Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
2.
Int J Environ Res Public Health ; 19(22)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116234

ABSTRACT

OBJECTIVE: To estimate the global risk and risk factors associated with acute respiratory distress syndrome (ARDS) among patients with COVID-19: Design: A systematic review, meta-analysis and meta-regression. SETTING AND PARTICIPANTS: Hospitals or nursing homes and patients with acute respiratory distress syndrome after COVID-19. METHODS: The literature review was systematically conducted on Embase, MEDLINE, CINAHL, and Web of Science, in addition to manual searches and reference list checking from 1 January 2019 to 2 March 2022. The search terms included coronavirus, acute respiratory syndrome, acute respiratory distress syndrome and observational studies. Three reviewers independently appraised the quality of the studies and extracted the relevant data using the Joanna Briggs Institute abstraction form and critical appraisal tools. A study protocol was registered in PROSPERO (CRD42022311957). Eligible studies were meta-analyzed and underwent meta-regression. RESULTS: A total of 12 studies were included, with 148,080 participants. The risk ratio (RR) of ARDS was 23%. Risk factors were age ≥ 41-64 years old (RR = 15.3%, 95% CI =0.14-2.92, p = 0.03); fever (RR = 10.3%, 95% CI = 0.03-2.03, p = 0.04); multilobe involvement of the chest (RR = 33.5%, 95% CI = 0.35-6.36, p = 0.02); lymphopenia (RR = 25.9%, 95% CI = 1.11-4.08, p = 0.01); mechanical ventilation with oxygen therapy (RR = 31.7%, 95% CI = 1.10-5.25, p = 0.002); European region (RR = 16.3%, 95% CI = 0.09-3.17, p = 0.03); sample size ≤ 500 (RR = 18.0%, 95% CI = 0.70-2.89, p = 0.001). CONCLUSIONS AND IMPLICATIONS: One in four patients experienced ARDS after having COVID-19. The age group 41-64 years old and the European region were high-risk groups. These findings can be used by policymakers to allocate resources for respiratory care facilities and can also provide scientific evidence in the design of protocols to manage COVID-19 worldwide.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Adult , Middle Aged , COVID-19/epidemiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology , Respiration, Artificial/adverse effects , Risk Factors , Respiratory Therapy
3.
Medicine (Baltimore) ; 101(45): e29895, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2115672

ABSTRACT

BACKGROUND: At present, many studies have described acute pulmonary embolism (PE) as a frequent and prognostically relevant complication of coronavirus disease 2019 (COVID-19) infection. Thus we performed the present analysis of 50 studies to evaluate the risk factors and mortality of PE in COVID-19 patients. METHOD: Databases including PubMed, Embase, Cochrane Library and Web of Science were searched to October, 2021. Odds ratio (OR), mean difference (MD) or standard MD was used to evaluate the outcomes. The primary outcomes were the difference of mortality between PE and non-PE COVID-19 patients as well as relevant risk factors of PE in COVID-19 patients. All statistical analyses were performed using the standard statistical procedures provided in Review Manager 5.2. RESULT: A total of 50 studies including 10053 patients were included in this meta-analysis. Our results indicated that COVID-19 patients with PE experienced significantly higher mortality than non-PE patients (21.9% vs. 10.7%), with a pooled OR of 2.21 (95% CI 1.30 - 3.76; P = .003). In addition, COVID-19 patients with PE also experienced more mechanical ventilation (MV) (OR 2.21; 95% CI 1.30 - 3.75; P = .003) and invasive mechanical ventilation (IMV) (OR 3.58; 95% CI 2.47 - 5.20; P < .0001) respectively. Univariate analysis (UVA) results indicated the Sequential Organ Failure Assessment (SOFA) score, time to deep venous thrombosis (DVT), nonintensive care unit (non-ICU) patients and no anticoagulation as risk factors of PE for COVID-19 patients. In addition, multivariate analysis also found that SOFA score, D-dimer, BMI > 30 kg/m2 and history of PE were risk factors of PE for COVID-19 patients. CONCLUSION: The present analysis indicated that PE increased the mortality of COVID-19 patients. Mechanical ventilation, especially invasive mechanical ventilation, is correlated with an increased incidence of PE in patients with COVID-19. The incidence of PE for COVID-19 patients may be multifactorial and further researches focused on risk factors were needed in the future.


Subject(s)
COVID-19 , Pulmonary Embolism , Humans , COVID-19/complications , Incidence , Pulmonary Embolism/etiology , Respiration, Artificial/adverse effects , Risk Factors , Observational Studies as Topic
4.
Ann Intern Med ; 173(3): 204-216, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-2110840

ABSTRACT

BACKGROUND: Mechanical ventilation is used to treat respiratory failure in coronavirus disease 2019 (COVID-19). PURPOSE: To review multiple streams of evidence regarding the benefits and harms of ventilation techniques for coronavirus infections, including that causing COVID-19. DATA SOURCES: 21 standard, World Health Organization-specific and COVID-19-specific databases, without language restrictions, until 1 May 2020. STUDY SELECTION: Studies of any design and language comparing different oxygenation approaches in patients with coronavirus infections, including severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS), or with hypoxemic respiratory failure. Animal, mechanistic, laboratory, and preclinical evidence was gathered regarding aerosol dispersion of coronavirus. Studies evaluating risk for virus transmission to health care workers from aerosol-generating procedures (AGPs) were included. DATA EXTRACTION: Independent and duplicate screening, data abstraction, and risk-of-bias assessment (GRADE for certainty of evidence and AMSTAR 2 for included systematic reviews). DATA SYNTHESIS: 123 studies were eligible (45 on COVID-19, 70 on SARS, 8 on MERS), but only 5 studies (1 on COVID-19, 3 on SARS, 1 on MERS) adjusted for important confounders. A study in hospitalized patients with COVID-19 reported slightly higher mortality with noninvasive ventilation (NIV) than with invasive mechanical ventilation (IMV), but 2 opposing studies, 1 in patients with MERS and 1 in patients with SARS, suggest a reduction in mortality with NIV (very-low-certainty evidence). Two studies in patients with SARS report a reduction in mortality with NIV compared with no mechanical ventilation (low-certainty evidence). Two systematic reviews suggest a large reduction in mortality with NIV compared with conventional oxygen therapy. Other included studies suggest increased odds of transmission from AGPs. LIMITATION: Direct studies in COVID-19 are limited and poorly reported. CONCLUSION: Indirect and low-certainty evidence suggests that use of NIV, similar to IMV, probably reduces mortality but may increase the risk for transmission of COVID-19 to health care workers. PRIMARY FUNDING SOURCE: World Health Organization. (PROSPERO: CRD42020178187).


Subject(s)
Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Aerosols , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Systematic Reviews as Topic , World Health Organization
5.
Eur J Med Res ; 27(1): 218, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2108966

ABSTRACT

PURPOSE: This study aimed to investigate air leakage during invasive mechanical ventilation (IMV) in a pediatric intensive care unit (PICU) and explore potential risk factors. METHODS: We conducted a retrospective cohort study of children who underwent IMV in a single-center PICU in a tertiary referral hospital. Air leakage risk factors and factors associated with an improved outcome were assessed. RESULTS: A total of 548 children who underwent IMV were enrolled in this study. Air leakage occurred in 7.5% (41/548) of the cases in the PICU. Air leakage increased the duration of IMV and hospitalization time. Multivariate logistic regression analysis showed a higher risk of air leakage during IMV for PICU patients with acute respiratory dyspnea syndrome (ARDS) (OR = 4.38), a higher pediatric critical illness score (PCIS) (OR = 1.08), or a higher peak inspiratory pressure (PIP) (OR = 1.08), whereas the risk was lower for patients with central respiratory failure (OR = 0.14). The logistic model had excellent predictive power for air leakage, with an area under the curve of 0.883 and tenfold cross-validation. Patients aged between 1 and 6 years who were diagnosed with measles or pneumonia and had a low positive end-expiratory pressure (PEEP) or high PaO2/FiO2 ratio were associated with improved outcomes. Patients diagnosed with central respiratory failure or congenital heart diseases were associated with less desirable outcomes. CONCLUSIONS: Patients with ARDS, a higher PCIS at admission or a higher PIP were at higher risk of air leakage.


Subject(s)
Respiratory Distress Syndrome , Respiratory Insufficiency , Child , Humans , Infant , Child, Preschool , Respiration, Artificial/adverse effects , Retrospective Studies , Intensive Care Units, Pediatric , Risk Factors , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Intensive Care Units
6.
Respir Care ; 67(10): 1282-1290, 2022 10.
Article in English | MEDLINE | ID: covidwho-1763135

ABSTRACT

BACKGROUND: Postextubation monitoring helps identify patients at risk of developing respiratory failure. This study aimed to evaluate the effect of our standard respiratory therapist (RT) assessment tool versus an automated continuous monitoring alert to initiate postextubation RT-driven care on the re-intubation rate. METHODS: This was a single-center randomized clinical trial from March 2020 to September 2021 of adult subjects who received mechanical ventilation for > 24 h and underwent planned extubation in the ICU. The subjects were assigned to the standard RT assessment tool or an automated monitoring alert to identify the need for postextubation RT-driven care. The primary outcome was the need for re-intubation due to respiratory failure within 72 h. Secondary outcomes included re-intubation within 7 d, ICU and hospital lengths of stay, hospital mortality, ICU cost, and RT time associated with patient assessment and therapy provision. RESULTS: Of 234 randomized subjects, 32 were excluded from the primary analysis due to disruption in RT-driven care during the surge of patients with COVID-19, and 1 subject was excluded due to delay in the automated monitoring initiation. Analysis of the primary outcome included 85 subjects assigned to the standard RT assessment group and 116 assigned to the automated monitoring alert group to initiate RT-driven care. There was no significant difference between the study groups in re-intubation rate, median length of stay, mortality, or ICU costs. The RT time associated with patient assessment (P < .001) and therapy provided (P = .031) were significantly lower in the automated continuous monitoring alert group. CONCLUSIONS: In subjects who received mechanical ventilation for > 24 h, there were no significant outcome or cost differences between our standard RT assessment tool or an automated monitoring alert to initiate postextubation RT-driven care. Using an automated continuous monitoring alert to initiate RT-driven care saved RT time. (ClinicalTrials.gov registration NCT04231890).


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Airway Extubation/adverse effects , Humans , Intensive Care Units , Respiration, Artificial/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Ventilator Weaning
7.
J Crit Care ; 72: 154166, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2069287

ABSTRACT

PURPOSE: To evaluate cardiac function in mechanically ventilated patients with COVID-19. MATERIALS AND METHODS: Prospective, cross-sectional multicenter study in four university-affiliated hospitals in Chile. All consecutive patients with COVID-19 ARDS requiring mechanical ventilation admitted between April and July 2020 were included. We performed systematic transthoracic echocardiography assessing right and left ventricular function within 24 h of intubation. RESULTS: 140 patients aged 57 ± 11, 29% female were included. Cardiac output was 5.1 L/min [IQR 4.5-6.2] and 86% of the patients required norepinephrine. ICU mortality was 29% (40 patients). Fifty-four patients (39%) exhibited right ventricle dilation out of whom 20 patients (14%) exhibited acute cor pulmonale (ACP). Eight out of the twenty patients with ACP exhibited pulmonary embolism (40%). Thirteen patients (9%) exhibited left ventricular systolic dysfunction (ejection fraction <45%). In the multivariate analysis acute cor pulmonale and PaO2/FiO2 ratio were independent predictors of ICU mortality. CONCLUSIONS: Right ventricular dilation is highly prevalent in mechanically ventilated patients with COVID-19 ARDS. Acute cor pulmonale was associated with reduced pulmonary function and, in only 40% of patients, with co-existing pulmonary embolism. Acute cor pulmonale is an independent risk factor for ICU mortality.


Subject(s)
COVID-19 , Heart Failure , Pulmonary Embolism , Pulmonary Heart Disease , Respiratory Distress Syndrome , Humans , Female , Male , Pulmonary Heart Disease/etiology , Respiration, Artificial/adverse effects , Critical Illness , Cross-Sectional Studies , Prospective Studies , Pulmonary Embolism/complications , Heart Failure/complications , Respiratory Distress Syndrome/therapy
8.
Crit Care ; 26(1): 292, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2053944

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) is common in patients with severe SARS-CoV-2 pneumonia. The aim of this ancillary analysis of the coVAPid multicenter observational retrospective study is to assess the relationship between adjuvant corticosteroid use and the incidence of VAP. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort in 36 ICUs. Adult patients receiving invasive mechanical ventilation for more than 48 h for SARS-CoV-2 pneumonia were consecutively included between February and May 2020. VAP diagnosis required strict definition with clinical, radiological and quantitative microbiological confirmation. We assessed the association of VAP with corticosteroid treatment using univariate and multivariate cause-specific Cox's proportional hazard models with adjustment on pre-specified confounders. RESULTS: Among the 545 included patients, 191 (35%) received corticosteroids. The proportional hazard assumption for the effect of corticosteroids on the incidence of VAP could not be accepted, indicating that this effect varied during ICU stay. We found a non-significant lower risk of VAP for corticosteroid-treated patients during the first days in the ICU and an increased risk for longer ICU stay. By modeling the effect of corticosteroids with time-dependent coefficients, the association between corticosteroids and the incidence of VAP was not significant (overall effect p = 0.082), with time-dependent hazard ratios (95% confidence interval) of 0.47 (0.17-1.31) at day 2, 0.95 (0.63-1.42) at day 7, 1.48 (1.01-2.16) at day 14 and 1.94 (1.09-3.46) at day 21. CONCLUSIONS: No significant association was found between adjuvant corticosteroid treatment and the incidence of VAP, although a time-varying effect of corticosteroids was identified along the 28-day follow-up.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Adult , COVID-19/complications , COVID-19/epidemiology , Humans , Incidence , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Retrospective Studies , SARS-CoV-2
9.
Pediatr Crit Care Med ; 23(4): 268-276, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-2042669

ABSTRACT

OBJECTIVES: Children receiving prolonged extracorporeal membrane oxygenation (ECMO) support may benefit from tracheostomy during ECMO by facilitating rehabilitation; however, the procedure carries risks, especially hemorrhagic complications. Knowledge of tracheostomy practices and outcomes of ECMO-supported children who undergo tracheostomy on ECMO may inform decision-making. DESIGN: Retrospective cohort study. SETTING: ECMO centers contributing to the Extracorporeal Life Support Organization registry. PATIENTS: Children from birth to 18 years who received ECMO support for greater than or equal to 7 days for respiratory failure from January 1, 2015, to December 31, 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Three thousand six hundred eighty-five children received at least 7 days of ECMO support for respiratory failure. The median duration of ECMO support was 13.0 days (interquartile range [IQR], 9.3-19.9 d), and inhospital mortality was 38.7% (1,426/3,685). A tracheostomy was placed during ECMO support in 94/3,685 (2.6%). Of those who received a tracheostomy on ECMO, the procedure was performed at a median 13.2 days (IQR, 6.3-25.9 d) after initiation of ECMO. Surgical site bleeding was documented in 26% of children who received a tracheostomy (12% after tracheostomy placement). Among children who received a tracheostomy, the median duration of ECMO support was 24.2 days (IQR, 13.0-58.7 d); inhospital mortality was 30/94 (32%). Those that received a tracheostomy before 14 days on ECMO were older (median age, 15.8 yr [IQR, 4.7-15.5] vs 11.7 yr [IQR, 11.5-17.3 yr]; p =0.002) and more likely to have been supported on venovenous-ECMO (84% vs 52%; p = 0.001). Twenty-two percent (11/50) of those who received a tracheostomy before 14 days died in the hospital, compared with 19/44 (43%) of those who received a tracheostomy at 14 days or later (p = 0.03). CONCLUSIONS: Tracheostomies during ECMO were uncommon in children. One in four patients who received a tracheostomy on ECMO had surgical site bleeding. Children who had tracheostomies placed after 14 days were younger and had worse outcomes, potentially representing tracheostomy as a "secondary" strategy for prolonged ECMO support.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Insufficiency , Adolescent , Child , Extracorporeal Membrane Oxygenation/methods , Hemorrhage/etiology , Humans , Respiration, Artificial/adverse effects , Retrospective Studies , Tracheostomy/adverse effects , Tracheostomy/methods
10.
Skelet Muscle ; 12(1): 21, 2022 09 09.
Article in English | MEDLINE | ID: covidwho-2038880

ABSTRACT

BACKGROUND: In intensive care units (ICU), mechanical ventilation (MV) is commonly applied to save patients' lives. However, ventilator-induced diaphragm dysfunction (VIDD) can complicate treatment by hindering weaning in critically ill patients and worsening outcomes. The goal of this study was to identify potential genes involved in the endogenous protective mechanism against VIDD. METHODS: Twelve adult male rabbits were assigned to either an MV group or a control group under the same anesthetic conditions. Immunostaining and quantitative morphometry were used to assess diaphragm atrophy, while RNA-seq was used to investigate molecular differences between the groups. Additionally, core module and hub genes were analyzed using WGCNA, and co-differentially expressed hub genes were subsequently discovered by overlapping the differentially expressed genes (DEGs) with the hub genes from WGCNA. The identified genes were validated by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: After a VIDD model was successfully built, 1276 DEGs were found between the MV and control groups. The turquoise and yellow modules were identified as the core modules, and Trim63, Fbxo32, Uchl1, Tmprss13, and Cst3 were identified as the five co-differentially expressed hub genes. After the two atrophy-related genes (Trim63 and Fbxo32) were excluded, the levels of the remaining three genes/proteins (Uchl1/UCHL1, Tmprss13/TMPRSS13, and Cst3/CST3) were found to be significantly elevated in the MV group (P < 0.05), suggesting the existence of a potential antiproteasomal, antiapoptotic, and antiautophagic mechanism against diaphragm dysfunction. CONCLUSION: The current research helps to reveal a potentially important endogenous protective mechanism that could serve as a novel therapeutic target against VIDD.


Subject(s)
Diaphragm , Ventilators, Mechanical , Animals , Atrophy , Intensive Care Units , Male , Rabbits , Respiration, Artificial/adverse effects
11.
Crit Care ; 26(1): 252, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-2038845

ABSTRACT

Pulmonary microbial diversity may be influenced by biotic or abiotic conditions (e.g., disease, smoking, invasive mechanical ventilation (MV), etc.). Specially, invasive MV may trigger structural and physiological changes in both tissue and microbiota of lung, due to gastric and oral microaspiration, altered body posture, high O2 inhalation-induced O2 toxicity in hypoxemic patients, impaired airway clearance and ventilator-induced lung injury (VILI), which in turn reduce the diversity of the pulmonary microbiota and may ultimately lead to poor prognosis. Furthermore, changes in (local) O2 concentration can reduce the diversity of the pulmonary microbiota by affecting the local immune microenvironment of lung. In conclusion, systematic literature studies have found that invasive MV reduces pulmonary microbiota diversity, and future rational regulation of pulmonary microbiota diversity by existing or novel clinical tools (e.g., lung probiotics, drugs) may improve the prognosis of invasive MV treatment and lead to more effective treatment of lung diseases with precision.


Subject(s)
Lung , Microbiota , Respiration, Artificial , Humans , Lung/microbiology , Respiration, Artificial/adverse effects , Ventilator-Induced Lung Injury/epidemiology
12.
J Investig Med High Impact Case Rep ; 10: 23247096221127117, 2022.
Article in English | MEDLINE | ID: covidwho-2038607

ABSTRACT

Pneumomediastinum is a rare complication among non-coronavirus patients but has been published with increased incidence in patients positive for SARS-CoV-2 infection. Most of these studies report patients on mechanical ventilation and an understanding of mechanisms causing this remains limited. We aim to use an increasing occurrence in patients not on mechanical ventilation to further explore mechanisms that predispose patients to pneumomediastinum and to assess characteristics potentially related to poor outcomes. We report a case series of 37 patients diagnosed with COVID-19 and pneumomediastinum at a 2-hospital institution between January 1, 2020 and April 30, 2021. At 28 days after diagnosis of pneumomediastinum, 19 (51.4%) were dead and mortality was significantly higher among those who were older (t = 2.147, P = .039), female (χ2 = 10.431, P = .015), body mass index ≥30 (χ2 = 6.0598, P = .01), intubated (χ2 = 4.937, P = .026), and had pre-existing lung disease (χ2 = 4.081, P = .043). Twenty-three patients (62.2%) were identified to have pneumomediastinum without receiving invasive mechanical ventilation, of which 11 (47.8%) were diagnosed without receiving noninvasive ventilation. The increased diagnosis of pneumomediastinum in patients with COVID-19 while not on mechanical ventilation, in this case series and in comparable studies, may attribute to mechanisms aside from positive pressure ventilation such as patient self-induced lung injury and pulmonary frailty.


Subject(s)
COVID-19 , Mediastinal Emphysema , COVID-19/complications , Female , Humans , Mediastinal Emphysema/etiology , Positive-Pressure Respiration , Respiration, Artificial/adverse effects , SARS-CoV-2
13.
Can Respir J ; 2022: 9914081, 2022.
Article in English | MEDLINE | ID: covidwho-2020561

ABSTRACT

The recently diagnosed coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in December 2019 commonly affects the respiratory system. The incidence of acute hypoxic respiratory failure varied among epidemiological studies with high percentage of patients requiring mechanical ventilation with a high mortality. Noninvasive ventilation is an alternative tool for ventilatory support instead of invasive mechanical ventilation, especially with scarce resources and intensive care beds. Initially, there were concerns by the national societies regarding utilization of noninvasive ventilation in acute respiratory failure. Recent publications reflect the gained experience with the safe utilization of noninvasive mechanical ventilation. Noninvasive ventilation has beneficiary role in treatment of acute hypoxic respiratory failure with proper indications, setting, monitoring, and timely escalation of therapy. Patients should be monitored frequently for signs of improvement or deterioration in the clinical status. Awareness of indications, contraindications, and parameters reflecting either success or failure of noninvasive ventilation in the management of acute respiratory failure secondary to COVID-19 is essential for improvement of outcomes.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , Respiratory Tract Infections , COVID-19/complications , COVID-19/therapy , Humans , Hypoxia/complications , Noninvasive Ventilation/adverse effects , Respiration, Artificial/adverse effects , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Respiratory Tract Infections/complications , SARS-CoV-2
14.
Crit Care ; 26(1): 264, 2022 09 04.
Article in English | MEDLINE | ID: covidwho-2009442

ABSTRACT

BACKGROUND: COVID-19 ARDS shares features with non-COVID ARDS but also demonstrates distinct physiological differences. Despite a lack of strong evidence, prone positioning has been advocated as a key therapy for COVID-19 ARDS. The effects of prone position in critically ill patients with COVID-19 are not fully understood, nor is the optimal time of initiation defined. In this nationwide cohort study, we aimed to investigate the association between early initiation of prone position and mortality in mechanically ventilated COVID-19 patients with low oxygenation on ICU admission. METHODS: Using the Swedish Intensive Care Registry (SIR), all Swedish ICU patients ≥ 18 years of age with COVID-19 admitted between March 2020, and April 2021 were identified. A study-population of patients with PaO2/FiO2 ratio ≤ 20 kPa on ICU admission and receiving invasive mechanical ventilation within 24 h from ICU admission was generated. In this study-population, the association between early use of prone position (within 24 h from intubation) and 30-day mortality was estimated using univariate and multivariable logistic regression models. RESULTS: The total study cohort included 6350 ICU patients with COVID-19, of whom 46.4% were treated with prone position ventilation. Overall, 30-day mortality was 24.3%. In the study-population of 1714 patients with lower admission oxygenation (PaO2/FiO2 ratio ≤ 20 kPa), the utilization of early prone increased from 8.5% in March 2020 to 48.1% in April 2021. The crude 30-day mortality was 27.2% compared to 30.2% in patients not receiving early prone positioning. We found no significant association between early use of prone positioning and survival. CONCLUSIONS: During the first three waves of the COVID-19 pandemic, almost half of the patients in Sweden were treated with prone position ventilation. We found no association between early use of prone positioning and survival in patients on mechanical ventilation with severe hypoxemia on ICU admission. To fully elucidate the effect and timing of prone position ventilation in critically ill patients with COVID-19 further studies are desirable.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/therapy , Cohort Studies , Critical Illness/epidemiology , Critical Illness/therapy , Humans , Pandemics , Prevalence , Prone Position , Respiration, Artificial/adverse effects
15.
Trials ; 23(1): 47, 2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1628973

ABSTRACT

BACKGROUND: The acute respiratory distress syndrome (ARDS) occurs in response to a variety of insults, and mechanical ventilation is life-saving in this setting, but ventilator-induced lung injury can also contribute to the morbidity and mortality in the condition. The Beacon Caresystem is a model-based bedside decision support system using mathematical models tuned to the individual patient's physiology to advise on appropriate ventilator settings. Personalised approaches using individual patient description may be particularly advantageous in complex patients, including those who are difficult to mechanically ventilate and wean, in particular ARDS. METHODS: We will conduct a multi-centre international randomised, controlled, allocation concealed, open, pragmatic clinical trial to compare mechanical ventilation in ARDS patients following application of the Beacon Caresystem to that of standard routine care to investigate whether use of the system results in a reduction in driving pressure across all severities and phases of ARDS. DISCUSSION: Despite 20 years of clinical trial data showing significant improvements in ARDS mortality through mitigation of ventilator-induced lung injury, there remains a gap in its personalised application at the bedside. Importantly, the protective effects of higher positive end-expiratory pressure (PEEP) were noted only when there were associated decreases in driving pressure. Hence, the pressures set on the ventilator should be determined by the diseased lungs' pressure-volume relationship which is often unknown or difficult to determine. Knowledge of extent of recruitable lung could improve the ventilator driving pressure. Hence, personalised management demands the application of mechanical ventilation according to the physiological state of the diseased lung at that time. Hence, there is significant rationale for the development of point-of-care clinical decision support systems which help personalise ventilatory strategy according to the current physiology. Furthermore, the potential for the application of the Beacon Caresystem to facilitate local and remote management of large numbers of ventilated patients (as seen during this COVID-19 pandemic) could change the outcome of mechanically ventilated patients during the course of this and future pandemics. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04115709. Registered on 4 October 2019, version 4.0.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung , Multicenter Studies as Topic , Pandemics , Randomized Controlled Trials as Topic , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
16.
J Cardiothorac Surg ; 17(1): 202, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2002203

ABSTRACT

BACKGROUND: Tension pneumomediastinum is one of the most serious complications in COVID-19 patients with respiratory distress requiring invasive mechanical ventilation. This complication can lead to rapid hemodynamic instability and death if it is not recognized in a timely manner and intervenes promptly. CASE PRESENTATION: We reported 7 COVID-19 patients with tension pneumomediastinum at a field hospital. All patients were critically ill with ARDS. These 7 patients, including 3 females and 4 males in this series, were aged between 39 and 70 years. Tension pneumomediastinum occurred on the first day of mechanical ventilation in 3 patients and later in the course of hospital stay, even 10 days after being intubated and ventilated. The tension pneumomediastinum caused hemodynamic instability and worsened respiratory mechanics with imminent cardiopulmonary collapse. In this series, we used two surgical techniques: (i) mediastinal decompression by suprasternal drainage with or without simultaneous pleural drainage in the first two cases and (ii) mediastinal drainage via suprasternal and subxiphoid incisions in 5 patients. The surgical procedures were feasible and reversed the pending cardiopulmonary collapse. Four patients had a favorable postprocedural period and were discharged from the intensive care center. Both patients undergoing suprasternal drainage died of failed/recurrent tension pneumomediastinum and nosocomial infection. Only one in five patients who underwent mediastinal drainage via suprasternal and subxiphoid incisions died of septic shock secondary to ventilator-associated pneumonia. CONCLUSION: Tension pneumomediastinum was a life-threatening complication in critically ill COVID-19 patients requiring mechanical ventilation. Surgical mediastinal decompression was the salvage procedure. The surgical technique of mediastinal drainage via suprasternal and subxiphoid incisions proved an advantage in tension relief, hemodynamic improvement and mortality reduction.


Subject(s)
COVID-19 , Mediastinal Emphysema , Adult , Aged , COVID-19/complications , Critical Illness , Female , Humans , Male , Mediastinal Emphysema/etiology , Mediastinal Emphysema/surgery , Middle Aged , Mobile Health Units , Respiration, Artificial/adverse effects
18.
Crit Care ; 26(1): 233, 2022 08 02.
Article in English | MEDLINE | ID: covidwho-1968594

ABSTRACT

RATIONALE: Early corticosteroid treatment is used to treat COVID-19-related acute respiratory distress syndrome (ARDS). Infection is a well-documented adverse effect of corticosteroid therapy. OBJECTIVES: To determine whether early corticosteroid therapy to treat COVID-19 ARDS was associated with ventilator-associated pneumonia (VAP). METHODS: We retrospectively included adults with COVID-19-ARDS requiring invasive mechanical ventilation (MV) for ≥ 48 h at any of 15 intensive care units in 2020. We divided the patients into two groups based on whether they did or did not receive corticosteroids within 24 h. The primary outcome was VAP incidence, with death and extubation as competing events. Secondary outcomes were day 90-mortality, MV duration, other organ dysfunctions, and VAP characteristics. MEASUREMENTS AND MAIN RESULTS: Of 670 patients (mean age, 65 years), 369 did and 301 did not receive early corticosteroids. The cumulative VAP incidence was higher with early corticosteroids (adjusted hazard ratio [aHR] 1.29; 95% confidence interval [95% CI] 1.05-1.58; P = 0.016). Antibiotic resistance of VAP bacteria was not different between the two groups (odds ratio 0.94, 95% CI 0.58-1.53; P = 0.81). 90-day mortality was 30.9% with and 24.3% without early corticosteroids, a nonsignificant difference after adjustment on age, SOFA score, and VAP occurrence (aHR 1.15; 95% CI 0.83-1.60; P = 0.411). VAP was associated with higher 90-day mortality (aHR 1.86; 95% CI 1.33-2.61; P = 0.0003). CONCLUSIONS: Early corticosteroid treatment was associated with VAP in patients with COVID-19-ARDS. Although VAP was associated with higher 90-day mortality, early corticosteroid treatment was not. Longitudinal randomized controlled trials of early corticosteroids in COVID-19-ARDS requiring MV are warranted.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Distress Syndrome , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , COVID-19/complications , Humans , Intensive Care Units , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/drug therapy , Retrospective Studies , Steroids
19.
Semin Respir Crit Care Med ; 43(3): 346-368, 2022 06.
Article in English | MEDLINE | ID: covidwho-1958550

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure burden by high hospital mortality. No specific pharmacologic treatment is currently available and its ventilatory management is a key strategy to allow reparative and regenerative lung tissue processes. Unfortunately, a poor management of mechanical ventilation can induce ventilation induced lung injury (VILI) caused by physical and biological forces which are at play. Different parameters have been described over the years to assess lung injury severity and facilitate optimization of mechanical ventilation. Indices of lung injury severity include variables related to gas exchange abnormalities, ventilatory setting and respiratory mechanics, ventilation intensity, and the presence of lung hyperinflation versus derecruitment. Recently, specific indexes have been proposed to quantify the stress and the strain released over time using more comprehensive algorithms of calculation such as the mechanical power, and the interaction between driving pressure (DP) and respiratory rate (RR) in the novel DP multiplied by four plus RR [(4 × DP) + RR] index. These new parameters introduce the concept of ventilation intensity as contributing factor of VILI. Ventilation intensity should be taken into account to optimize protective mechanical ventilation strategies, with the aim to reduce intensity to the lowest level required to maintain gas exchange to reduce the potential for VILI. This is further gaining relevance in the current era of phenotyping and enrichment strategies in ARDS.


Subject(s)
Lung Injury , Respiratory Distress Syndrome , Humans , Lung , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Respiratory Mechanics
20.
Curr Opin Crit Care ; 27(3): 303-310, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1956610

ABSTRACT

PURPOSE OF REVIEW: Assess the most recent studies using driving pressure (DP) as a monitoring technique under mechanical ventilation and describe the technical challenges associated with its measurement. RECENT FINDINGS: DP is consistently associated with survival in acute respiratory failure and acute respiratory distress syndrome (ARDS) and can detect patients at higher risk of ventilator-induced lung injury. Its measurement can be challenged by leaks and ventilator dyssynchrony, but is also feasible under pressure support ventilation. Interestingly, an aggregated summary of published results suggests that its level is on average slightly lower in patients with coronavirus disease-19 induced ARDS than in classical ARDS. SUMMARY: The DP is easy to obtain and should be incorporated as a minimal monitoring technique under mechanical ventilation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/diagnosis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL