Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
Add filters

Document Type
Year range
1.
Crit Care ; 25(1): 390, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1518286

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by lung inflammation and pulmonary edema. Coronavirus disease 2019 (COVID-19) is associated with ARDS in the more severe cases. This study aimed to compare the specificity of the metabolic alterations induced by COVID-19 or Influenza A pneumonia (IAP) in ARDS. METHODS: Eighteen patients with ARDS due to COVID-19 and twenty patients with ARDS due to IAP, admitted to the intensive care unit. ARDS was defined as in the American-European Consensus Conference. As compared with patients with COVID-19, patients with IAP were younger and received more often noradrenaline to maintain a mean arterial pressure > 65 mm Hg. Serum samples were analyzed by Nuclear Magnetic Resonance Spectroscopy. Multivariate Statistical Analyses were used to identify metabolic differences between groups. Metabolic pathway analysis was performed to identify the most relevant pathways involved in ARDS development. RESULTS: ARDS due to COVID-19 or to IAP induces a different regulation of amino acids metabolism, lipid metabolism, glycolysis, and anaplerotic metabolism. COVID-19 causes a significant energy supply deficit that induces supplementary energy-generating pathways. In contrast, IAP patients suffer more marked inflammatory and oxidative stress responses. The classificatory model discriminated against the cause of pneumonia with a success rate of 100%. CONCLUSIONS: Our findings support the concept that ARDS is associated with a characteristic metabolomic profile that may discriminate patients with ARDS of different etiologies, being a potential biomarker for the diagnosis, prognosis, and management of this condition.


Subject(s)
COVID-19/metabolism , Influenza A Virus, H1N1 Subtype , Influenza, Human/metabolism , Respiratory Distress Syndrome/metabolism , Adult , Aged , COVID-19/complications , Female , Humans , Influenza, Human/complications , Male , Middle Aged , Respiratory Distress Syndrome/virology
2.
BMC Pulm Med ; 21(1): 354, 2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1505545

ABSTRACT

BACKGROUND: Intravenous immunoglobulin (IVIG) has been used as an immunomodulatory therapy to counteract severe systemic inflammation in coronavirus disease 2019 (COVID-19). But its use in COVID-19 related acute respiratory distress syndrome (ARDS) is not well established. METHODS: We conducted a retrospective analysis of electronic health records of COVID-19 patients admitted to intensive care units (ICUs) at Hazm Mebaireek General Hospital, Qatar, between March 7, 2020 and September 9, 2020. Patients receiving invasive mechanical ventilation for moderate-to-severe ARDS were divided into two groups based on whether they received IVIG therapy or not. The primary outcome was all-cause ICU mortality. Secondary outcomes studied were ventilator-free days and ICU-free days at day-28, and incidence of acute kidney injury (AKI). Propensity score matching was used to adjust for confounders, and the primary outcome was compared using competing-risks survival analysis. RESULTS: Among 590 patients included in the study, 400 received routine care, and 190 received IVIG therapy in addition to routine care. One hundred eighteen pairs were created after propensity score matching with no statistically significant differences between the groups. Overall ICU mortality in the study population was 27.1%, and in the matched cohort, it was 25.8%. Mortality was higher among IVIG-treated patients (36.4% vs. 15.3%; sHR 3.5; 95% CI 1.98-6.19; P < 0.001). Ventilator-free days and ICU-free days at day-28 were lower (P < 0.001 for both), and incidence of AKI was significantly higher (85.6% vs. 67.8%; P = 0.001) in the IVIG group. CONCLUSION: IVIG therapy in mechanically ventilated patients with COVID-19 related moderate-to-severe ARDS was associated with higher ICU mortality. A randomized clinical trial is needed to confirm this observation further.


Subject(s)
COVID-19/drug therapy , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Respiratory Distress Syndrome/drug therapy , Administration, Intravenous , Adult , Aged , COVID-19/complications , COVID-19/mortality , Female , Humans , Male , Middle Aged , Propensity Score , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , Retrospective Studies , Severity of Illness Index , Survival Analysis , Treatment Outcome
3.
Am J Respir Crit Care Med ; 204(9): 1024-1034, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1495777

ABSTRACT

Rationale: ACE2 (angiotensin-converting enzyme 2), the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is expressed in type 2 alveolar epithelial cells (AT2) that may play key roles in postinjury repair. An imbalance between ACE2 and ACE has also been hypothesized to contribute to lung injury. Objectives: To characterize the expression and distribution of ACE2 and ACE and to compare AT2 with endothelial cell expression in coronavirus disease (COVID-19)-related or -unrelated acute respiratory distress syndrome (ARDS) and controls. Methods: Lung tissue stainings (using multiplex immunofluorescence) and serum concentrations of ACEs were determined retrospectively in two different cohorts of patients. AT2 and endothelial cells were stained in lung tissue for ProSPC (pro-surfactant protein C) and CD31, respectively. Measurements and Main Results: Pulmonary ACE2 expression was increased in patients with COVID-19-related and -unrelated ARDS (0.06% of tissue area and 0.12% vs. 0.006% for control subjects; P = 0.013 and P < 0.0001, respectively). ACE2 was upregulated in endothelial cells (0.32% and 0.53% vs. 0.01%; P = 0.009 and P < 0.0001) but not in AT2 cells (0.13% and 0.08% vs. 0.03%; P = 0.94 and P = 0.44). Pulmonary expression of ACE was decreased in both COVID-19-related and -unrelated ARDS (P = 0.057 and P = 0.032). Similar increases in ACE2 and decreases in ACE were observed in sera of COVID-19 (P = 0.0054 and P < 0.0001) and non-COVID-19 ARDS (P < 0.0001 and P = 0.016). In addition, AT2 cells were decreased in patients with COVID-19-related ARDS compared with COVID-19-unrelated ARDS (1.395% vs. 2.94%, P = 0.0033). Conclusions: ACE2 is upregulated in lung tissue and serum of both COVID-19-related and -unrelated ARDS, whereas a loss of AT2 cells is selectively observed in COVID-19-related ARDS.


Subject(s)
Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Peptidyl-Dipeptidase A/metabolism , Respiratory Distress Syndrome/metabolism , Adult , Aged , Biomarkers/metabolism , COVID-19/diagnosis , COVID-19/physiopathology , Case-Control Studies , Female , Humans , Immunohistochemistry , Logistic Models , Male , Middle Aged , Proportional Hazards Models , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Retrospective Studies , Severity of Illness Index , Up-Regulation
4.
J Cell Mol Med ; 25(22): 10554-10564, 2021 11.
Article in English | MEDLINE | ID: covidwho-1462824

ABSTRACT

Acute respiratory distress syndrome (ARDS) is the most common cause of death in COVID-19 patients. The cytokine storm is the main driver of the severity and magnitude of ARDS. Placenta-derived decidua stromal cells (DSCs) have a stronger immunosuppressive effect than other sources of mesenchymal stromal cells. Safety and efficacy study included 10 patients with a median age of 50 (range 14-68) years with COVID-19-induced ARDS. DSCs were administered 1-2 times at a dose of 1 × 106 /kg. End points were safety and efficacy by survival, oxygenation and effects on levels of cytokines. Oxygenation levels increased from a median of 80.5% (range 69-88) to 95% (range 78-99) (p = 0.012), and pulmonary infiltrates disappeared in all patients. Levels of IL-6 decreased from a median of 69.3 (range 35.0-253.4) to 11 (range 4.0-38.3) pg/ml (p = 0.018), and CRP decreased from 69 (range 5-169) to 6 (range 2-31) mg/ml (p = 0.028). Two patients died, one of a myocardial infarction and the other of multiple organ failure, diagnosed before the DSC therapy. The other patients recovered and left the intensive care unit (ICU) within a median of 6 (range 3-12) days. DSC therapy is safe and capable of improving oxygenation, decreasing inflammatory cytokine level and clearing pulmonary infiltrates in patients with COVID-19.


Subject(s)
COVID-19/drug therapy , Cell Transplantation/methods , Cytokine Release Syndrome/therapy , Respiratory Distress Syndrome/virology , Stromal Cells/transplantation , Adolescent , Adult , Aged , COVID-19/complications , COVID-19/therapy , Cell Transplantation/adverse effects , Cytokine Release Syndrome/etiology , Cytokines/blood , Female , Humans , Length of Stay , Male , Middle Aged , Placenta/cytology , Pregnancy , Respiratory Distress Syndrome/therapy , Stromal Cells/physiology , Treatment Outcome
7.
Ther Adv Respir Dis ; 15: 17534666211042533, 2021.
Article in English | MEDLINE | ID: covidwho-1440885

ABSTRACT

OBJECTIVE: The aim of our study was to assess the effect of a short-term treatment with low-moderate corticosteroid (CS) doses by both a quantitative and qualitative assessment of chest HRCT of COVID-19 pneumonia. METHODS: CORTICOVID is a single-center, cross-sectional, retrospective study involving severe/critical COVID-19 patients with mild/moderate ARDS. Lung total severity score was obtained according to Chung and colleagues. Moreover, the relative percentages of lung total severity score by ground glass opacities, consolidations, crazy paving, and linear bands were computed. Chest HRCT scores, P/F ratio, and laboratory parameters were evaluated before (pre-CS) and 7-10 days after (post-CS) methylprednisolone of 0.5-0.8 mg/kg/day. FINDINGS: A total of 34 severe/critical COVID-19 patients were included in the study, of which 17 received Standard of Care (SoC) and 17 CS therapy in add-on. CS treatment disclosed a significant decrease in HRCT total severity score [median = 6 (IQR: 5-7.5) versus 10 (IQR: 9-13) in SoC, p < 0.001], as well in single consolidations [median = 0.33 (IQR: 0-0.92) versus 6.73 (IQR: 2.49-8.03) in SoC, p < 0.001] and crazy paving scores [mean = 0.19 (SD = 0.53) versus 1.79 (SD = 2.71) in SoC, p = 0.010], along with a significant increase in linear bands [mean = 2.56 (SD = 1.65) versus 0.97 (SD = 1.30) in SoC, p = 0.006]. GGO score instead did not significantly differ at the end of treatment between the two groups. Most post-CS GGO, however, derived from previous consolidations and crazy paving [median = 1.5 (0.35-3.81) versus 2 (1.25-3.8) pre-CS; p = 0.579], while pre-CS GGO significantly decreased after methylprednisolone therapy [median = 0.66 (0.05-1.33) versus 1.5 (0.35-3.81) pre-CS; p = 0.004]. CS therapy further determined a significant improvement in P/F levels [median P/F = 310 (IQR: 235.5-370) versus 136 (IQR: 98.5-211.75) in SoC; p < 0.001], and a significant increase in white blood cells, lymphocytes, and neutrophils absolute values. CONCLUSION: The improvement of all chest HRCT findings further supports the role of CS adjunctive therapy in severe/critical COVID-19 pneumonia.


Subject(s)
COVID-19/complications , Glucocorticoids/administration & dosage , Methylprednisolone/administration & dosage , Pneumonia, Viral/drug therapy , Tomography, X-Ray Computed , COVID-19/diagnostic imaging , COVID-19/drug therapy , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Lung/diagnostic imaging , Lung/virology , Male , Middle Aged , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/virology , Retrospective Studies , Severity of Illness Index , Treatment Outcome
8.
Transplant Proc ; 53(8): 2495-2497, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1440386

ABSTRACT

We report 2 cases of bilateral lung transplantation for nonresolving coronavirus disease 2019 associated respiratory failure. In the first patient, the severe acute respiratory syndrome coronavirus 2 infection caused acute respiratory distress syndrome requiring prolonged extracorporeal membrane oxygenation support; in the second patient, coronavirus disease 2019 resulted in irreversible pulmonary fibrosis requiring only ventilatory support. The 2 cases represent the 2 ends of the spectrum showing significant differences in preoperative and postoperative courses.


Subject(s)
COVID-19 , Lung Transplantation , Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , Humans , Male , Middle Aged , Respiratory Distress Syndrome/surgery , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/surgery , Respiratory Insufficiency/virology
10.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
11.
JBJS Case Connect ; 11(3)2021 09 17.
Article in English | MEDLINE | ID: covidwho-1430596

ABSTRACT

CASE: Throughout the COVID-19 pandemic, prone positioning has decreased mortality in patients with severe acute respiratory distress syndrome. We present the unique case of a patient who developed left median nerve mononeuropathy and bilateral meralgia paresthetica after prone positioning while afflicted with COVID-19. These nerve injuries have been rarely reported in the literature and never before in the same patient. CONCLUSION: Our case highlights the importance of increased care when positioning patients prone by padding bony prominences, evenly distributing pressure across known sites of peripheral nerve entrapment, and giving consideration to prone-positioning time intervals when caring for intubated patients.


Subject(s)
COVID-19/complications , Femoral Neuropathy/virology , Median Neuropathy/virology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Aged , COVID-19/virology , Humans , Male , Median Nerve/virology , Prone Position
12.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1430194

ABSTRACT

There have been a few reports of successful lung transplantation (LTx) in patients with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS); however, all reports were with rather short follow-up. Here we present a 62-year-old man without prior lung diseases. Following SARS-CoV-2-induced ARDS and 6 months of extracorporeal membrane oxygenation, he underwent LTx. 3 months post-transplantation he developed acute hypoxia requiring emergency intubation. Chest imaging showed acute rejection, and de novo DQ8-DSA was discovered. He was treated with a high dose of corticosteroids and plasmapheresis and was extubated 4 days later, yet the de novo DQ8-DSA remained. After sessions of plasmapheresis and rituximab, the levels of de novo DQ8-DSA remained unchanged. Nine months post-transplantation the patient died of respiratory failure. We herein discuss the decision to transplant, the transplantation itself and the postoperative course with severe antibody-mediated rejection. In addition, we evaluated the histological changes of the explanted lungs and compared these with end-stage idiopathic pulmonary fibrosis tissue, where both similarities and differences are seen. With the current case experience, one might consider close monitoring regarding DSA, and gives further support that LTx should only be considered for very carefully selected patients.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Graft Rejection/virology , Lung Transplantation , Respiratory Distress Syndrome , COVID-19/complications , Fatal Outcome , Humans , Lung Transplantation/adverse effects , Male , Middle Aged , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology
13.
Nursing ; 51(7): 44-47, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1393335

ABSTRACT

ABSTRACT: Prone positioning is a recommended therapy for patients with COVID-19 who develop acute respiratory distress syndrome. This article describes the creation, operation, and evolution of the pronation therapy team at the author's Veterans Affairs facility.


Subject(s)
COVID-19/complications , Hospitals, Veterans/organization & administration , Patient Care Team/organization & administration , Patient Positioning/methods , Respiratory Distress Syndrome/therapy , COVID-19/epidemiology , Humans , New Jersey/epidemiology , Prone Position , Respiratory Distress Syndrome/virology
14.
Intensive Care Med ; 47(3): 342-343, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1384371
15.
J Med Case Rep ; 15(1): 444, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1388824

ABSTRACT

BACKGROUND: We present an unusual bleeding complication in a patient with severe acute respiratory distress syndrome in coronavirus disease 2019. CASE PRESENTATION: The patient, a 63-year-old Caucasian man, received venovenous extracorporeal membrane oxygenation support after rapid deterioration of lung function on day 6 after admission to hospital. After initial stabilization on lung protective ventilation and prone positioning, he started to develop mild bleeding complications until he went into occult profound hemorrhagic shock. Causative was a massive hemothorax of the right hemithorax with mediastinal shifting due to spontaneous bleeding from a pulmonal artery in a heavily remodeled right inferior lobe. Histopathological examination of the resected tissue showed signs of an organizing fibrinous pneumonia with focal parenchyma necrosis. After surviving a massive bleeding event caused by necrotizing pneumonia, the patient made a swift recovery and was discharged to rehabilitation 31 days after initial hospital admission. CONCLUSIONS: The combination of severely elevated inflammatory markers and pulmonary hemorrhage should arouse suspicion of necrotizing pneumonia. In necrotizing pneumonia, the possibility of severe intrathoracic bleeding complications should be kept in mind if it comes to sudden deterioration of the patient.


Subject(s)
COVID-19 , Hemothorax , Pneumonia, Necrotizing , Respiratory Distress Syndrome , COVID-19/complications , Hemothorax/virology , Humans , Male , Middle Aged , Pneumonia, Necrotizing/virology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...