Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
1.
Lancet Respir Med ; 9(12): 1377-1386, 2021 12.
Article in English | MEDLINE | ID: covidwho-2076878

ABSTRACT

BACKGROUND: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) have been postulated to present with distinct respiratory subphenotypes. However, most phenotyping schema have been limited by sample size, disregard for temporal dynamics, and insufficient validation. We aimed to identify respiratory subphenotypes of COVID-19-related ARDS using unbiased data-driven approaches. METHODS: PRoVENT-COVID was an investigator-initiated, national, multicentre, prospective, observational cohort study at 22 intensive care units (ICUs) in the Netherlands. Consecutive patients who had received invasive mechanical ventilation for COVID-19 (aged 18 years or older) served as the derivation cohort, and similar patients from two ICUs in the USA served as the replication cohorts. COVID-19 was confirmed by positive RT-PCR. We used latent class analysis to identify subphenotypes using clinically available respiratory data cross-sectionally at baseline, and longitudinally using 8-hourly data from the first 4 days of invasive ventilation. We used group-based trajectory modelling to evaluate trajectories of individual variables and to facilitate potential clinical translation. The PRoVENT-COVID study is registered with ClinicalTrials.gov, NCT04346342. FINDINGS: Between March 1, 2020, and May 15, 2020, 1007 patients were admitted to participating ICUs in the Netherlands, and included in the derivation cohort. Data for 288 patients were included in replication cohort 1 and 326 in replication cohort 2. Cross-sectional latent class analysis did not identify any underlying subphenotypes. Longitudinal latent class analysis identified two distinct subphenotypes. Subphenotype 2 was characterised by higher mechanical power, minute ventilation, and ventilatory ratio over the first 4 days of invasive mechanical ventilation than subphenotype 1, but PaO2/FiO2, pH, and compliance of the respiratory system did not differ between the two subphenotypes. 185 (28%) of 671 patients with subphenotype 1 and 109 (32%) of 336 patients with subphenotype 2 had died at day 28 (p=0·10). However, patients with subphenotype 2 had fewer ventilator-free days at day 28 (median 0, IQR 0-15 vs 5, 0-17; p=0·016) and more frequent venous thrombotic events (109 [32%] of 336 patients vs 176 [26%] of 671 patients; p=0·048) compared with subphenotype 1. Group-based trajectory modelling revealed trajectories of ventilatory ratio and mechanical power with similar dynamics to those observed in latent class analysis-derived trajectory subphenotypes. The two trajectories were: a stable value for ventilatory ratio or mechanical power over the first 4 days of invasive mechanical ventilation (trajectory A) or an upward trajectory (trajectory B). However, upward trajectories were better independent prognosticators for 28-day mortality (OR 1·64, 95% CI 1·17-2·29 for ventilatory ratio; 1·82, 1·24-2·66 for mechanical power). The association between upward ventilatory ratio trajectories (trajectory B) and 28-day mortality was confirmed in the replication cohorts (OR 4·65, 95% CI 1·87-11·6 for ventilatory ratio in replication cohort 1; 1·89, 1·05-3·37 for ventilatory ratio in replication cohort 2). INTERPRETATION: At baseline, COVID-19-related ARDS has no consistent respiratory subphenotype. Patients diverged from a fairly homogenous to a more heterogeneous population, with trajectories of ventilatory ratio and mechanical power being the most discriminatory. Modelling these parameters alone provided prognostic value for duration of mechanical ventilation and mortality. FUNDING: Amsterdam UMC.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Aged , COVID-19/complications , Cross-Sectional Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Netherlands , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , SARS-CoV-2
2.
Niger J Clin Pract ; 25(8): 1301-1307, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1994307

ABSTRACT

Background: Acute phase reactants and inflammation biomarkers such as ferritin, procalcitonin, C-reactive protein (CRP), and complete blood count parameters (White blood cell, platelet count) are usually used to evaluate and monitor the disease severity and treatment response of systemic inflammatory diseases. In addition to these parameters, Immature granulocytes (IG) that increase during systemic infection, hematological malignancy, and drug treatments (such as chemotherapy and glucocorticoids) are important parameters for evaluating systemic inflammation. The sensitivity and specificity of IG are as high as the abovementioned inflammatory biomarkers for monitoring disease severity and treatment response. Aim: The aim of the study is to evaluate the relationship between IG count and the need for mechanical ventilation and mortality in patients hospitalized in the intensive care unit (ICU) due to coronavirus disease 2019 (COVID-19). Patients and Methods: The medical records of the 401 patients who were followed up in the ICU due to COVID-19-related acute respiratory distress syndrome between October 2020 and February 2021 were retrospectively reviewed. On the day of admission to the ICU complete blood count (CBC), arterial blood gas analysis, coagulation parameters (fibrinogen, D-dimer) are recorded. CRP, procalcitonin, and ferritin levels are also recorded at the day of admission. During the follow-up period, the survival status and mechanical ventilation status of the patients were recorded and the relation between IG count and these parameters was evaluated. Results: The mean IG at the admission was 0.2 ± 0.4 109/L. The IG level of the intubated patients at the time of intubation was 0.3 ± 0.5 109/L. There was a significant positive correlation between mortality and IG levels at admission and at the time of intubation (IG admission; P = 0.001, r = 0.347 and IG at intubation; P = 0.001, r = 0.228). Conclusion: IG levels in CBC data could be a potential practical biomarker. This issue requires further research and the development of therapies targeting IG cells is needed.


Subject(s)
COVID-19 , Granulocytes , Respiratory Distress Syndrome , Sepsis , Biomarkers , C-Reactive Protein , COVID-19/complications , Ferritins , Humans , Leukocyte Count , Procalcitonin , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , Retrospective Studies
3.
Nature ; 609(7928): 801-807, 2022 09.
Article in English | MEDLINE | ID: covidwho-1960390

ABSTRACT

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Subject(s)
COVID-19 , Energy Metabolism , Ketones , Respiratory Distress Syndrome , SARS-CoV-2 , T-Lymphocytes , 3-Hydroxybutyric Acid/biosynthesis , 3-Hydroxybutyric Acid/metabolism , Amino Acids/biosynthesis , Amino Acids/metabolism , Animals , COVID-19/complications , COVID-19/immunology , COVID-19/pathology , Diet, Ketogenic , Esters/metabolism , Glutathione/biosynthesis , Glutathione/metabolism , Glycolysis , Interferon-gamma/biosynthesis , Ketone Bodies/metabolism , Ketones/metabolism , Mice , Orthomyxoviridae/pathogenicity , Oxidation-Reduction , Oxidative Phosphorylation , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
4.
J Biomed Sci ; 29(1): 52, 2022 Jul 11.
Article in English | MEDLINE | ID: covidwho-1928188

ABSTRACT

BACKGROUND: Coronavirus-induced disease 19 (COVID-19) infects more than three hundred and sixty million patients worldwide, and people with severe symptoms frequently die of acute respiratory distress syndrome (ARDS). Recent studies indicated that excessive neutrophil extracellular traps (NETs) contributed to immunothrombosis, thereby leading to extensive intravascular coagulopathy and multiple organ dysfunction. Thus, understanding the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation would be helpful to reduce thrombosis and prevent ARDS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We incubated SARS-CoV-2 with neutrophils in the presence or absence of platelets to observe NET formation. We further isolated extracellular vesicles from COVID-19 patients' sera (COVID-19-EVs) to examine their ability to induce NET formation. RESULTS: We demonstrated that antagonistic mAbs against anti-CLEC5A mAb and anti-TLR2 mAb can inhibit COVID-19-EVs-induced NET formation, and generated clec5a-/-/tlr2-/- mice to confirm the critical roles of CLEC5A and TLR2 in SARS-CoV-2-induced lung inflammation in vivo. We found that virus-free extracellular COVID-19 EVs induced robust NET formation via Syk-coupled C-type lectin member 5A (CLEC5A) and TLR2. Blockade of CLEC5A inhibited COVID-19 EVs-induced NETosis, and simultaneous blockade of CLEC5A and TLR2 further suppressed SARS-CoV-2-induced NETosis in vitro. Moreover, thromboinflammation was attenuated dramatically in clec5a-/-/tlr2-/- mice. CONCLUSIONS: This study demonstrates that SARS-CoV-2-activated platelets produce EVs to enhance thromboinflammation via CLEC5A and TLR2, and highlight the importance of CLEC5A and TLR2 as therapeutic targets to reduce the risk of ARDS in COVID-19 patients.


Subject(s)
COVID-19 , Lectins, C-Type , Neutrophils , Pneumonia , Respiratory Distress Syndrome , SARS-CoV-2 , Thrombosis , Animals , Blood Platelets/immunology , Blood Platelets/pathology , Blood Platelets/virology , COVID-19/blood , COVID-19/immunology , Humans , Lectins, C-Type/immunology , Mice , Neutrophils/immunology , Neutrophils/pathology , Neutrophils/virology , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/virology , Receptors, Cell Surface , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2/immunology , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology , Toll-Like Receptor 2/immunology
5.
Cochrane Database Syst Rev ; 6: CD015077, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1905767

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) represents the most severe course of COVID-19 (caused by the SARS-CoV-2 virus), usually resulting in a prolonged stay in an intensive care unit (ICU) and high mortality rates. Despite the fact that most affected individuals need invasive mechanical ventilation (IMV), evidence on specific ventilation strategies for ARDS caused by COVID-19 is scarce. Spontaneous breathing during IMV is part of a therapeutic concept comprising light levels of sedation and the avoidance of neuromuscular blocking agents (NMBA). This approach is potentially associated with both advantages (e.g. a preserved diaphragmatic motility and an optimised ventilation-perfusion ratio of the ventilated lung), as well as risks (e.g. a higher rate of ventilator-induced lung injury or a worsening of pulmonary oedema due to increases in transpulmonary pressure). As a consequence, spontaneous breathing in people with COVID-19-ARDS who are receiving IMV is subject to an ongoing debate amongst intensivists. OBJECTIVES: To assess the benefits and harms of early spontaneous breathing activity in invasively ventilated people with COVID-19 with ARDS compared to ventilation strategies that avoid spontaneous breathing. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which includes CENTRAL, PubMed, Embase, Clinical Trials.gov WHO ICTRP, and medRxiv) and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies from their inception to 2 March 2022. SELECTION CRITERIA: Eligible study designs comprised randomised controlled trials (RCTs) that evaluated spontaneous breathing in participants with COVID-19-related ARDS compared to ventilation strategies that avoided spontaneous breathing (e.g. using NMBA or deep sedation levels). Additionally, we considered controlled before-after studies, interrupted time series with comparison group, prospective cohort studies and retrospective cohort studies. For these non-RCT studies, we considered a minimum total number of 50 participants to be compared as necessary for inclusion. Prioritised outcomes were all-cause mortality, clinical improvement or worsening, quality of life, rate of (serious) adverse events and rate of pneumothorax. Additional outcomes were need for tracheostomy, duration of ICU length of stay and duration of hospitalisation. DATA COLLECTION AND ANALYSIS: We followed the methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions. Two review authors independently screened all studies at the title/abstract and full-text screening stage. We also planned to conduct data extraction and risk of bias assessment in duplicate. We planned to conduct meta-analysis for each prioritised outcome, as well as subgroup analyses of mortality regarding severity of oxygenation impairment and duration of ARDS. In addition, we planned to perform sensitivity analyses for studies at high risk of bias, studies using NMBA in addition to deep sedation level to avoid spontaneous breathing and a comparison of preprints versus peer-reviewed articles. We planned to assess the certainty of evidence using the GRADE approach. MAIN RESULTS: We identified no eligible studies for this review. AUTHORS' CONCLUSIONS: We found no direct evidence on whether early spontaneous breathing in SARS-CoV-2-induced ARDS is beneficial or detrimental to this particular group of patients.  RCTs comparing early spontaneous breathing with ventilatory strategies not allowing for spontaneous breathing in SARS-CoV-2-induced ARDS are necessary to determine its value within the treatment of severely ill people with COVID-19. Additionally, studies should aim to clarify whether treatment effects differ between people with SARS-CoV-2-induced ARDS and people with non-SARS-CoV-2-induced ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , Humans , Neuromuscular Blocking Agents , Respiration, Artificial , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Systematic Reviews as Topic
6.
Sci Rep ; 12(1): 11085, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1908294

ABSTRACT

Severe COVID-19-related acute respiratory distress syndrome (C-ARDS) requires mechanical ventilation. While this intervention is often performed in the prone position to improve oxygenation, the underlying mechanisms responsible for the improvement in respiratory function during invasive ventilation and awake prone positioning in C-ARDS have not yet been elucidated. In this prospective observational trial, we evaluated the respiratory function of C-ARDS patients while in the supine and prone positions during invasive (n = 13) or non-invasive ventilation (n = 15). The primary endpoint was the positional change in lung regional aeration, assessed with electrical impedance tomography. Secondary endpoints included parameters of ventilation and oxygenation, volumetric capnography, respiratory system mechanics and intrapulmonary shunt fraction. In comparison to the supine position, the prone position significantly increased ventilation distribution in dorsal lung zones for patients under invasive ventilation (53.3 ± 18.3% vs. 43.8 ± 12.3%, percentage of dorsal lung aeration ± standard deviation in prone and supine positions, respectively; p = 0.014); whereas, regional aeration in both positions did not change during non-invasive ventilation (36.4 ± 11.4% vs. 33.7 ± 10.1%; p = 0.43). Prone positioning significantly improved the oxygenation both during invasive and non-invasive ventilation. For invasively ventilated patients reduced intrapulmonary shunt fraction, ventilation dead space and respiratory resistance were observed in the prone position. Oxygenation is improved during non-invasive and invasive ventilation with prone positioning in patients with C-ARDS. Different mechanisms may underly this benefit during these two ventilation modalities, driven by improved distribution of lung regional aeration, intrapulmonary shunt fraction and ventilation-perfusion matching. However, the differences in the severity of C-ARDS may have biased the sensitivity of electrical impedance tomography when comparing positional changes between the protocol groups.Trial registration: ClinicalTrials.gov (NCT04359407) and Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359407 .


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , COVID-19/complications , Capnography/methods , Humans , Lung/diagnostic imaging , Noninvasive Ventilation/standards , Prone Position , Prospective Studies , Respiration, Artificial/standards , Respiratory Distress Syndrome/virology , Supine Position
7.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Article in English | MEDLINE | ID: covidwho-1906700

ABSTRACT

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Subject(s)
Angiopoietin-2 , COVID-19 , Necroptosis , Respiratory Distress Syndrome , Angiopoietin-2/metabolism , COVID-19/complications , Humans , Proteomics , Respiratory Distress Syndrome/virology
8.
Am J Pathol ; 192(7): 990-1000, 2022 07.
Article in English | MEDLINE | ID: covidwho-1906699

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, alcohol consumption increased markedly. Nearly one in four adults reported drinking more alcohol to cope with stress. Chronic alcohol abuse is now recognized as a factor complicating the course of acute respiratory distress syndrome and increasing mortality. To investigate the mechanisms behind this interaction, a combined acute respiratory distress syndrome and chronic alcohol abuse mouse model was developed by intratracheally instilling the subunit 1 (S1) of SARS-CoV-2 spike protein (S1SP) in K18-human angiotensin-converting enzyme 2 (ACE2) transgenic mice that express the human ACE2 receptor for SARS-CoV-2 and were kept on an ethanol diet. Seventy-two hours after S1SP instillation, mice on an ethanol diet showed a strong decrease in body weight, a dramatic increase in white blood cell content of bronchoalveolar lavage fluid, and an augmented cytokine storm, compared with S1SP-treated mice on a control diet. Histologic examination of lung tissue showed abnormal recruitment of immune cells in the alveolar space, abnormal parenchymal architecture, and worsening Ashcroft score in S1SP- and alcohol-treated animals. Along with the activation of proinflammatory biomarkers [NF-κB, STAT3, NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome], lung tissue homogenates from mice on an alcohol diet showed overexpression of ACE2 compared with mice on a control diet. This model could be useful for the development of therapeutic approaches against alcohol-exacerbated coronavirus disease 2019.


Subject(s)
Acute Lung Injury , Alcoholism , Angiotensin-Converting Enzyme 2 , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/pathology , Acute Lung Injury/virology , Animals , COVID-19/pathology , Ethanol/adverse effects , Humans , Lung/pathology , Mice , Mice, Transgenic , Peptidyl-Dipeptidase A/metabolism , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
9.
Acta Clin Belg ; 77(1): 211-218, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1900965

ABSTRACT

Angiotensin-converting enzyme 2 (ACE 2) is the entry receptor for the novel coronavirus SARS-CoV-2, the aetiological agent of COVID-19. At the same time, ACE 2 expression decreases during COVID-19. Two seemingly contradictory relationships between the expression of ACE 2 and COVID-19 have been reported. Increased level of expression of ACE 2 may be a risk factor for the development of COVID-19 infection, while reduced ACE 2 expression during COVID-19 leads to acute respiratory distress syndrome. This article provides a comprehensive overview of available scientific knowledge about the role of ACE 2 in the pathogenesis of COVID-19, which is available up to current day. Also, it discusses unknown factors that we will have to reveal in order to understand the whole role of ACE 2 in the pathogenesis of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , COVID-19/pathology , Humans , Respiratory Distress Syndrome/virology , Risk Factors , SARS-CoV-2
10.
Crit Care ; 25(1): 268, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1892224

ABSTRACT

BACKGROUND: Noninvasive respiratory support (NIRS) has been diffusely employed outside the intensive care unit (ICU) to face the high request of ventilatory support due to the massive influx of patients with acute respiratory failure (ARF) caused by coronavirus-19 disease (COVID-19). We sought to summarize the evidence on clinically relevant outcomes in COVID-19 patients supported by NIV outside the ICU. METHODS: We searched PUBMED®, EMBASE®, and the Cochrane Controlled Clinical trials register, along with medRxiv and bioRxiv repositories for pre-prints, for observational studies and randomized controlled trials, from inception to the end of February 2021. Two authors independently selected the investigations according to the following criteria: (1) observational study or randomized clinical trials enrolling ≥ 50 hospitalized patients undergoing NIRS outside the ICU, (2) laboratory-confirmed COVID-19, and (3) at least the intra-hospital mortality reported. Preferred Reporting Items for Systematic reviews and Meta-analysis guidelines were followed. Data extraction was independently performed by two authors to assess: investigation features, demographics and clinical characteristics, treatments employed, NIRS regulations, and clinical outcomes. Methodological index for nonrandomized studies tool was applied to determine the quality of the enrolled studies. The primary outcome was to assess the overall intra-hospital mortality of patients under NIRS outside the ICU. The secondary outcomes included the proportions intra-hospital mortalities of patients who underwent invasive mechanical ventilation following NIRS failure and of those with 'do-not-intubate' (DNI) orders. RESULTS: Seventeen investigations (14 peer-reviewed and 3 pre-prints) were included with a low risk of bias and a high heterogeneity, for a total of 3377 patients. The overall intra-hospital mortality of patients receiving NIRS outside the ICU was 36% [30-41%]. 26% [21-30%] of the patients failed NIRS and required intubation, with an intra-hospital mortality rising to 45% [36-54%]. 23% [15-32%] of the patients received DNI orders with an intra-hospital mortality of 72% [65-78%]. Oxygenation on admission was the main source of between-study heterogeneity. CONCLUSIONS: During COVID-19 outbreak, delivering NIRS outside the ICU revealed as a feasible strategy to cope with the massive demand of ventilatory assistance. REGISTRATION: PROSPERO, https://www.crd.york.ac.uk/prospero/ , CRD42020224788, December 11, 2020.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiratory Distress Syndrome/therapy , COVID-19/mortality , Continuous Positive Airway Pressure , Hospital Mortality , Humans , Intensive Care Units , Intubation/statistics & numerical data , Observational Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome/virology
11.
Emerg Microbes Infect ; 11(1): 1537-1549, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1860764

ABSTRACT

There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae.Trial registration: ClinicalTrials.gov identifier: NCT04457505..Trial registration: ISRCTN.org identifier: ISRCTN16865246..


Subject(s)
COVID-19 , Circulating MicroRNA , Respiratory Distress Syndrome , COVID-19/complications , Circulating MicroRNA/genetics , Humans , Lung , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Survivors
12.
Travel Med Infect Dis ; 34: 101623, 2020.
Article in English | MEDLINE | ID: covidwho-1764000

ABSTRACT

INTRODUCTION: An epidemic of Coronavirus Disease 2019 (COVID-19) began in December 2019 in China leading to a Public Health Emergency of International Concern (PHEIC). Clinical, laboratory, and imaging features have been partially characterized in some observational studies. No systematic reviews on COVID-19 have been published to date. METHODS: We performed a systematic literature review with meta-analysis, using three databases to assess clinical, laboratory, imaging features, and outcomes of COVID-19 confirmed cases. Observational studies and also case reports, were included, and analyzed separately. We performed a random-effects model meta-analysis to calculate pooled prevalences and 95% confidence intervals (95%CI). RESULTS: 660 articles were retrieved for the time frame (1/1/2020-2/23/2020). After screening, 27 articles were selected for full-text assessment, 19 being finally included for qualitative and quantitative analyses. Additionally, 39 case report articles were included and analyzed separately. For 656 patients, fever (88.7%, 95%CI 84.5-92.9%), cough (57.6%, 95%CI 40.8-74.4%) and dyspnea (45.6%, 95%CI 10.9-80.4%) were the most prevalent manifestations. Among the patients, 20.3% (95%CI 10.0-30.6%) required intensive care unit (ICU), 32.8% presented with acute respiratory distress syndrome (ARDS) (95%CI 13.7-51.8), 6.2% (95%CI 3.1-9.3) with shock. Some 13.9% (95%CI 6.2-21.5%) of hospitalized patients had fatal outcomes (case fatality rate, CFR). CONCLUSION: COVID-19 brings a huge burden to healthcare facilities, especially in patients with comorbidities. ICU was required for approximately 20% of polymorbid, COVID-19 infected patients and hospitalization was associated with a CFR of >13%. As this virus spreads globally, countries need to urgently prepare human resources, infrastructure and facilities to treat severe COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , Coronavirus Infections/pathology , Cough/virology , Fever/virology , Hospitalization , Humans , Intensive Care Units , Pandemics , Pneumonia, Viral/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2
13.
J Cardiothorac Vasc Anesth ; 36(8 Pt B): 3197-3201, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1758416

ABSTRACT

Often labeled the forgotten ventricle, the right ventricle's (RV) importance has been magnified over the last 2 years as providers witnessed how severe acute respiratory syndrome coronavirus 2 infection has a predilection for exacerbating RV failure. Venovenous extracorporeal membranous oxygenation (VV-ECMO) has become a mainstay treatment modality for a select patient population suffering from severe COVID-19 acute respiratory distress syndrome. Concomitant early implementation of a right ventricular assist device with ECMO (RVAD-ECMO) may confer benefit in patient outcomes. The underlying mechanism of RV failure in COVID-19 has a multifactorial etiopathogenesis; nonetheless, clinical evaluation of a patient necessitating RV support remains unchanged. Herein, the authors report the case of a critically ill patient who was transitioned from a conventional VV-ECMO Medtronic Crescent cannula to RVAD-ECMO, with the insertion of the LivaNova ProtekDuo dual-lumen RVAD cannula.


Subject(s)
COVID-19 , Heart Failure , Respiratory Distress Syndrome , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/methods , Heart Failure/therapy , Heart Failure/virology , Heart-Assist Devices , Humans , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology
14.
PLoS One ; 17(3): e0265202, 2022.
Article in English | MEDLINE | ID: covidwho-1753195

ABSTRACT

BACKGROUND: Non-invasive ventilation (NIV) has been increasingly used in COVID-19 patients. The limited physiological monitoring and the unavailability of respiratory mechanic measures, usually obtainable during invasive ventilation, is a limitation of NIV for ARDS and COVID-19 patients management. OBJECTIVES: This pilot study was aimed to evaluate the feasibility of non-invasively monitoring respiratory mechanics by oscillometry in COVID-19 patients with moderate-severe acute respiratory distress syndrome (ARDS) receiving NIV. METHOD: 15 COVID-19 patients affected by moderate-severe ARDS at the RICU (Respiratory Intensive Care Unit) of the University hospital of Cattinara, Trieste, Italy were recruited. Patients underwent oscillometry tests during short periods of spontaneous breathing between NIV sessions. RESULTS: Oscillometry proved to be feasible, reproducible and well-tolerated by patients. At admission, 8 of the 15 patients showed oscillometry parameters within the normal range which further slightly improved before discharge. At discharge, four patients had still abnormal respiratory mechanics, not exclusively linked to pre-existing respiratory comorbidities. Lung mechanics parameters were not correlated with oxygenation. CONCLUSIONS: Our results suggest that lung mechanics provide complementary information for improving patients phenotyping and personalisation of treatments during NIV in COVID 19 patients, especially in the presence of respiratory comorbidities where deterioration of lung mechanics may be less coupled with changes in oxygenation and more difficult to identify. Oscillometry may provide a valuable tool for monitoring lung mechanics in COVID 19 patients receiving NIV.


Subject(s)
COVID-19/therapy , Lung/physiopathology , Noninvasive Ventilation/methods , Oscillometry/methods , Respiratory Distress Syndrome/virology , Adult , Aged , COVID-19/physiopathology , Feasibility Studies , Female , Humans , Italy , Male , Middle Aged , Pilot Projects , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Mechanics , Retrospective Studies
15.
Crit Care ; 25(1): 404, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1745432

ABSTRACT

Identifying new effective treatments for the acute respiratory distress syndrome (ARDS), including COVID-19 ARDS, remains a challenge. The field of ARDS investigation is moving increasingly toward innovative approaches such as the personalization of therapy to biological and clinical sub-phenotypes. Additionally, there is growing recognition of the importance of the global context to identify effective ARDS treatments. This review highlights emerging opportunities and continued challenges for personalizing therapy for ARDS, from identifying treatable traits to innovative clinical trial design and recognition of patient-level factors as the field of critical care investigation moves forward into the twenty-first century.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome/therapy , COVID-19/complications , Clinical Trials as Topic , Humans , Respiratory Distress Syndrome/virology
17.
BMC Pulm Med ; 22(1): 52, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1690928

ABSTRACT

COVID-19 has inflicted the world for over two years. The recent mutant virus strains pose greater challenges to disease prevention and treatment. COVID-19 can cause acute respiratory distress syndrome (ARDS) and extrapulmonary injury. Dynamic monitoring of each patient's condition is necessary to timely tailor treatments, improve prognosis and reduce mortality. Point-of-care ultrasound (POCUS) is broadly used in patients with ARDS. POCUS is recommended to be performed regularly in COVID-19 patients for respiratory failure management. In this review, we summarized the ultrasound characteristics of COVID-19 patients, mainly focusing on lung ultrasound and echocardiography. Furthermore, we also provided the experience of using POCUS to manage COVID-19-related ARDS.


Subject(s)
COVID-19/diagnostic imaging , Echocardiography , Lung/diagnostic imaging , Point-of-Care Testing , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Therapy/methods , COVID-19/therapy , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology
18.
Front Immunol ; 13: 732197, 2022.
Article in English | MEDLINE | ID: covidwho-1686479

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a severe pulmonary disease, which is one of the major complications in COVID-19 patients. Dysregulation of the immune system and imbalances in cytokine release and immune cell activation are involved in SARS-CoV-2 infection. Here, the inflammatory, antigen, and auto-immune profile of patients presenting COVID-19-associated severe ARDS has been analyzed using functional proteomics approaches. Both, innate and humoral responses have been characterized through acute-phase protein network and auto-antibody signature. Severity and sepsis by SARS-CoV-2 emerged to be correlated with auto-immune profiles of patients and define their clinical progression, which could provide novel perspectives in therapeutics development and biomarkers of COVID-19 patients. Humoral response in COVID-19 patients' profile separates with significant differences patients with or without ARDS. Furthermore, we found that this profile can be correlated with COVID-19 severity and results more common in elderly patients.


Subject(s)
Autoantigens/immunology , Autoimmunity/immunology , COVID-19/immunology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , Autoantibodies/immunology , COVID-19/complications , Humans , SARS-CoV-2/immunology
19.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1674674

ABSTRACT

Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1ß, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.


Subject(s)
Aldo-Keto Reductases/physiology , COVID-19/genetics , Cytokine Release Syndrome/genetics , Respiratory Distress Syndrome/genetics , Aldo-Keto Reductases/antagonists & inhibitors , Aldo-Keto Reductases/genetics , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Cells, Cultured , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Patient Acuity , RAW 264.7 Cells , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/physiology , Transcriptome
20.
BMC Pulm Med ; 22(1): 51, 2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1666648

ABSTRACT

BACKGROUND: Understanding heterogeneity seen in patients with COVIDARDS and comparing to non-COVIDARDS may inform tailored treatments. METHODS: A multidisciplinary team of frontline clinicians and data scientists worked to create the Northwell COVIDARDS dataset (NorthCARDS) leveraging over 11,542 COVID-19 hospital admissions. The data was then summarized to examine descriptive differences based on clinically meaningful categories of lung compliance, and to examine trends in oxygenation. FINDINGS: Of the 1536 COVIDARDS patients in the NorthCARDS dataset, there were 531 (34.6%) who had very low lung compliance (< 20 ml/cmH2O), 970 (63.2%) with low-normal compliance (20-50 ml/cmH2O), and 35 (2.2%) with high lung compliance (> 50 ml/cmH2O). The very low compliance group had double the median time to intubation compared to the low-normal group (107.3 h (IQR 25.8, 239.2) vs. 39.5 h (IQR 5.4, 91.6)). Overall, 68.8% (n = 1057) of the patients died during hospitalization. In comparison to non-COVIDARDS reports, there were less patients in the high compliance category (2.2% vs. 12%, compliance ≥ 50 mL/cmH20), and more patients with P/F ≤ 150 (59.8% vs. 45.6%). There is a statistically significant correlation between compliance and P/F ratio. The Oxygenation Index is the highest in the very low compliance group (12.51, SD(6.15)), and lowest in high compliance group (8.78, SD(4.93)). CONCLUSIONS: The respiratory system compliance distribution of COVIDARDS is similar to non-COVIDARDS. In some patients, there may be a relation between time to intubation and duration of high levels of supplemental oxygen treatment on trajectory of lung compliance.


Subject(s)
COVID-19/physiopathology , Hypoxia/virology , Lung/physiopathology , Respiratory Distress Syndrome/virology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , COVID-19/therapy , Case-Control Studies , Disease Progression , Female , Humans , Hypoxia/physiopathology , Hypoxia/therapy , Male , Middle Aged , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Function Tests , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL