Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Indoor Air ; 32(6): e13064, 2022 06.
Article in English | MEDLINE | ID: covidwho-1909399


The exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument's bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.

Air Pollution, Indoor , COVID-19 , Respiratory Aerosols and Droplets , Singing , Aerosols/analysis , Air Pollution, Indoor/analysis , COVID-19/transmission , Humans , Music , Pandemics , Respiratory Aerosols and Droplets/virology
Indoor Air ; 32(2): e13000, 2022 02.
Article in English | MEDLINE | ID: covidwho-1714194


The ability to model the dispersion of pathogens in exhaled breath is important for characterizing transmission of the SARS-CoV-2 virus and other respiratory pathogens. A Computational Fluid Dynamics (CFD) model of droplet and aerosol emission during exhalations has been developed and for the first time compared directly with experimental data for the dispersion of respiratory and oral bacteria from ten subjects coughing, speaking, and singing in a small unventilated room. The modeled exhalations consist of a warm, humid, gaseous carrier flow and droplets represented by a discrete Lagrangian particle phase which incorporates saliva composition. The simulations and experiments both showed greater deposition of bacteria within 1 m of the subject, and the potential for a substantial number of bacteria to remain airborne, with no clear difference in airborne concentration of small bioaerosols (<10 µm diameter) between 1 and 2 m. The agreement between the model and the experimental data for bacterial deposition directly in front of the subjects was encouraging given the uncertainties in model input parameters and the inherent variability within and between subjects. The ability to predict airborne microbial dispersion and deposition gives confidence in the ability to model the consequences of an exhalation and hence the airborne transmission of respiratory pathogens such as SARS-CoV-2.

Air Microbiology , Air Pollution, Indoor , COVID-19 , Respiratory Aerosols and Droplets/virology , COVID-19/transmission , Cough , Humans , SARS-CoV-2
Indoor Air ; 32(2): e13002, 2022 02.
Article in English | MEDLINE | ID: covidwho-1700268


The airborne route is the dominant form of COVID-19 transmission, and therefore, the development of methodologies to quantify SARS-CoV-2 in bioaerosols is needed. We aimed to identify SARS-CoV-2 in bioaerosols by using a highly efficient sampler for the collection of 1-3 µm particles, followed by a highly sensitive detection method. 65 bioaerosol samples were collected in hospital rooms in the presence of a COVID-19 patient using a liquid impinger sampler. The SARS-CoV-2 genome was detected by ddPCR using different primer/probe sets. 44.6% of the samples resulted positive for SARS-CoV-2 following this protocol. By increasing the sampled air volume from 339 to 650 L, the percentage of positive samples went from 41% to 50%. We detected five times less positives with a commercial one-step RT-PCR assay. However, the selection of primer/probe sets might be one of the most determining factor for bioaerosol SARS-CoV-2 detection since with the ORF1ab set more than 40% of the samples were positive, compared to <10% with other sets. In conclusion, the use of a liquid impinger collector and ddPCR is an adequate strategy to detect SARS-CoV-2 in bioaerosols. However, there are still some methodological aspects that must be adjusted to optimize and standardize a definitive protocol.

Air Pollution, Indoor , COVID-19 , Respiratory Aerosols and Droplets/virology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Hospitals , Humans , Polymerase Chain Reaction/methods , RNA, Viral/analysis