Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
N Engl J Med ; 385(25): 2325-2335, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1575626

ABSTRACT

BACKGROUND: Among patients with chronic kidney disease (CKD), the use of recombinant human erythropoietin and its derivatives for the treatment of anemia has been linked to a possibly increased risk of stroke, myocardial infarction, and other adverse events. Several trials have suggested that hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors (PHIs) are as effective as erythropoiesis-stimulating agents (ESAs) in increasing hemoglobin levels. METHODS: In this randomized, open-label, phase 3 trial, we assigned patients with CKD who were undergoing dialysis and who had a hemoglobin level of 8.0 to 11.5 g per deciliter to receive an oral HIF-PHI (daprodustat) or an injectable ESA (epoetin alfa if they were receiving hemodialysis or darbepoetin alfa if they were receiving peritoneal dialysis). The two primary outcomes were the mean change in the hemoglobin level from baseline to weeks 28 through 52 (noninferiority margin, -0.75 g per deciliter) and the first occurrence of a major adverse cardiovascular event (a composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke), with a noninferiority margin of 1.25. RESULTS: A total of 2964 patients underwent randomization. The mean (±SD) baseline hemoglobin level was 10.4±1.0 g per deciliter overall. The mean (±SE) change in the hemoglobin level from baseline to weeks 28 through 52 was 0.28±0.02 g per deciliter in the daprodustat group and 0.10±0.02 g per deciliter in the ESA group (difference, 0.18 g per deciliter; 95% confidence interval [CI], 0.12 to 0.24), which met the prespecified noninferiority margin of -0.75 g per deciliter. During a median follow-up of 2.5 years, a major adverse cardiovascular event occurred in 374 of 1487 patients (25.2%) in the daprodustat group and in 394 of 1477 (26.7%) in the ESA group (hazard ratio, 0.93; 95% CI, 0.81 to 1.07), which also met the prespecified noninferiority margin for daprodustat. The percentages of patients with other adverse events were similar in the two groups. CONCLUSIONS: Among patients with CKD undergoing dialysis, daprodustat was noninferior to ESAs regarding the change in the hemoglobin level from baseline and cardiovascular outcomes. (Funded by GlaxoSmithKline; ASCEND-D ClinicalTrials.gov number, NCT02879305.).


Subject(s)
Anemia/drug therapy , Barbiturates/therapeutic use , Darbepoetin alfa/therapeutic use , Epoetin Alfa/therapeutic use , Glycine/analogs & derivatives , Hematinics/therapeutic use , Renal Dialysis , Renal Insufficiency, Chronic/complications , Aged , Anemia/etiology , Barbiturates/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Darbepoetin alfa/adverse effects , Epoetin Alfa/adverse effects , Female , Glycine/adverse effects , Glycine/therapeutic use , Hematinics/adverse effects , Hemoglobins/analysis , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Intention to Treat Analysis , Male , Middle Aged , Myocardial Infarction/epidemiology , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/therapy , Stroke/epidemiology
2.
N Engl J Med ; 385(25): 2313-2324, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1575625

ABSTRACT

BACKGROUND: Daprodustat is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor. In patients with chronic kidney disease (CKD) who are not undergoing dialysis, the efficacy and safety of daprodustat, as compared with the conventional erythropoiesis-stimulating agent darbepoetin alfa, are unknown. METHODS: In this randomized, open-label, phase 3 trial with blinded adjudication of cardiovascular outcomes, we compared daprodustat with darbepoetin alfa for the treatment of anemia in patients with CKD who were not undergoing dialysis. The primary outcomes were the mean change in the hemoglobin level from baseline to weeks 28 through 52 and the first occurrence of a major adverse cardiovascular event (MACE; a composite of death from any cause, nonfatal myocardial infarction, or nonfatal stroke). RESULTS: Overall, 3872 patients were randomly assigned to receive daprodustat or darbepoetin alfa. The mean (±SD) baseline hemoglobin levels were similar in the two groups. The mean (±SE) change in the hemoglobin level from baseline to weeks 28 through 52 was 0.74±0.02 g per deciliter in the daprodustat group and 0.66±0.02 g per deciliter in the darbepoetin alfa group (difference, 0.08 g per deciliter; 95% confidence interval [CI], 0.03 to 0.13), which met the prespecified noninferiority margin of -0.75 g per deciliter. During a median follow-up of 1.9 years, a first MACE occurred in 378 of 1937 patients (19.5%) in the daprodustat group and in 371 of 1935 patients (19.2%) in the darbepoetin alfa group (hazard ratio, 1.03; 95% CI, 0.89 to 1.19), which met the prespecified noninferiority margin of 1.25. The percentages of patients with adverse events were similar in the two groups. CONCLUSIONS: Among patients with CKD and anemia who were not undergoing dialysis, daprodustat was noninferior to darbepoetin alfa with respect to the change in the hemoglobin level from baseline and with respect to cardiovascular outcomes. (Funded by GlaxoSmithKline; ASCEND-ND ClinicalTrials.gov number, NCT02876835.).


Subject(s)
Anemia/drug therapy , Barbiturates/therapeutic use , Darbepoetin alfa/therapeutic use , Glycine/analogs & derivatives , Hematinics/therapeutic use , Renal Insufficiency, Chronic/complications , Aged , Anemia/etiology , Barbiturates/adverse effects , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Darbepoetin alfa/adverse effects , Female , Glycine/adverse effects , Glycine/therapeutic use , Hematinics/adverse effects , Hemoglobins/analysis , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Intention to Treat Analysis , Male , Middle Aged , Myocardial Infarction/epidemiology , Renal Insufficiency, Chronic/blood , Stroke/epidemiology
3.
J Am Soc Nephrol ; 32(1): 115-126, 2021 01.
Article in English | MEDLINE | ID: covidwho-1496665

ABSTRACT

BACKGROUND: Although diabetic kidney disease is the leading cause of ESKD in the United States, identifying those patients who progress to ESKD is difficult. Efforts are under way to determine if plasma biomarkers can help identify these high-risk individuals. METHODS: In our case-cohort study of 894 Chronic Renal Insufficiency Cohort Study participants with diabetes and an eGFR of <60 ml/min per 1.73 m2 at baseline, participants were randomly selected for the subcohort; cases were those patients who developed progressive diabetic kidney disease (ESKD or 40% eGFR decline). Using a multiplex system, we assayed plasma biomarkers related to tubular injury, inflammation, and fibrosis (KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40). Weighted Cox regression models related biomarkers to progression of diabetic kidney disease, and mixed-effects models estimated biomarker relationships with rate of eGFR change. RESULTS: Median follow-up was 8.7 years. Higher concentrations of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were each associated with a greater risk of progression of diabetic kidney disease, even after adjustment for established clinical risk factors. After accounting for competing biomarkers, KIM-1, TNFR-2, and YKL-40 remained associated with progression of diabetic kidney disease; TNFR-2 had the highest risk (adjusted hazard ratio, 1.61; 95% CI, 1.15 to 2.26). KIM-1, TNFR-1, TNFR-2, and YKL-40 were associated with rate of eGFR decline. CONCLUSIONS: Higher plasma levels of KIM-1, TNFR-1, TNFR-2, MCP-1, suPAR, and YKL-40 were associated with increased risk of progression of diabetic kidney disease; TNFR-2 had the highest risk after accounting for the other biomarkers. These findings validate previous literature on TNFR-1, TNFR-2, and KIM-1 in patients with prevalent CKD and provide new insights into the influence of suPAR and YKL-40 as plasma biomarkers that require validation.


Subject(s)
Biomarkers/blood , Diabetic Nephropathies/genetics , Kidney Failure, Chronic/genetics , Renal Insufficiency, Chronic/genetics , Adult , Aged , Chemokine CCL2/blood , Chitinase-3-Like Protein 1/blood , Cohort Studies , Diabetic Nephropathies/blood , Disease Progression , Female , Glomerular Filtration Rate , Hepatitis A Virus Cellular Receptor 1/blood , Humans , Kidney Failure, Chronic/blood , Male , Middle Aged , Phenotype , Prevalence , Receptors, Tumor Necrosis Factor, Type I/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Receptors, Urokinase Plasminogen Activator/blood , Renal Insufficiency, Chronic/blood , Risk , Young Adult
4.
Ren Fail ; 43(1): 1104-1114, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1303829

ABSTRACT

BACKGROUND: The clinical use of serum creatine (sCr) and cystatin C (CysC) in kidney function evaluation of critically ill patients has been in continuous discussion. The difference between estimated glomerular filtration rate calculated by sCr (eGFRcr) and CysC (eGFRcysc) of critically ill COVID-19 patients were investigated in this study. METHODS: This is a retrospective, single-center study of critically ill patients with COVID-19 admitted in intensive care unit (ICU) at Wuhan, China. Control cases were moderate COVID-19 patients matched in age and sex at a ratio of 1:1. The eGFRcr and eGFRcysc were compared. The association between eGFR and death were analyzed in critically ill cases. The potential factors influencing the divergence between eGFRcr and eGFRcysc were explored. RESULTS: A total of 76 critically ill COVID-19 patients were concluded. The mean age was 64.5 ± 9.3 years. The eGFRcr (85.45 (IQR 60.58-99.23) ml/min/1.73m2) were much higher than eGFRcysc (60.6 (IQR 34.75-79.06) ml/min/1.73m2) at ICU admission. About 50 % of them showed eGFRcysc < 60 ml/min/1.73 m2 while 25% showed eGFRcr < 60 ml/min/1.73 m2 (χ2 = 10.133, p = 0.001). This divergence was not observed in moderate group. The potential factors influencing the divergence included serum interleukin-6 (IL-6), tumor necrosis factor (TNF-α) level as well as APACHEII, SOFA scores. Reduced eGFRcr (<60 mL/min/1.73 m2) was associated with death (HR = 1.939, 95%CI 1.078-3.489, p = 0.027). CONCLUSIONS: The eGFRcr was generally higher than eGFRcysc in critically ill COVID-19 cases with severe inflammatory state. The divergence might be affected by inflammatory condition and illness severity. Reduced eGFRcr predicted in-hospital death. In these patients, we advocate for caution when using eGFRcysc.


Subject(s)
COVID-19/physiopathology , Creatine/blood , Cystatin C/blood , Glomerular Filtration Rate , Renal Insufficiency, Chronic/diagnosis , Aged , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , China/epidemiology , Critical Illness/therapy , Female , Hospital Mortality , Humans , Kidney Function Tests , Male , Middle Aged , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/etiology , Retrospective Studies , Survival Analysis
5.
Magnes Res ; 34(1): 20-31, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1282349

ABSTRACT

Patients with type 2 diabetes (T2D) and Latin American subjects in particular are at an increased risk of developing severe COVID-19 and mortality. Altered renal function and lower magnesium levels have been reported to play important roles in the pathophysiology of T2D. The aim of the study was to investigate the relationship between renal function, serum magnesium levels and mortality in T2D patients with COVID-19. In this retrospective study, we characterized 118 T2D and non-diabetic subjects hospitalized with COVID-19. Patients were clinically characterized and electrolyte, renal function and inflammatory markers were evaluated. Patients were grouped according to their estimated glomerular filtration rate (eGFR <60 mL/min per 1.73 m2). T2D patients had lower eGFR and serum magnesium levels when compared to non-diabetics (59.7 ± 32.8 vs. 78.4 ± 33.8 mL/min per 1.73 m2, P = 0.008 and 1.9 ± 0.3 vs. 2.1 ± 0.3 mEq/L, P = 0.012). Survival was worse in T2D patients with eGFR levels less than 60 mL/min per 1.73 m2 as estimated by Kaplan-Meier analyses (log-rank test <0.0001). The Cox model for T2D patients showed that eGFR (HR 0.970, 95% CI 0.949 to 0.991, P = 0.005) and magnesium (HR 8.025, 95% CI 1.226 to 52.512, P = 0.030) were associated with significantly increased risk of death. Reduced eGFR and magnesium levels were associated with increased mortality in our population. These results suggest that early assessment of kidney function, including magnesium levels, may assist in developing effective treatment strategies to reduce morbidity and mortality among Latin American COVID-19 patients with T2D.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Kidney/physiopathology , Magnesium/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , COVID-19/mortality , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/mortality , Diabetic Nephropathies/blood , Diabetic Nephropathies/complications , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/mortality , Female , Glomerular Filtration Rate/physiology , Hospital Mortality , Humans , Kidney/metabolism , Male , Middle Aged , Prognosis , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/mortality , Retrospective Studies , SARS-CoV-2/physiology , Survival Analysis
6.
Front Immunol ; 12: 671052, 2021.
Article in English | MEDLINE | ID: covidwho-1231338

ABSTRACT

We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.


Subject(s)
COVID-19/blood , Complement Pathway, Mannose-Binding Lectin , Lectins/blood , Renal Insufficiency, Chronic/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/immunology , COVID-19/pathology , Female , Humans , Lectins/immunology , Male , Middle Aged , Renal Insufficiency, Chronic/ethnology , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , SARS-CoV-2/immunology
7.
Kidney Blood Press Res ; 46(1): 126-134, 2021.
Article in English | MEDLINE | ID: covidwho-1050416

ABSTRACT

BACKGROUND: CKD is a risk factor for severe COVID-19. However, the clinical spectrum of COVID-19 in hemodialysis patients is still poorly characterized. OBJECTIVE: To analyze the clinical spectrum of COVID-19 on hemodialysis patients. METHOD: A retrospective observational study was conducted on 66 hemodialysis patients. Nasopharyngeal swab PCR and serology for SARS-CoV-2, blood analysis, chest radiography, treatment, and outcomes were assessed. RESULTS: COVID-19 was diagnosed in 50 patients: 38 (76%) were PCR-positive and 12 (24%) were PCR-negative but developed anti-SARS-CoV-2 antibodies. By contrast, 17% of PCR-positive patients failed to develop detectable antibodies against SARS-CoV-2. Among PCR-positive patients, 5/38 (13%) were asymptomatic, while among PCR-negative patients 7/12 (58%) were asymptomatic (p = 0.005) for a total of 12/50 (24%) asymptomatic patients. No other differences were found between PCR-positive and PCR-negative patients. No differences in potential predisposing factors were found between asymptomatic and symptomatic patients except for a lower use of ACE inhibitors among asymptomatic patients. Asymptomatic patients had laboratory evidence of milder disease such as higher lymphocyte counts and oxygen saturation and lower troponin I and interleukin-6 levels than symptomatic patients. Overall mortality was 7/50 (14%) and occurred only in symptomatic PCR-positive patients in whom mortality was 7/33 (21%). CONCLUSIONS: Asymptomatic SARS-CoV-2 infection is common in hemodialysis patients, especially among patients with initial negative PCR that later seroconvert. Thus COVID-19 mortality in hemodialysis patients may be lower than previously estimated based on PCR tests alone.


Subject(s)
Asymptomatic Diseases/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Renal Dialysis/trends , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Aged , Aged, 80 and over , COVID-19/blood , Female , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/blood , Retrospective Studies
8.
Am J Kidney Dis ; 77(4): 490-499.e1, 2021 04.
Article in English | MEDLINE | ID: covidwho-1012701

ABSTRACT

RATIONALE & OBJECTIVE: Although coronavirus disease 2019 (COVID-19) has been associated with acute kidney injury (AKI), it is unclear whether this association is independent of traditional risk factors such as hypotension, nephrotoxin exposure, and inflammation. We tested the independent association of COVID-19 with AKI. STUDY DESIGN: Multicenter, observational, cohort study. SETTING & PARTICIPANTS: Patients admitted to 1 of 6 hospitals within the Yale New Haven Health System between March 10, 2020, and August 31, 2020, with results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing via polymerase chain reaction of a nasopharyngeal sample. EXPOSURE: Positive test for SARS-CoV-2. OUTCOME: AKI by KDIGO (Kidney Disease: Improving Global Outcomes) criteria. ANALYTICAL APPROACH: Evaluated the association of COVID-19 with AKI after controlling for time-invariant factors at admission (eg, demographic characteristics, comorbidities) and time-varying factors updated continuously during hospitalization (eg, vital signs, medications, laboratory results, respiratory failure) using time-updated Cox proportional hazard models. RESULTS: Of the 22,122 patients hospitalized, 2,600 tested positive and 19,522 tested negative for SARS-CoV-2. Compared with patients who tested negative, patients with COVID-19 had more AKI (30.6% vs 18.2%; absolute risk difference, 12.5% [95% CI, 10.6%-14.3%]) and dialysis-requiring AKI (8.5% vs 3.6%) and lower rates of recovery from AKI (58% vs 69.8%). Compared with patients without COVID-19, patients with COVID-19 had higher inflammatory marker levels (C-reactive protein, ferritin) and greater use of vasopressors and diuretic agents. Compared with patients without COVID-19, patients with COVID-19 had a higher rate of AKI in univariable analysis (hazard ratio, 1.84 [95% CI, 1.73-1.95]). In a fully adjusted model controlling for demographic variables, comorbidities, vital signs, medications, and laboratory results, COVID-19 remained associated with a high rate of AKI (adjusted hazard ratio, 1.40 [95% CI, 1.29-1.53]). LIMITATIONS: Possibility of residual confounding. CONCLUSIONS: COVID-19 is associated with high rates of AKI not fully explained by adjustment for known risk factors. This suggests the presence of mechanisms of AKI not accounted for in this analysis, which may include a direct effect of COVID-19 on the kidney or other unmeasured mediators. Future studies should evaluate the possible unique pathways by which COVID-19 may cause AKI.


Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/epidemiology , Acute Kidney Injury/blood , Acute Kidney Injury/therapy , Aged , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/therapy , Cohort Studies , Creatinine/blood , Diuretics/therapeutic use , Female , Hospital Mortality , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Proportional Hazards Models , Renal Dialysis , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/epidemiology , Respiration, Artificial , Risk Factors , SARS-CoV-2 , Severity of Illness Index , United States/epidemiology , Vasoconstrictor Agents/therapeutic use
9.
PLoS One ; 16(1): e0244779, 2021.
Article in English | MEDLINE | ID: covidwho-1007116

ABSTRACT

BACKGROUND: Currently, the SARS-CoV-2 promptly spread across China and around the world. However, there are controversies about whether preexisting chronic kidney disease (CKD) and acute kidney injury complication (AKI) are involved in the COVID-19 pandemic. MEASUREMENTS: Studies reported the kidney outcomes in different severity of COVID-19 were included in this study. Standardized mean differences or odds ratios were calculated by employing Review Manager meta-analysis software. RESULTS: Thirty-six trials were included in this systematic review with a total of 6395 COVID-19 patients. The overall effects indicated that preexisting CKD (OR = 3.28), complication of AKI (OR = 11.02), serum creatinine (SMD = 0.68), abnormal serum creatinine (OR = 4.86), blood urea nitrogen (SMD = 1.95), abnormal blood urea nitrogen (OR = 6.53), received continuous renal replacement therapy (CRRT) (OR = 23.63) were significantly increased in severe group than that in nonsevere group. Additionally, the complication of AKI (OR = 13.92) and blood urea nitrogen (SMD = 1.18) were remarkably elevated in the critical group than that in the severe group. CONCLUSIONS: CKD and AKI are susceptible to occur in patients with severe COVID-19. CRRT is applied frequently in severe COVID-19 patients than that in nonsevere COVID-19 patients. The risk of AKI is higher in the critical group than that in the severe group.


Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/epidemiology , Renal Insufficiency, Chronic/epidemiology , Acute Kidney Injury/blood , Blood Urea Nitrogen , COVID-19/blood , China/epidemiology , Creatinine/blood , Humans , Odds Ratio , Pandemics , Renal Insufficiency, Chronic/blood , SARS-CoV-2/isolation & purification , Treatment Outcome
10.
Diabetes Metab Syndr ; 15(1): 169-175, 2021.
Article in English | MEDLINE | ID: covidwho-996840

ABSTRACT

BACKGROUND AND AIMS: To study the prevalence and impact of diabetes mellitus and other comorbidities among hospitalized patients with COVID-19. METHODS: In a prospective, observational study including consecutive adults hospitalized with COVID-19, clinical outcomes and inflammatory markers were compared in those with and without diabetes. Participants were classified as having mild or severe COVID-19 disease using the WHO ordinal scale. RESULTS: 401 patients (125 females) with median age of 54 years (range 19-92) were evaluated. Of them 189 (47.1%) had pre-existing diabetes and21 (5.2%) had new-onset hyperglycaemia. Overall, 344 (85.8%) and 57 (14.2%) cases had mild and severe COVID-19 disease respectively. The group with diabetes had a higher proportion of severe cases (20.1% vs 9%, p-0.002), mortality (6.3 vs 1.4%, p-0.015), ICU admission (24.3 vs 12.3%, p-0.002), and oxygen requirement (53.4 vs 28.3%, p < 0.001). Baseline Hba1c (n = 331) correlated significantly with outcome severity scores (r 0.136, p-0.013) and 12/15 (80%) of those who succumbed had diabetes. Hypertension, coronary artery disease, and chronic kidney disease were present in 164 (40.9%), 35 (8.7%) and 12 (2.99%) patients respectively. Hypertension was associated with a higher proportion of severe cases, mortality, ICU admission and oxygen administration. CONCLUSIONS: We report a high prevalence of diabetes in a hospitalized COVID-19 population. Patients with diabetes or hypertension had more severe disease and greater mortality.


Subject(s)
COVID-19/blood , COVID-19/epidemiology , Diabetes Mellitus/blood , Diabetes Mellitus/epidemiology , Hospitalization/trends , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Comorbidity , Cross-Sectional Studies , Diabetes Mellitus/diagnosis , Female , Humans , Hyperglycemia/blood , Hyperglycemia/diagnosis , Hyperglycemia/epidemiology , Hypertension/blood , Hypertension/diagnosis , Hypertension/epidemiology , India/epidemiology , Inflammation Mediators/blood , Male , Middle Aged , Prevalence , Prospective Studies , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Treatment Outcome , Young Adult
11.
Int J Cardiol ; 326: 237-242, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-885291

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic. The ability to predict cardiac injury and analyze lymphocyte immunity and inflammation of cardiac damage in patients with COVID-19 is limited. We aimed to determine the risk factors and predictive markers of cardiac injury in these patients. METHODS: Data from 124 consecutive hospitalized patients with confirmed COVID-19 were collected. We compared the proportion of cardiovascular disease history in moderate, severe, and critical cases. We obtained high-sensitivity cardiac troponin I (hs-cTn I) results from 68 patients. Patients were divided into two groups based on positive hs-cTn I result: those with cardiac injury (n = 19) and those without cardiac injury (n = 49). RESULTS: Compared with the group with moderate disease, hypertension, coronary heart disease, and smoking were more common in severe and critical cases. Diabetes mellitus was most common in the critical group. Age older than 65 years, presence of chronic kidney disease, and lower blood lymphocyte percentage were independent risk factors of cardiac injury. The total T- and B-lymphocyte counts and CD4+ and CD8+ T-cell counts were significantly lower in those with cardiac injury. A minimal lymphocyte percentage < 7.8% may predict cardiac injury. The interleukin (IL) 6 level in plasma was elevated in the group with cardiac injury. CONCLUSIONS: The lymphocyte percentage in blood may become a predictive marker of cardiac injury in COVID-19 patients. The total T and B cells and CD4+ and CD8+ cell counts decreased and the IL-6 level increased in COVID-19 patients with cardiac injury.


Subject(s)
COVID-19/blood , Heart Diseases/blood , Hospitalization/trends , Immunity, Cellular/physiology , Inflammation Mediators/blood , Lymphocytes/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , China/epidemiology , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Female , Heart Diseases/epidemiology , Heart Diseases/immunology , Humans , Inflammation Mediators/immunology , Lymphocytes/immunology , Male , Middle Aged , Predictive Value of Tests , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/immunology , Retrospective Studies
14.
Clin Appl Thromb Hemost ; 26: 1076029620943671, 2020.
Article in English | MEDLINE | ID: covidwho-676150

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 infection (COVID-19) is known to induce severe inflammation and activation of the coagulation system, resulting in a prothrombotic state. Although inflammatory conditions and organ-specific diseases have been shown to be strong determinants of morbidity and mortality in patients with COVID-19, it is unclear whether preexisting differences in coagulation impact the severity of COVID-19. African Americans have higher rates of COVID-19 infection and disease-related morbidity and mortality. Moreover, African Americans are known to be at a higher risk for thrombotic events due to both biological and socioeconomic factors. In this review, we explore whether differences in baseline coagulation status and medical management of coagulation play an important role in COVID-19 disease severity and contribute to racial disparity trends within COVID-19.


Subject(s)
African Americans , Betacoronavirus , Coronavirus Infections/ethnology , Pandemics , Pneumonia, Viral/ethnology , Thrombophilia/ethnology , Venous Thromboembolism/ethnology , African Americans/genetics , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/ethnology , Anticoagulants/therapeutic use , Blood Proteins/analysis , Blood Proteins/genetics , COVID-19 , Clinical Trials as Topic , Comorbidity , Coronavirus Infections/blood , Coronavirus Infections/complications , Factor VIII/analysis , Female , Fibrin Fibrinogen Degradation Products/analysis , Genetic Association Studies , Genetic Predisposition to Disease , Healthcare Disparities , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/ethnology , Male , Patient Selection , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Polymorphism, Single Nucleotide , Prevalence , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/ethnology , Risk Factors , SARS-CoV-2 , Social Determinants of Health , Socioeconomic Factors , Thrombophilia/blood , Thrombophilia/drug therapy , Thrombophilia/etiology , Venous Thromboembolism/blood , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL