ABSTRACT

Understanding the molecules that are essential for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) entry can provide insights into viral infection and dissemination. Recently, it has been identified from several studies that angiotensin-converting enzyme 2 receptor and transmembrane serine protease 2 are the main entry molecules for the SARS-CoV-2, which produced the pandemic of Covid-19. However, additional evidence showed several other viral receptors and cellular proteases that are also important in facilitating viral entry and transmission in the target cells. In this review, we summarized the types of SARS-CoV-2 entry molecules and discussed their crucial roles for virus binding, protein priming and fusion to the cellular membrane important for SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/drug therapy , COVID-19/genetics , COVID-19/virology , Humans , Receptors, Virus/genetics , SARS-CoV-2/genetics , Virus Internalization
7.
Gastroenterology ; 160(3): 925-928.e4, 2021 02.
Article in English | MEDLINE | ID: covidwho-1575253
8.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Article in English | MEDLINE | ID: covidwho-1570773

ABSTRACT

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/biosynthesis , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Serine Endopeptidases/chemistry , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virion/drug effects , Virion/pathogenicity , Virion/ultrastructure
9.
Mol Immunol ; 141: 287-296, 2022 01.
Article in English | MEDLINE | ID: covidwho-1559780

ABSTRACT

As the second wave of COVID-19 launched, various variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have emerged with a dramatic global spread amongst millions of people causing unprecedented case fatalities and economic shut-downs. That initiated a necessity for developing specific diagnostics and therapeutics along with vaccines to control such a pandemic. This endeavor describes generation of murine derived recombinant single-chain fragment variable (scFv) as a monoclonal antibody (MAb) platform targeting the receptor binding domain (RBD) of Spike protein of SARS-CoV-2. A specific synthesized RBD coding sequence was cloned and expressed in Baculovirus expression system. The recombinant RBD (rRBD) was ascertained to be at the proper encoding size of ∼ 600bp and expressed protein of the molecular weight of ∼ 21KDa. Purified rRBD was proved genuinely antigenic and immunogenic, exhibiting specific reactivity to anti-SARS-CoV-2 antibody in an indirect enzyme-linked immunosorbent assay (ELISA), and inducing strong seroconversion in immunized mice. The scFv phage display library against rRBD was successfully constructed, revealing ∼ 90 % recombination frequency, and great enriching factor reaching 88 % and 25 % in polyclonal Ab-based and MAb-based ELISAs, respectively. Typically, three unique scFvs were generated, selected, purified and molecularly identified. That was manifested by their: accurate structure, close relation to the mouse immunoglobulin (Ig) superfamily, right anchored six complementarily-determining regions (CDRs) as three within variable heavy (vH) and variable light (vL) regions each, and proper configuration of the three-dimensional (3D) structure. Besides, their expression downstream in a non-suppressive amber codon of E. coli strain SS32 created a distinct protein band at an apparent molecular weight of ∼ 27KDa. Moreover, the purified scFvs showed authentic immunoreactivity and specificity to both rRBD and SARS-CoV-2 in western blot and ELISA. Accordingly, these developed scFvs platform might be a functional candidate for research, inexpensive diagnostics and therapeutics, mitigating spread of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19 Serological Testing , COVID-19/diagnosis , Cell Surface Display Techniques , Epitopes/immunology , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/blood , Antibody Specificity , Baculoviridae , COVID-19/prevention & control , Escherichia coli , Female , Genetic Vectors , Mice , Mice, Inbred BALB C , Models, Molecular , Peptide Library , Protein Conformation , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Single-Chain Antibodies/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
Viruses ; 13(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1555020

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV-host interactions and provides new strategies to control PDCoV infection.


Subject(s)
Deltacoronavirus/physiology , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , Trypsin/metabolism , Virus Attachment , Animals , Carbohydrates , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/drug effects , Host-Pathogen Interactions , Intestines/metabolism , Intestines/virology , Periodic Acid/pharmacology , Swine , Swine Diseases/virology , Trypsin/pharmacology
11.
Cells ; 10(12)2021 11 23.
Article in English | MEDLINE | ID: covidwho-1538383

ABSTRACT

Dendritic cells (DCs) are the most potent antigen-presenting cells, and their function is essential to configure adaptative immunity and avoid excessive inflammation. DCs are predicted to play a crucial role in the clinical evolution of the infection by the severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. DCs interaction with the SARS-CoV-2 Spike protein, which mediates cell receptor binding and subsequent fusion of the viral particle with host cell, is a key step to induce effective immunity against this virus and in the S protein-based vaccination protocols. Here we evaluated human DCs in response to SARS-CoV-2 S protein, or to a fragment encompassing the receptor binding domain (RBD) challenge. Both proteins increased the expression of maturation markers, including MHC molecules and costimulatory receptors. DCs interaction with the SARS-CoV-2 S protein promotes activation of key signaling molecules involved in inflammation, including MAPK, AKT, STAT1, and NFκB, which correlates with the expression and secretion of distinctive proinflammatory cytokines. Differences in the expression of ACE2 along the differentiation of human monocytes to mature DCs and inter-donor were found. Our results show that SARS-CoV-2 S protein promotes inflammatory response and provides molecular links between individual variations and the degree of response against this virus.


Subject(s)
Dendritic Cells/pathology , Dendritic Cells/virology , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cytokines/biosynthesis , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation/pathology , Lectins, C-Type/metabolism , Protein Domains , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cell Surface/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Tissue Donors
12.
J Virol ; 95(12)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1501541

ABSTRACT

Long disregarded as junk DNA or genomic dark matter, endogenous retroviruses (ERVs) have turned out to represent important components of the antiviral immune response. These remnants of once-infectious retroviruses not only regulate cellular immune activation, but may even directly target invading viral pathogens. In this Gem, we summarize mechanisms by which retroviral fossils protect us from viral infections. One focus will be on recent advances in the role of ERVs as regulators of antiviral gene expression.


Subject(s)
Endogenous Retroviruses/physiology , Retroelements , Virus Diseases/immunology , Animals , Endogenous Retroviruses/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Humans , Immunity, Cellular , Promoter Regions, Genetic , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Receptors, Pattern Recognition/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , Viral Proteins/metabolism , Virion/metabolism , Virus Diseases/genetics , Virus Diseases/virology
13.
Molecules ; 26(21)2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1488676

ABSTRACT

A novel human coronavirus prompted considerable worry at the end of the year 2019. Now, it represents a significant global health and economic burden. The newly emerged coronavirus disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the primary reason for the COVID-19 global pandemic. According to recent global figures, COVID-19 has caused approximately 243.3 million illnesses and 4.9 million deaths. Several human cell receptors are involved in the virus identification of the host cells and entering them. Hence, understanding how the virus binds to host-cell receptors is crucial for developing antiviral treatments and vaccines. The current work aimed to determine the multiple host-cell receptors that bind with SARS-CoV-2 and other human coronaviruses for the purpose of cell entry. Extensive research is needed using neutralizing antibodies, natural chemicals, and therapeutic peptides to target those host-cell receptors in extremely susceptible individuals. More research is needed to map SARS-CoV-2 cell entry pathways in order to identify potential viral inhibitors.


Subject(s)
Coronavirus/metabolism , Host Microbial Interactions/physiology , Receptors, Coronavirus/metabolism , Antibodies, Neutralizing , Antiviral Agents/pharmacology , COVID-19 , Coronavirus/pathogenicity , Humans , Receptors, Coronavirus/physiology , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
14.
Front Immunol ; 12: 741502, 2021.
Article in English | MEDLINE | ID: covidwho-1477825

ABSTRACT

Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end-organ malfunctions. All follow the presence of persistent viral components and virions without evidence of viral replication. To elucidate SARS-CoV-2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the SARS-CoV-2 receptor, the angiotensin-converting enzyme 2, paralleled monocyte-macrophage differentiation, it failed to affect productive viral infection. In contrast, simple macrophage viral exposure led to robust pro-inflammatory cytokine and chemokine expression but attenuated type I interferon (IFN) activity. Both paralleled dysregulation of innate immune signaling pathways, specifically those linked to IFN. We conclude that the SARS-CoV-2-infected host mounts a robust innate immune response characterized by a pro-inflammatory storm heralding end-organ tissue damage.


Subject(s)
COVID-19/virology , Immunity, Innate , Macrophages/virology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Proteome , Proteomics , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Signal Transduction , Transcriptome
16.
Gut Microbes ; 13(1): 1984105, 2021.
Article in English | MEDLINE | ID: covidwho-1462225

ABSTRACT

Infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Angiotensin-converting enzyme 2 (Ace2) is expressed in the gastrointestinal (GI) tract and a receptor for SARS-CoV-2, making the GI tract a potential infection site. This study investigated the effects of commensal intestinal microbiota on colonic Ace2 expression using a humanized mouse model. We found that colonic Ace2 expression decreased significantly upon microbial colonization. Humanization with healthy volunteer or dysbiotic microbiota from irritable bowel syndrome (IBS) patients resulted in similar Ace2 expression. Despite the differences in microbiota, no associations between α-diversity, ß-diversity or individual taxa, and Ace2 were noted post-humanization. These results highlight that commensal microbiota play a key role in regulating intestinal Ace2 expression and the need to further examine the underlying mechanisms of this regulation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Colon/metabolism , Gastrointestinal Microbiome , Animals , Colon/microbiology , Dysbiosis , Gene Expression Regulation , Germ-Free Life , Humans , Inflammatory Bowel Diseases/microbiology , Mice , Receptors, Virus/metabolism , SARS-CoV-2
17.
Respir Res ; 22(1): 200, 2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1450712

ABSTRACT

BACKGROUND: The first step in SARS-CoV-2 infection is binding of the virus to angiotensin converting enzyme 2 (ACE2) on the airway epithelium. Asthma affects over 300 million people world-wide, many of whom may encounter SARS-CoV-2. Epidemiologic data suggests that asthmatics who get infected may be at increased risk of more severe disease. Our objective was to assess whether maintenance inhaled corticosteroids (ICS), a major treatment for asthma, is associated with airway ACE2 expression in asthmatics. METHODS: Large airway epithelium (LAE) of asthmatics treated with maintenance ICS (ICS+), asthmatics not treated with ICS (ICS-), and healthy controls (controls) was analyzed for expression of ACE2 and other coronavirus infection-related genes using microarrays. RESULTS: As a group, there was no difference in LAE ACE2 expression in all asthmatics vs controls. In contrast, subgroup analysis demonstrated that LAE ACE2 expression was higher in asthmatics ICS+ compared to ICS‾ and ACE2 expression was higher in male ICS+ compared to female ICS+ and ICS‾ of either sex. ACE2 expression did not correlate with serum IgE, absolute eosinophil level, or change in FEV1 in response to bronchodilators in either ICS- or ICS+. CONCLUSION: Airway ACE2 expression is increased in asthmatics on long-term treatment with ICS, an observation that should be taken into consideration when assessing the use of inhaled corticosteroids during the pandemic.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Angiotensin-Converting Enzyme 2/metabolism , Asthma/drug therapy , Receptors, Virus/metabolism , Respiratory Mucosa/drug effects , Administration, Inhalation , Adrenal Cortex Hormones/adverse effects , Adult , Angiotensin-Converting Enzyme 2/genetics , Asthma/diagnosis , Asthma/enzymology , Asthma/genetics , COVID-19/enzymology , COVID-19/virology , Case-Control Studies , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Receptors, Virus/genetics , Respiratory Mucosa/enzymology , SARS-CoV-2/pathogenicity , Time Factors , Up-Regulation , Virus Internalization , Young Adult
18.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-1448237

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index
19.
Viruses ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: covidwho-1444334

ABSTRACT

Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.


Subject(s)
Coronavirus Infections/pathology , Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment , Virus Internalization , Animals , Cats/virology , Cattle/virology , Chickens/virology , Coronavirus/genetics , Dogs/virology , Livestock/virology , Membrane Fusion/physiology , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Swine/virology , Viral Tropism/physiology
20.
Nat Commun ; 12(1): 5652, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440473

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/metabolism , CHO Cells , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Epitopes/immunology , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Pandemics/prevention & control , Protein Multimerization , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...