Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 397
Filter
Add filters

Document Type
Year range
1.
Lancet Respir Med ; 9(5): 522-532, 2021 05.
Article in English | MEDLINE | ID: covidwho-1537199

ABSTRACT

BACKGROUND: Elevated proinflammatory cytokines are associated with greater COVID-19 severity. We aimed to assess safety and efficacy of sarilumab, an interleukin-6 receptor inhibitor, in patients with severe (requiring supplemental oxygen by nasal cannula or face mask) or critical (requiring greater supplemental oxygen, mechanical ventilation, or extracorporeal support) COVID-19. METHODS: We did a 60-day, randomised, double-blind, placebo-controlled, multinational phase 3 trial at 45 hospitals in Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, and Spain. We included adults (≥18 years) admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and pneumonia, who required oxygen supplementation or intensive care. Patients were randomly assigned (2:2:1 with permuted blocks of five) to receive intravenous sarilumab 400 mg, sarilumab 200 mg, or placebo. Patients, care providers, outcome assessors, and investigators remained masked to assigned intervention throughout the course of the study. The primary endpoint was time to clinical improvement of two or more points (seven point scale ranging from 1 [death] to 7 [discharged from hospital]) in the modified intention-to-treat population. The key secondary endpoint was proportion of patients alive at day 29. Safety outcomes included adverse events and laboratory assessments. This study is registered with ClinicalTrials.gov, NCT04327388; EudraCT, 2020-001162-12; and WHO, U1111-1249-6021. FINDINGS: Between March 28 and July 3, 2020, of 431 patients who were screened, 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sarilumab 200 mg (n=159 [38%]), or sarilumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to an improvement of two or more points between placebo (12·0 days [95% CI 9·0 to 15·0]) and sarilumab 200 mg (10·0 days [9·0 to 12·0]; hazard ratio [HR] 1·03 [95% CI 0·75 to 1·40]; log-rank p=0·96) or sarilumab 400 mg (10·0 days [9·0 to 13·0]; HR 1·14 [95% CI 0·84 to 1·54]; log-rank p=0·34), or in proportions of patients alive (77 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sarilumab 200 mg group; difference -1·7 [-9·3 to 5·8]; p=0·63 vs placebo; and 159 [92%] of 173 patients in the sarilumab 400 mg group; difference 0·2 [-6·9 to 7·4]; p=0·85 vs placebo). At day 29, there were numerical, non-significant survival differences between sarilumab 400 mg (88%) and placebo (79%; difference +8·9% [95% CI -7·7 to 25·5]; p=0·25) for patients who had critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sarilumab 200 mg group, and 70% (121 of 173) in the sarilumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sarilumab 200 mg group, and 10% (18 of 173) were in the sarilumab 400 mg group. INTERPRETATION: This trial did not show efficacy of sarilumab in patients admitted to hospital with COVID-19 and receiving supplemental oxygen. Adequately powered trials of targeted immunomodulatory therapies assessing survival as a primary endpoint are suggested in patients with critical COVID-19. FUNDING: Sanofi and Regeneron Pharmaceuticals.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Cytokine Release Syndrome , Receptors, Interleukin-6/antagonists & inhibitors , Respiratory Distress Syndrome , SARS-CoV-2/isolation & purification , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Critical Care/methods , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Dose-Response Relationship, Drug , Drug Monitoring/methods , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , International Cooperation , Male , Middle Aged , Mortality , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Severity of Illness Index , Treatment Outcome
2.
Lancet Respir Med ; 9(5): 511-521, 2021 05.
Article in English | MEDLINE | ID: covidwho-1537197

ABSTRACT

BACKGROUND: Global randomised controlled trials of the anti-IL-6 receptor antibody tocilizumab in patients admitted to hospital with COVID-19 have shown conflicting results but potential decreases in time to discharge and burden on intensive care. Tocilizumab reduced progression to mechanical ventilation and death in a trial population enriched for racial and ethnic minorities. We aimed to investigate whether tocilizumab treatment could prevent COVID-19 progression in the first multicentre randomised controlled trial of tocilizumab done entirely in a lower-middle-income country. METHODS: COVINTOC is an open-label, multicentre, randomised, controlled, phase 3 trial done at 12 public and private hospitals across India. Adults (aged ≥18 years) admitted to hospital with moderate to severe COVID-19 (Indian Ministry of Health grading) confirmed by positive SARS-CoV-2 PCR result were randomly assigned (1:1 block randomisation) to receive tocilizumab 6 mg/kg plus standard care (the tocilizumab group) or standard care alone (the standard care group). The primary endpoint was progression of COVID-19 (from moderate to severe or from severe to death) up to day 14 in the modified intention-to-treat population of all participants who had at least one post-baseline assessment for the primary endpoint. Safety was assessed in all randomly assigned patients. The trial is completed and registered with the Clinical Trials Registry India (CTRI/2020/05/025369). FINDINGS: 180 patients were recruited between May 30, 2020, and Aug 31, 2020, and randomly assigned to the tocilizumab group (n=90) or the standard care group (n=90). One patient randomly assigned to the standard care group inadvertently received tocilizumab at baseline and was included in the tocilizumab group for all analyses. One patient randomly assigned to the standard care group withdrew consent after the baseline visit and did not receive any study medication and was not included in the modified intention-to-treat population but was still included in safety analyses. 75 (82%) of 91 in the tocilizumab group and 68 (76%) of 89 in the standard care group completed 28 days of follow-up. Progression of COVID-19 up to day 14 occurred in eight (9%) of 91 patients in the tocilizumab group and 11 (13%) of 88 in the standard care group (difference -3·71 [95% CI -18·23 to 11·19]; p=0·42). 33 (36%) of 91 patients in the tocilizumab group and 22 (25%) of 89 patients in the standard care group had adverse events; 18 (20%) and 15 (17%) had serious adverse events. The most common adverse event was acute respiratory distress syndrome, reported in seven (8%) patients in each group. Grade 3 adverse events were reported in two (2%) patients in the tocilizumab group and five (6%) patients in the standard care group. There were no grade 4 adverse events. Serious adverse events were reported in 18 (20%) patients in the tocilizumab group and 15 (17%) in the standard care group; 13 (14%) and 15 (17%) patients died during the study. INTERPRETATION: Routine use of tocilizumab in patients admitted to hospital with moderate to severe COVID-19 is not supported. However, post-hoc evidence from this study suggests tocilizumab might still be effective in patients with severe COVID-19 and so should be investigated further in future studies. FUNDING: Medanta Institute of Education and Research, Roche India, Cipla India, and Action COVID-19 India.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Cytokine Release Syndrome , Receptors, Interleukin-6/antagonists & inhibitors , Respiratory Distress Syndrome , SARS-CoV-2/isolation & purification , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Critical Care/methods , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Drug Monitoring/methods , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , India , Male , Middle Aged , Mortality , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Severity of Illness Index , Treatment Outcome
3.
Lancet Respir Med ; 9(5): 487-497, 2021 05.
Article in English | MEDLINE | ID: covidwho-1537196

ABSTRACT

BACKGROUND: Lung transplantation is a life-saving treatment for patients with end-stage lung disease; however, it is infrequently considered for patients with acute respiratory distress syndrome (ARDS) attributable to infectious causes. We aimed to describe the course of disease and early post-transplantation outcomes in critically ill patients with COVID-19 who failed to show lung recovery despite optimal medical management and were deemed to be at imminent risk of dying due to pulmonary complications. METHODS: We established a multi-institutional case series that included the first consecutive transplants for severe COVID-19-associated ARDS known to us in the USA, Italy, Austria, and India. De-identified data from participating centres-including information relating to patient demographics and pre-COVID-19 characteristics, pretransplantation disease course, perioperative challenges, pathology of explanted lungs, and post-transplantation outcomes-were collected by Northwestern University (Chicago, IL, USA) and analysed. FINDINGS: Between May 1 and Sept 30, 2020, 12 patients with COVID-19-associated ARDS underwent bilateral lung transplantation at six high-volume transplant centres in the USA (eight recipients at three centres), Italy (two recipients at one centre), Austria (one recipient), and India (one recipient). The median age of recipients was 48 years (IQR 41-51); three of the 12 patients were female. Chest imaging before transplantation showed severe lung damage that did not improve despite prolonged mechanical ventilation and extracorporeal membrane oxygenation. The lung transplant procedure was technically challenging, with severe pleural adhesions, hilar lymphadenopathy, and increased intraoperative transfusion requirements. Pathology of the explanted lungs showed extensive, ongoing acute lung injury with features of lung fibrosis. There was no recurrence of SARS-CoV-2 in the allografts. All patients with COVID-19 could be weaned off extracorporeal support and showed short-term survival similar to that of transplant recipients without COVID-19. INTERPRETATION: The findings from our report show that lung transplantation is the only option for survival in some patients with severe, unresolving COVID-19-associated ARDS, and that the procedure can be done successfully, with good early post-transplantation outcomes, in carefully selected patients. FUNDING: National Institutes of Health. VIDEO ABSTRACT.


Subject(s)
COVID-19 , Critical Illness/therapy , Lung Transplantation/methods , Lung , Respiratory Distress Syndrome , Blood Transfusion/methods , COVID-19/complications , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/surgery , Critical Care/methods , Extracorporeal Membrane Oxygenation/methods , Female , Humans , Intraoperative Care/methods , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Outcome and Process Assessment, Health Care , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , Respiration, Artificial/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/surgery , SARS-CoV-2/pathogenicity
4.
Surg Infect (Larchmt) ; 22(9): 948-954, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1522102

ABSTRACT

Background: In trauma, direct pulmonary injury and innate immune response activation primes the lungs for acute respiratory distress syndrome (ARDS). The inflammasome-dependent release of interleukin-18 (IL-18) was recently identified as a key mediator in ARDS pathogenesis, leading us to hypothesize that plasma IL-18 is a diagnostic predictor of ARDS in severe blunt trauma. Patients and Methods: Secondary analysis of the Inflammation and Host Response to Injury database was performed on plasma cytokines collected within 12 hours of severe blunt trauma. Trauma-related cytokines, including IL-18, were compared between patients with and without ARDS and were evaluated for association with ARDS using regression analysis. Threshold cytokine concentrations predictive of ARDS were determined using receiver-operating curve (ROC) analysis. Results: Cytokine analysis of patients without ARDS patients (n = 61) compared with patients with ARDS (n = 19) demonstrated elevated plasma IL-18 concentration in ARDS and IL-18 remained correlated with ARDS on logistic regression after confounder adjustment (p = 0.008). Additionally, ROC analysis revealed IL-18 as a strong ARDS predictor (area under the curve [AUC] = 0.83), with a threshold IL-18 value of 170 pg/mL (Youden index, 0.3). Unlike in patients without ARDS, elevated IL-18 persisted in patients with ARDS during the acute injury phase (p ≤ 0.02). Other trauma-related cytokines did not correlate with ARDS. Conclusions: In severe blunt trauma, IL-18 is a robust predictor of ARDS and remains elevated throughout the acute injury phase. These findings support the use of IL-18 as a key ARDS biomarker, promoting early identification of trauma patients at greater risk of developing ARDS. Timely recognition of ARDS and implementation of advantageous supportive care practices may reduce trauma-related ARDS morbidity and costs.


Subject(s)
Respiratory Distress Syndrome , Wounds, Nonpenetrating , Humans , Interleukin-18 , Logistic Models , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Risk Assessment , Wounds, Nonpenetrating/complications , Wounds, Nonpenetrating/diagnosis
5.
Cell Transplant ; 30: 9636897211054481, 2021.
Article in English | MEDLINE | ID: covidwho-1511642

ABSTRACT

Biological and cellular interleukin-6 (IL-6)-related therapies have been used to treat severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure, which prompted further exploration of the role of IL-6 in human umbilical cord mesenchymal stem cell (hUCMSC) therapy. Peripheral blood mononuclear cells (PBMCs) were responders cocultured with hUCMSCs or exogenous IL-6. A PBMC suppression assay was used to analyze the anti-inflammatory effects via MTT assay. The IL-6 concentration in the supernatant was measured using ELISA. The correlation between the anti-inflammatory effect of hUCMSCs and IL-6 levels and the relevant roles of IL-6 and IL-6 mRNA expression was analyzed using the MetaCore functional network constructed from gene microarray data. The location of IL-6 and IL-6 receptor (IL-6R) expression was further evaluated. We reported that hUCMSCs did not initially exert any inhibitory effect on PHA-stimulated proliferation; however, a potent inhibitory effect on PHA-stimulated proliferation was observed, and the IL-6 concentration reached approximately 1000 ng/mL after 72 hours. Exogenous 1000 ng/mL IL-6 inhibited PHA-stimulated inflammation but less so than hUCMSCs. The inhibitory effects of hUCMSCs on PHA-stimulated PBMCs disappeared after adding an IL-6 neutralizing antibody or pretreatment with tocilizumab (TCZ), an IL-6R antagonist. hUCMSCs exert excellent anti-inflammatory effects by inducing higher IL-6 levels, which is different from TCZ. High concentration of IL-6 cytokine secretion plays an important role in the anti-inflammatory effect of hUCMSC therapy. Initial hUCMSC therapy, followed by TCZ, seems to optimize the therapeutic potential to treat COVID-19-related acute respiratory distress syndrome (ARDS).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Interleukin-6/biosynthesis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Cells, Cultured , Coculture Techniques , Combined Modality Therapy , DNA, Complementary/genetics , Gene Expression Regulation/drug effects , Humans , Inflammation , Interleukin-6/genetics , Interleukin-6/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects , Phytohemagglutinins/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/biosynthesis , Receptors, Interleukin-6/genetics , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Umbilical Cord/cytology
7.
Respir Care ; 66(12): 1898-1911, 2021 12.
Article in English | MEDLINE | ID: covidwho-1485304

ABSTRACT

BACKGROUND: Prone positioning is a therapy utilized globally to improve gas exchange, minimize ventilator-induced lung injury, and reduce mortality in ARDS, particularly during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Whereas the respiratory benefits of prone positioning in ARDS have been accepted, the concurrent complications could be undervalued. Therefore, this study aimed to identify the adverse events (AEs) related to prone positioning in ARDS and, secondarily, to collect strategies and recommendations to mitigate these AEs. METHODS: In this scoping review, we searched recommendation documents and original studies published between June 2013 and November 2020 from 6 relevant electronic databases and the websites of intensive care societies. RESULTS: We selected 41 documents from 121 eligible documents, comprising 13 recommendation documents and 28 original studies (involving 1,578 subjects and 994 prone maneuvers). We identified > 40 individual AEs, and the highest-pooled occurrence rates were those of severe desaturation (37.9%), barotrauma (30.5%), pressure sores (29.7%), ventilation-associated pneumonia (28.2%), facial edema (16.7%), arrhythmia (15.4%), hypotension (10.2%), and peripheral nerve injuries (8.1%). The reported mitigation strategies during prone positioning included alternate face rotation (18 [43.9%]), repositioning every 2 h (17 [41.5%]), and the use of pillows under the chest and pelvis (14 [34.1%]). The reported mitigation strategies for performing the prone maneuver comprised one person being at the headboard (23 [56.1%]), the use of a pre-maneuver safety checklist (18 [43.9%]), vital sign monitoring (15 [36.6%]), and ensuring appropriate ventilator settings (12 [29.3%]). CONCLUSIONS: We identified > 40 AEs reported in prone positioning ARDS studies, including additional AEs not yet reported by previous systematic reviews. The pooled AE proportions collected in this review could guide research and clinical practice decisions, and the strategies to mitigate AEs could promote future consensus-based recommendations.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Humans , Patient Positioning , Prone Position , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
8.
Front Immunol ; 12: 752612, 2021.
Article in English | MEDLINE | ID: covidwho-1456293

ABSTRACT

Background: Lymphopenia and the neutrophil/lymphocyte ratio may have prognostic value in COVID-19 severity. Objective: We investigated neutrophil subsets and functions in blood and bronchoalveolar lavage (BAL) of COVID-19 patients on the basis of patients' clinical characteristics. Methods: We used a multiparametric cytometry profiling based to mature and immature neutrophil markers in 146 critical or severe COVID-19 patients. Results: The Discovery study (38 patients, first pandemic wave) showed that 80% of Intensive Care Unit (ICU) patients develop strong myelemia with CD10-CD64+ immature neutrophils (ImNs). Cellular profiling revealed three distinct neutrophil subsets expressing either the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the interleukin-3 receptor alpha (CD123), or programmed death-ligand 1 (PD-L1) overrepresented in ICU patients compared to non-ICU patients. The proportion of LOX-1- or CD123-expressing ImNs is positively correlated with clinical severity, cytokine storm (IL-1ß, IL-6, IL-8, TNFα), acute respiratory distress syndrome (ARDS), and thrombosis. BALs of patients with ARDS were highly enriched in LOX-1-expressing ImN subsets and in antimicrobial neutrophil factors. A validation study (118 patients, second pandemic wave) confirmed and strengthened the association of the proportion of ImN subsets with disease severity, invasive ventilation, and death. Only high proportions of LOX-1-expressing ImNs remained strongly associated with a high risk of severe thrombosis independently of the plasma antimicrobial neutrophil factors, suggesting an independent association of ImN markers with their functions. Conclusion: LOX-1-expressing ImNs may help identifying COVID-19 patients at high risk of severity and thrombosis complications.


Subject(s)
COVID-19/complications , Neutrophils/immunology , Scavenger Receptors, Class E/genetics , Thrombosis/etiology , Adult , Aged , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Critical Illness , Female , Humans , Interleukin-3 Receptor alpha Subunit/genetics , Interleukin-3 Receptor alpha Subunit/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/immunology , SARS-CoV-2/physiology , Scavenger Receptors, Class E/immunology , Thrombosis/genetics , Thrombosis/immunology
9.
Anaesthesist ; 70(7): 573-581, 2021 07.
Article in German | MEDLINE | ID: covidwho-1453676

ABSTRACT

BACKGROUND: In a pandemic situation the overall mortality rate is of considerable interest; however, these data must always be seen in relation to the given healthcare system and the availability of local level of care. A recently published German data evaluation of more than 10,000 COVID-19 patients treated in 920 hospitals showed a high mortality rate of 22% in hospitalized patients and of more than 50% in patients requiring invasive ventilation. Because of the high infection rates in Bavaria, a large number of COVID-19 patients with considerable severity of disease were treated at the intensive care units of the LMU hospital. The LMU hospital is a university hospital and a specialized referral center for the treatment of patients with acute respiratory distress syndrome (ARDS). OBJECTIVE: Data of LMU intensive care unit (ICU) patients were systematically evaluated and compared with the recently published German data. METHODS: Data of all COVID-19 patients with invasive and noninvasive ventilation and with completed admission at the ICU of the LMU hospital until 31 July 2020 were collected. Data were processed using descriptive statistics. RESULTS: In total 70 critically ill patients were included in the data evaluation. The median SAPS II on admission to the ICU was 62 points. The median age was 66 years and 81% of the patients were male. More than 90% were diagnosed with ARDS and received invasive ventilation. Treatment with extracorporeal membrane oxygenation (ECMO) was necessary in 10% of the patients. The median duration of ventilation was 16 days, whereby 34.3% of patients required a tracheostomy. Of the patients 27.1% were transferred to the LMU hospital from external hospitals with reference to our ARDS/ECMO program. Patients from external hospitals had ARDS of higher severity than the total study population. In total, nine different substances were used for virus-specific treatment of COVID-19. The most frequently used substances were hydroxychloroquine and azithromycin. Immunomodulatory treatment, such as Cytosorb® (18.6%) and methylprednisolone (25.7%) were also frequently used. The overall in-hospital mortality rate of ICU patients requiring ventilation was 28.6%. The mortality rates of patients from external hospitals, patients with renal replacement therapy and patients with ECMO therapy were 47.4%, 56.7% and 85.7%, respectively. CONCLUSION: The mortality rate in the ventilated COVID-19 intensive care patients was considerably different from the general rate in Germany. The data showed that treatment in an ARDS referral center could result in a lower mortality rate. Low-dose administration of steroids may be another factor to improve patient outcome in a preselected patient population. In the authors' opinion, critically ill COVID-19 patients should be treated in an ARDS center provided that sufficient resources are available.


Subject(s)
COVID-19/therapy , Respiration, Artificial/statistics & numerical data , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/mortality , Critical Illness/therapy , Extracorporeal Membrane Oxygenation , Female , Germany , Hospital Mortality , Hospitals, University , Humans , Immunologic Factors/therapeutic use , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Patient Transfer , Renal Replacement Therapy/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Treatment Outcome
10.
Anaesthesist ; 70(2): 121-126, 2021 Feb.
Article in German | MEDLINE | ID: covidwho-1453674

ABSTRACT

A 59-year-old male patient was admitted to hospital diagnosed with moderate pneumonia associated with COVID-19. Upfront treatment with hydroxychloroquine and azithromycin was started. Due to a clinical deterioration (ARDS, circulatory shock) and greatly increased inflammation markers 6 days after admission, a cytokine storm was suspected and off-label treatment with the IL­6 receptor antagonist tocilizumab was initiated. Subsequently there was a dramatic rise of D­dimers indicating pulmonary intravascular coagulopathy and respiratory insufficiency worsened. After a second dose of tocilizumab was administered severe perimyocarditis with cardiac arrhythmia, hemodynamic instability and ST elevation occurred. Shortly afterwards the patient died due to multiorgan failure. From our experience, exacerbation of COVID-19 following treatment with tocilizumab cannot be ruled out. Randomized controlled studies are necessary to further investigate the efficacy, safety and patient selection criteria for tocilizumab treatment in COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Blood Coagulation Disorders/etiology , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Myocarditis/etiology , Receptors, Interleukin-6/antagonists & inhibitors , Fatal Outcome , Humans , Male , Middle Aged , Multiple Organ Failure/etiology , Off-Label Use , Respiratory Distress Syndrome/etiology , Respiratory Insufficiency , Treatment Outcome
12.
Arch Argent Pediatr ; 119(5): e531-e535, 2021 10.
Article in English, Spanish | MEDLINE | ID: covidwho-1441337

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the first pandemic of the 21st century. SARS-CoV-2 infection is mainly transmitted via droplets. Although some cases of perinatal transmission have been reported, it is unclear whether these infections occurred via transplacental or transcervical routes or via environmental exposure. Herein, we present the case of a newborn who died with neonatal acute respiratory distress syndrome exhibiting severe pulmonary involvement. The baby was born to a COVID-19 PCR (+) mother by C-section and was found to be COVID-19 PCR (+) from a nasopharyngeal swab sample tested within 24 hours of birth due to the suspected transplacental transmission of SARS-CoV-2 from the mother to the fetus.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Respiratory Distress Syndrome , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , SARS-CoV-2
13.
PLoS One ; 16(9): e0257056, 2021.
Article in English | MEDLINE | ID: covidwho-1438346

ABSTRACT

We present an interpretable machine learning algorithm called 'eARDS' for predicting ARDS in an ICU population comprising COVID-19 patients, up to 12-hours before satisfying the Berlin clinical criteria. The analysis was conducted on data collected from the Intensive care units (ICU) at Emory Healthcare, Atlanta, GA and University of Tennessee Health Science Center, Memphis, TN and the Cerner® Health Facts Deidentified Database, a multi-site COVID-19 EMR database. The participants in the analysis consisted of adults over 18 years of age. Clinical data from 35,804 patients who developed ARDS and controls were used to generate predictive models that identify risk for ARDS onset up to 12-hours before satisfying the Berlin criteria. We identified salient features from the electronic medical record that predicted respiratory failure among this population. The machine learning algorithm which provided the best performance exhibited AUROC of 0.89 (95% CI = 0.88-0.90), sensitivity of 0.77 (95% CI = 0.75-0.78), specificity 0.85 (95% CI = 085-0.86). Validation performance across two separate health systems (comprising 899 COVID-19 patients) exhibited AUROC of 0.82 (0.81-0.83) and 0.89 (0.87, 0.90). Important features for prediction of ARDS included minimum oxygen saturation (SpO2), standard deviation of the systolic blood pressure (SBP), O2 flow, and maximum respiratory rate over an observational window of 16-hours. Analyzing the performance of the model across various cohorts indicates that the model performed best among a younger age group (18-40) (AUROC = 0.93 [0.92-0.94]), compared to an older age group (80+) (AUROC = 0.81 [0.81-0.82]). The model performance was comparable on both male and female groups, but performed significantly better on the severe ARDS group compared to the mild and moderate groups. The eARDS system demonstrated robust performance for predicting COVID19 patients who developed ARDS at least 12-hours before the Berlin clinical criteria, across two independent health systems.


Subject(s)
COVID-19 , Machine Learning , Models, Biological , Respiratory Distress Syndrome , SARS-CoV-2/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , COVID-19/physiopathology , Critical Illness , Female , Humans , Male , Medical Records Systems, Computerized , Middle Aged , Oxygen/blood , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Respiratory Rate , Risk Factors
14.
Respir Care ; 66(12): 1797-1804, 2021 12.
Article in English | MEDLINE | ID: covidwho-1436182

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic increased the number of patients needing invasive mechanical ventilation, either through an endotracheal tube or through a tracheostomy. Tracheomalacia is a rare but potentially severe complication of mechanical ventilation, which can significantly complicate the weaning process. The aim of this study was to describe the strategies of airway management in mechanically ventilated patients with respiratory failure due to SARS-CoV-2, the incidence of severe tracheomalacia, and investigate the factors associated with its occurrence. METHODS: This retrospective, single-center study was performed in an Italian teaching hospital. All adult subjects admitted to the ICU between February 24, 2020, and June 30, 2020, treated with invasive mechanical ventilation for respiratory failure caused by SARS-CoV-2 were included. Clinical data were collected on the day of ICU admission, whereas information regarding airway management was collected daily. RESULTS: A total of 151 subjects were included in the study. On admission, ARDS severity was mild in 21%, moderate in 62%, and severe in 17% of the cases, with an overall mortality of 40%. A tracheostomy was performed in 73 (48%), open surgical technique in 54 (74%), and percutaneous Ciaglia technique in 19 (26%). Subjects who had a tracheostomy performed had, compared to the other subjects, a longer duration of mechanical ventilation and longer ICU and hospital stay. Tracheomalacia was diagnosed in 8 (5%). The factors associated with tracheomalacia were female sex, obesity, and tracheostomy. CONCLUSIONS: In our population, approximately 50% of subjects with ARDS due to SARS-CoV-2 were tracheostomized. Tracheostomized subjects had a longer ICU and hospital stay. In our population, 5% were diagnosed with tracheomalacia. This percentage is 10 times higher than what is reported in available literature, and the underlying mechanisms are not fully understood.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Tracheomalacia , Adult , Female , Humans , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies , SARS-CoV-2 , Tracheostomy/adverse effects
15.
Crit Care Clin ; 37(4): 777-793, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1433018

ABSTRACT

Reports examining lung histopathology in coronavirus disease 2019 (COVID-19) infection provide an essential body of information for clinicians and investigators. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced lung injury is complex, involving the airways, alveoli, and pulmonary vessels. Although no anatomic marker is specific, the signature histologic lesion is diffuse alveolar damage (DAD). The biological and molecular mechanisms that drive this pattern of injury are unknown, and the relationship of SARS-CoV-2-induced DAD to physiologic alterations and clinical outcomes in COVID-19-associated acute respiratory distress syndrome is undefined. Additional histologic patterns that may be variant phenotypes have been reported.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung , Respiratory Distress Syndrome/etiology , SARS-CoV-2
16.
Crit Care Clin ; 37(4): 749-776, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1433017

ABSTRACT

The pathophysiology of acute respiratory distress syndrome (ARDS) is marked by inflammation-mediated disruptions in alveolar-capillary permeability, edema formation, reduced alveolar clearance and collapse/derecruitment, reduced compliance, increased pulmonary vascular resistance, and resulting gas exchange abnormalities due to shunting and ventilation-perfusion mismatch. Mechanical ventilation, especially in the setting of regional disease heterogeneity, can propagate ventilator-associated injury patterns including barotrauma/volutrauma and atelectrauma. Lung injury due to the novel coronavirus SARS-CoV-2 resembles other causes of ARDS, though its initial clinical characteristics may include more profound hypoxemia and loss of dyspnea perception with less radiologically-evident lung injury, a pattern not described previously in ARDS.


Subject(s)
COVID-19 , Lung Injury , Respiratory Distress Syndrome , Humans , Lung , Lung Injury/etiology , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
17.
Crit Care Clin ; 37(4): 733-748, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1414518

ABSTRACT

Acute respiratory distress syndrome is a common condition among critically ill patients, but remains under-recognized and undertreated. Under-recognition may result from confusion over the clinical inclusion criteria, as well as a misunderstanding of the complex relationship between the clinical syndrome, the variable histopathologic patterns, and the myriad clinical disorders that cause acute respiratory distress syndrome. The identification of the clinical syndrome and determination of the causal diagnosis are both required to optimize patient outcomes. Here we review the definition, discuss pitfalls in recognizing acute respiratory distress syndrome and consider an approach to ascertain specific etiologies of acute respiratory distress syndrome.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
18.
Crit Care ; 25(1): 340, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1412755

ABSTRACT

BACKGROUND: Awake prone positioning (APP) is widely used in the management of patients with coronavirus disease (COVID-19). The primary objective of this study was to compare the outcome of COVID-19 patients who received early versus late APP. METHODS: Post hoc analysis of data collected for a randomized controlled trial (ClinicalTrials.gov NCT04325906). Adult patients with acute hypoxemic respiratory failure secondary to COVID-19 who received APP for at least one hour were included. Early prone positioning was defined as APP initiated within 24 h of high-flow nasal cannula (HFNC) start. Primary outcomes were 28-day mortality and intubation rate. RESULTS: We included 125 patients (79 male) with a mean age of 62 years. Of them, 92 (73.6%) received early APP and 33 (26.4%) received late APP. Median time from HFNC initiation to APP was 2.25 (0.8-12.82) vs 36.35 (30.2-75.23) hours in the early and late APP group (p < 0.0001), respectively. Average APP duration was 5.07 (2.0-9.05) and 3.0 (1.09-5.64) hours per day in early and late APP group (p < 0.0001), respectively. The early APP group had lower mortality compared to the late APP group (26% vs 45%, p = 0.039), but no difference was found in intubation rate. Advanced age (OR 1.12 [95% CI 1.0-1.95], p = 0.001), intubation (OR 10.65 [95% CI 2.77-40.91], p = 0.001), longer time to initiate APP (OR 1.02 [95% CI 1.0-1.04], p = 0.047) and hydrocortisone use (OR 6.2 [95% CI 1.23-31.1], p = 0.027) were associated with increased mortality. CONCLUSIONS: Early initiation (< 24 h of HFNC use) of APP in acute hypoxemic respiratory failure secondary to COVID-19 improves 28-day survival. Trial registration ClinicalTrials.gov NCT04325906.


Subject(s)
COVID-19/therapy , Oxygen Inhalation Therapy , Prone Position , Respiratory Distress Syndrome/therapy , Wakefulness , COVID-19/complications , COVID-19/mortality , Female , Humans , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Time-to-Treatment
19.
Crit Care ; 25(1): 335, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412565

ABSTRACT

BACKGROUND: Coronavirus disease 19 (COVID-19)-associated pulmonary aspergillosis (CAPA) emerged as important fungal complications in patients with COVID-19-associated severe acute respiratory failure (ARF). Whether mould active antifungal prophylaxis (MAFP) can prevent CAPA remains elusive so far. METHODS: In this observational study, we included all consecutive patients admitted to intensive care units with COVID-19-associated ARF between September 1, 2020, and May 1, 2021. We compared patients with versus without antifungal prophylaxis with respect to CAPA incidence (primary outcome) and mortality (secondary outcome). Propensity score adjustment was performed to account for any imbalances in baseline characteristics. CAPA cases were classified according to European Confederation of Medical Mycology (ECMM)/International Society of Human and Animal Mycoses (ISHAM) consensus criteria. RESULTS: We included 132 patients, of whom 75 (57%) received antifungal prophylaxis (98% posaconazole). Ten CAPA cases were diagnosed, after a median of 6 days following ICU admission. Of those, 9 CAPA cases were recorded in the non-prophylaxis group and one in the prophylaxis group, respectively. However, no difference in 30-day ICU mortality could be observed. Thirty-day CAPA incidence estimates were 1.4% (95% CI 0.2-9.7) in the MAFP group and 17.5% (95% CI 9.6-31.4) in the group without MAFP (p = 0.002). The respective subdistributional hazard ratio (sHR) for CAPA incidence comparing the MAFP versus no MAFP group was of 0.08 (95% CI 0.01-0.63; p = 0.017). CONCLUSION: In ICU patients with COVID-19 ARF, antifungal prophylaxis was associated with significantly reduced CAPA incidence, but this did not translate into improved survival. Randomized controlled trials are warranted to evaluate the efficacy and safety of MAFP with respect to CAPA incidence and clinical outcomes.


Subject(s)
Antifungal Agents/therapeutic use , COVID-19/complications , Pulmonary Aspergillosis/prevention & control , Aged , COVID-19/mortality , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/mortality , Triazoles/therapeutic use
20.
Eur Respir Rev ; 30(161)2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1412449

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious complication of severe systemic or local pulmonary inflammation, such as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ARDS is characterised by diffuse alveolar damage that leads to protein-rich pulmonary oedema, local alveolar hypoventilation and atelectasis. Inadequate perfusion of these areas is the main cause of hypoxaemia in ARDS. High perfusion in relation to ventilation (V/Q<1) and shunting (V/Q=0) is not only caused by impaired hypoxic pulmonary vasoconstriction but also redistribution of perfusion from obstructed lung vessels. Rebalancing the pulmonary vascular tone is a therapeutic challenge. Previous clinical trials on inhaled vasodilators (nitric oxide and prostacyclin) to enhance perfusion to high V/Q areas showed beneficial effects on hypoxaemia but not on mortality. However, specific patient populations with pulmonary hypertension may profit from treatment with inhaled vasodilators. Novel treatment targets to decrease perfusion in low V/Q areas include epoxyeicosatrienoic acids and specific leukotriene receptors. Still, lung protective ventilation and prone positioning are the best available standard of care. This review focuses on disturbed perfusion in ARDS and aims to provide basic scientists and clinicians with an overview of the vascular alterations and mechanisms of V/Q mismatch, current therapeutic strategies, and experimental approaches.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , Humans , Hypoxia , Lung/physiopathology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Vasoconstriction
SELECTION OF CITATIONS
SEARCH DETAIL
...