Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Trials ; 23(1): 105, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-2098423

ABSTRACT

BACKGROUND: Noninvasive respiratory support is frequently needed for patients with acute hypoxemic respiratory failure due to coronavirus disease 19 (COVID-19). Helmet noninvasive ventilation has multiple advantages over other oxygen support modalities but data about effectiveness are limited. METHODS: In this multicenter randomized trial of helmet noninvasive ventilation for COVID-19 patients, 320 adult ICU patients (aged ≥14 years or as per local standards) with suspected or confirmed COVID-19 and acute hypoxemic respiratory failure (ratio of arterial oxygen partial pressure to fraction of inspired oxygen < 200 despite supplemental oxygen with a partial/non-rebreathing mask at a flow rate of 10 L/min or higher) will be randomized to helmet noninvasive ventilation with usual care or usual care alone, which may include mask noninvasive ventilation, high-flow nasal oxygen, or standard oxygen therapy. The primary outcome is death from any cause within 28 days after randomization. The trial has 80% power to detect a 15% absolute risk reduction in 28-day mortality from 40 to 25%. The primary outcome will be compared between the helmet and usual care group in the intention-to-treat using the chi-square test. Results will be reported as relative risk  and 95% confidence interval. The first patient was enrolled on February 8, 2021. As of August 1, 2021, 252 patients have been enrolled from 7 centers in Saudi Arabia and Kuwait. DISCUSSION: We developed a detailed statistical analysis plan to guide the analysis of the Helmet-COVID trial, which is expected to conclude enrollment in November 2021. TRIAL REGISTRATION: ClinicalTrials.gov NCT04477668 . Registered on July 20, 2020.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Head Protective Devices , Humans , Noninvasive Ventilation/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , SARS-CoV-2
2.
Respir Care ; 67(10): 1282-1290, 2022 10.
Article in English | MEDLINE | ID: covidwho-1763135

ABSTRACT

BACKGROUND: Postextubation monitoring helps identify patients at risk of developing respiratory failure. This study aimed to evaluate the effect of our standard respiratory therapist (RT) assessment tool versus an automated continuous monitoring alert to initiate postextubation RT-driven care on the re-intubation rate. METHODS: This was a single-center randomized clinical trial from March 2020 to September 2021 of adult subjects who received mechanical ventilation for > 24 h and underwent planned extubation in the ICU. The subjects were assigned to the standard RT assessment tool or an automated monitoring alert to identify the need for postextubation RT-driven care. The primary outcome was the need for re-intubation due to respiratory failure within 72 h. Secondary outcomes included re-intubation within 7 d, ICU and hospital lengths of stay, hospital mortality, ICU cost, and RT time associated with patient assessment and therapy provision. RESULTS: Of 234 randomized subjects, 32 were excluded from the primary analysis due to disruption in RT-driven care during the surge of patients with COVID-19, and 1 subject was excluded due to delay in the automated monitoring initiation. Analysis of the primary outcome included 85 subjects assigned to the standard RT assessment group and 116 assigned to the automated monitoring alert group to initiate RT-driven care. There was no significant difference between the study groups in re-intubation rate, median length of stay, mortality, or ICU costs. The RT time associated with patient assessment (P < .001) and therapy provided (P = .031) were significantly lower in the automated continuous monitoring alert group. CONCLUSIONS: In subjects who received mechanical ventilation for > 24 h, there were no significant outcome or cost differences between our standard RT assessment tool or an automated monitoring alert to initiate postextubation RT-driven care. Using an automated continuous monitoring alert to initiate RT-driven care saved RT time. (ClinicalTrials.gov registration NCT04231890).


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Airway Extubation/adverse effects , Humans , Intensive Care Units , Respiration, Artificial/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Ventilator Weaning
3.
Trials ; 23(1): 828, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2053953

ABSTRACT

BACKGROUND: Dyspnea is common and severe in intensive care unit (ICU) patients managed for acute respiratory failure. Dyspnea appears to be associated with impaired prognosis and neuropsychological sequels. Pain and dyspnea share many similarities and previous studies have shown the benefit of morphine on dyspnea in patients with end-stage onco-hematological disease and severe heart or respiratory disease. In these populations, morphine administration was safe. Here, we hypothesize that low-dose opioids may help to reduce dyspnea in patients admitted to the ICU for acute respiratory failure. The primary objective of the trial is to determine whether the administration of low-dose titrated opioids, compared to placebo, in patients admitted to the ICU for acute respiratory failure with severe dyspnea decreases the mean 24-h intensity of dyspnea score. METHODS: In this single-center double-blind randomized controlled trial with 2 parallel arms, we plan to include 22 patients (aged 18-75 years) on spontaneous ventilation with either non-invasive ventilation, high flow oxygen therapy or standard oxygen therapy admitted to the ICU for acute respiratory failure with severe dyspnea. They will be assigned after randomization with a 1:1 allocation ratio to receive in experimental arm administration of low-dose titrated morphine hydrochloride for 24 h consisting in an intravenous titration relayed subcutaneously according to a predefined protocol, or a placebo (0.9% NaCl) administered according to the same protocol in the control arm. The primary endpoint is the mean 24-h dyspnea score assessed by a visual analog scale of dyspnea. DISCUSSION: To our knowledge, this study is the first to evaluate the benefit of opioids on dyspnea in ICU patients admitted for acute respiratory failure. TRIAL REGISTRATION: ClinicalTrials.gov NCT04358133 . Registered on 24 April 2020.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Dyspnea/diagnosis , Dyspnea/drug therapy , Dyspnea/etiology , Humans , Morphine/adverse effects , Oxygen , Randomized Controlled Trials as Topic , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , SARS-CoV-2 , Saline Solution , Treatment Outcome
4.
Curr Opin Crit Care ; 27(3): 303-310, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1956610

ABSTRACT

PURPOSE OF REVIEW: Assess the most recent studies using driving pressure (DP) as a monitoring technique under mechanical ventilation and describe the technical challenges associated with its measurement. RECENT FINDINGS: DP is consistently associated with survival in acute respiratory failure and acute respiratory distress syndrome (ARDS) and can detect patients at higher risk of ventilator-induced lung injury. Its measurement can be challenged by leaks and ventilator dyssynchrony, but is also feasible under pressure support ventilation. Interestingly, an aggregated summary of published results suggests that its level is on average slightly lower in patients with coronavirus disease-19 induced ARDS than in classical ARDS. SUMMARY: The DP is easy to obtain and should be incorporated as a minimal monitoring technique under mechanical ventilation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/diagnosis , SARS-CoV-2
5.
Isr Med Assoc J ; 24(5): 327-331, 2022 May.
Article in English | MEDLINE | ID: covidwho-1856939

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic resulted in repeated surges of patients, sometimes challenging triage protocols and appropriate control of patient flow. Available models, such as the National Early Warning Score (NEWS), have shown significant limitations. Still, they are used by some centers to triage COVID-19 patients due to the lack of better tools. OBJECTIVES: To establish a practical and automated triage tool based on readily available clinical data to rapidly determine a distinction between patients who are prone to respiratory failure. METHODS: The electronic medical records of COVID-19 patients admitted to the Sheba Medical Center March-April 2020 were analyzed. Population data extraction and exploration were conducted using a MDClone (Israel) big data platform. Patients were divided into three groups: non-intubated, intubated within 24 hours, and intubated after 24 hours. The NEWS and our model where applied to all three groups and a best fit prediction model for the prediction of respiratory failure was established. RESULTS: The cohort included 385 patients, 42 of whom were eventually intubated, 15 within 24 hours or less. The NEWS score was significantly lower for the non-intubated patients compared to the two other groups. Our improved model, which included NEWS elements combined with other clinical data elements, showed significantly better performance. The model's receiver operating characteristic curve had area under curve (AUC) of 0.92 with of sensitivity 0.81, specificity 0.89, and negative predictive value (NPV) 98.4% compared to AUC of 0.63 with NEWS. As patients deteriorate and require further support with supplemental O2, the need for re-triage emerges. Our model was able to identify those patients on supplementary O2 prone to respiratory failure with an AUC of 0.86 sensitivity 0.95, and specificity 0.7 NPV 98.9%, whereas NEWS had an AUC of 0.76. For both groups positive predictive value was approximately 35. CONCLUSIONS: Our model, based on readily available and simple clinical parameters, showed an excellent ability to predict negative outcome among patients with COVID-19 and therefore might be used as an initial screening tool for patient triage in emergency departments and other COVID-19 specific areas of the hospital.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/complications , COVID-19/diagnosis , Humans , Pandemics , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies , Triage
6.
Neurology ; 99(7): e743-e750, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1854908

ABSTRACT

BACKGROUND AND OBJECTIVES: To compare the performance of different respiratory function testing parameters in a multidisciplinary amyotrophic lateral sclerosis (ALS) clinic. METHODS: Demographics, clinical data, and respiratory testing parameters were abstracted from the medical records of patients who attended a multidisciplinary ALS clinic from 2008 to 2016. We compared the performance of the 3 primary respiratory test parameters used by Medicare for the initiation of noninvasive ventilation (NIV) (forced vital capacity [FVC] < 50% predicted, maximum inspiratory pressure [MIP] < 60 cm H2O, and abnormal overnight pulse oximetry [OvOx]) on how they related to several clinically relevant attributes. RESULTS: Four hundred seventy-six patients were identified who underwent at least 1 respiratory test. Abnormalities of OvOx, MIP, and FVC occurred at a median of 1.6, 1.5, and 3.8 years from disease onset, respectively (p < 0.00001). Patients with bulbar-onset ALS exhibited earlier abnormalities in MIP and FVC than in spinal-onset ALS (p < 0.005). The median survival after an abnormal OvOx, MIP, or FVC test was 1.4, 1.4, and 0.9 years, respectively (p < 0.0001). Using the ALS Functional Rating Score respiratory subscales, at the time of reported respiratory symptoms there were abnormalities in OvOx (60%), MIP (69%), and FVC (19%). Conversely, when respiratory parameter abnormalities preceded reported respiratory symptoms, this occurred with frequencies in OvOx (79%), MIP (42%), or FVC (24%). Four hundred forty-three patients (93.1%) developed at least 1 abnormal respiratory measure meeting Medicare criteria for NIV consideration, but fewer than 50% in our cohort demonstrated NIV use. Improved survival in subjects using NIV was statistically significant in patients with bulbar-onset ALS. DISCUSSION: Abnormalities in OvOx and MIP perform better than FVC at early detection of neuromuscular respiratory weakness in ALS. Initiation of NIV in patients with respiratory insufficiency may improve the overall survival in ALS. In the setting of the COVID-19 pandemic, FVC and MIP have not been routinely performed because of infectious aerosol generation. OvOx, which we now routinely mail to patients' homes, has been used exclusively during the COVID-19 pandemic and allows for continued remote monitoring of the respiratory status of patients with ALS. CLASSIFICATION OF EVIDENCE: This cohort study provides Class III evidence that in people with ALS, OvOx and MIP are valuable respiratory parameters for the detection of early respiratory insufficiency.


Subject(s)
Amyotrophic Lateral Sclerosis , COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnosis , Cohort Studies , Humans , Medicare , Pandemics , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , United States , Vital Capacity
7.
Ther Adv Respir Dis ; 16: 17534666221091931, 2022.
Article in English | MEDLINE | ID: covidwho-1808190

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread globally, and many patients with severe cases have received oxygen therapy through a high-flow nasal cannula (HFNC). OBJECTIVES: We assessed the efficacy of HFNC for treating patients with COVID-19 and risk factors for HFNC failure. METHODS: We searched PubMed, Embase, and the Cochrane Central Register of randomized controlled trials (RCTs) and observational studies of HFNC in patients with COVID-19 published in English from January 1st, 2020 to August 15th, 2021. The primary aim was to assess intubation, mortality, and failure rates in COVID-19 patients supported by HFNC. Secondary aims were to compare HFNC success and failure groups and to describe the risk factors for HFNC failure. RESULTS: A total of 25 studies fulfilled selection criteria and included 2851 patients. The intubation, mortality, and failure rates were 0.44 (95% confidence interval (CI): 0.38-0.51, I2 = 84%), 0.23 (95% CI: 0.19-0.29, I2 = 88%), and 0.47 (95% CI: 0.42-0.51, I2 = 56%), respectively. Compared to the success group, age, body mass index (BMI), Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) II score, D-dimer, lactate, heart rate, and respiratory rate were higher and PaO2, PaO2/FiO2, ROX index (the ratio of SpO2/FiO2 to respiratory rate), ROX index after the initiation of HFNC, and duration of HFNC were lower in the failure group (all Ps < 0.05). There were also more smokers and more comorbidities in the failure group (all Ps < 0.05). Pooled odds ratios (ORs) revealed that older age (OR: 1.04, 95% CI: 1.01-1.07, P = 0.02, I2 = 88%), a higher white blood cell (WBC) count (OR: 1.06, 95% CI: 1.01-1.12, P = 0.02, I2 = 0%), a higher heart rate (OR: 1.42, 95% CI: 1.15-1.76, P < 0.01, I2 = 0%), and a lower ROX index(OR: 0.61, 95% CI: 0.39-0.95, P = 0.03, I2 = 93%) after the initiation of HFNC were all significant risk factors for HFNC failure. CONCLUSIONS: HFNC is an effective way of providing respiratory support in the treatment of COVID-19 patients. Older age, a higher WBC count, a higher heart rate, and a lower ROX index after the initiation of HFNC are associated with an increased risk of HFNC failure.


Subject(s)
COVID-19 , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Oxygen Inhalation Therapy/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , Risk Factors
8.
PLoS Genet ; 18(3): e1010042, 2022 03.
Article in English | MEDLINE | ID: covidwho-1793655

ABSTRACT

In November 2021, the COVID-19 pandemic death toll surpassed five million individuals. We applied Mendelian randomization including >3,000 blood proteins as exposures to identify potential biomarkers that may indicate risk for hospitalization or need for respiratory support or death due to COVID-19, respectively. After multiple testing correction, using genetic instruments and under the assumptions of Mendelian Randomization, our results were consistent with higher blood levels of five proteins GCNT4, CD207, RAB14, C1GALT1C1, and ABO being causally associated with an increased risk of hospitalization or respiratory support/death due to COVID-19 (ORs = 1.12-1.35). Higher levels of FAAH2 were solely associated with an increased risk of hospitalization (OR = 1.19). On the contrary, higher levels of SELL, SELE, and PECAM-1 decrease risk of hospitalization or need for respiratory support/death (ORs = 0.80-0.91). Higher levels of LCTL, SFTPD, KEL, and ATP2A3 were solely associated with a decreased risk of hospitalization (ORs = 0.86-0.93), whilst higher levels of ICAM-1 were solely associated with a decreased risk of respiratory support/death of COVID-19 (OR = 0.84). Our findings implicate blood group markers and binding proteins in both hospitalization and need for respiratory support/death. They, additionally, suggest that higher levels of endocannabinoid enzymes may increase the risk of hospitalization. Our research replicates findings of blood markers previously associated with COVID-19 and prioritises additional blood markers for risk prediction of severe forms of COVID-19. Furthermore, we pinpoint druggable targets potentially implicated in disease pathology.


Subject(s)
Blood Proteins/metabolism , COVID-19/blood , COVID-19/pathology , Biomarkers/analysis , Biomarkers/blood , Blood Proteins/analysis , Blood Proteins/genetics , COVID-19/diagnosis , COVID-19/mortality , Causality , Genome-Wide Association Study , Hospitalization , Humans , Mendelian Randomization Analysis , Mortality , Pandemics , Polymorphism, Single Nucleotide , Prognosis , Proteome/analysis , Proteome/genetics , Proteome/metabolism , Respiratory Insufficiency/blood , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/mortality , Respiratory Insufficiency/pathology , Risk Factors , SARS-CoV-2/physiology , Severity of Illness Index
9.
Viruses ; 14(4)2022 04 10.
Article in English | MEDLINE | ID: covidwho-1786081

ABSTRACT

Risk stratification of coronavirus disease-19 (COVID-19) patients by simple markers is critical to guide treatment. We studied the predictive value of soluble interleukin-2 receptor (sIL-2R) for the early identification of patients at risk of developing severe clinical outcomes. sIL-2R levels were measured in 197 patients (60.9% males; median age 61 years; moderate disease, n = 65; severe, n = 132, intubated and/or died, n = 42). All patients received combined immunotherapies (anakinra ± corticosteroids ± intravenous immunoglobulin ± tocilizumab) according to our local treatment algorithm. The endpoint was the composite event of intubation due to severe respiratory failure (SRF) or mortality. Median (interquartile range) sIL-2R levels were significantly higher in patients with severe disease, compared with those with moderate disease (6 (6.2) vs. 5.2 (3.4) ng/mL, p = 0.017). sIL-2R was the strongest laboratory predictive factor for intubation/death (hazard ratio 1.749, 95%CI 1.041-2.939, p = 0.035) after adjustment for other known risk factors. Youden's index revealed optimal sIL-2R cut-off for predicting intubation/death at 9 ng/mL (sensitivity: 67%; specificity: 86%; positive and negative predictive value: 57% and 91%, respectively). Delta sIL-2R between the day of event or discharge minus admission date was higher in patients that intubated/died than in those who did not experience an event (2.91 (10.42) vs. 0.44 (2.88) ng/mL; p = 0.08)). sIL-2R on admission and its dynamic changes during follow-up may reflect disease severity and predict the development of SRF and mortality.


Subject(s)
COVID-19 , Receptors, Interleukin-2 , Respiratory Insufficiency , Biomarkers , COVID-19/metabolism , COVID-19/pathology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Receptors, Interleukin-2/blood , Receptors, Interleukin-2/metabolism , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/metabolism
12.
Cell Rep Med ; 3(3): 100560, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1706398

ABSTRACT

Most patients infected with SARS-CoV-2 (COVID-19) experience mild, non-specific symptoms, but many develop severe symptoms associated with an excessive inflammatory response. Elevated plasma concentrations of soluble urokinase plasminogen activator receptor (suPAR) provide early warning of progression to severe respiratory failure (SRF) or death, but access to suPAR testing may be limited. The Severe COvid Prediction Estimate (SCOPE) score, derived from circulating concentrations of C-reactive protein, D- dimers, interleukin-6, and ferritin among patients not receiving non-invasive or invasive mechanical ventilation during the SAVE-MORE study, offers predictive accuracy for progression to SRF or death within 14 days comparable to that of a suPAR concentration of ≥6 ng/mL (area under receiver operator characteristic curve 0.81 for both). The SCOPE score is validated in two similar independent cohorts. A SCOPE score of 6 or more is an alternative to suPAR for predicting progression to SRF or death within 14 days of hospital admission for pneumonia, and it can be used to guide treatment decisions.


Subject(s)
COVID-19 , Respiratory Insufficiency , Biomarkers , COVID-19/diagnosis , Humans , Prognosis , Receptors, Urokinase Plasminogen Activator , Respiratory Insufficiency/diagnosis , SARS-CoV-2
13.
MedEdPORTAL ; 18: 11214, 2022.
Article in English | MEDLINE | ID: covidwho-1675348

ABSTRACT

Introduction: During COVID-19 surges, medical trainees may perform patient care outside typical clinical responsibilities. While respiratory failure in pediatric patients secondary to COVID-19 is rare, it is critical that providers can effectively care for these children while protecting the health care team. Simulation is an important tool for giving learners a safe environment in which to learn and practice these new skills. Methods: In this simulation, learners provided care to a 13-year-old male with obesity, COVID-19 pneumonia, status asthmaticus, and respiratory failure. Target learners were pediatric emergency medicine fellows and emergency medicine residents. Providers were expected to identify the signs and symptoms of status asthmaticus, pneumonia, and respiratory failure and demonstrate appropriate evaluation and management while minimizing COVID-19 exposure. Participants completed a postsimulation survey on their satisfaction and confidence in performing the objectives. Results: Twenty-eight PGY 1-PGY 6 learners participated in this simulation. The postsimulation survey showed that most learners felt the simulation was effective in teaching the evaluation and management of respiratory failure due to COVID-19 (M = 5.0; 95% CI, 4.9-5.0) and was relevant to their work (M = 5.0; 95% CI, 5.0-5.0). Discussion: Learners felt that the case was effective in teaching the skills needed to care for a child with COVID-19 pneumonia, status asthmaticus, and respiratory failure. Future directions include updating the case with new COVID-19 knowledge and personal protective equipment practices gained over time, using hybrid telesimulation to increase learners' exposure to the case, and adapting the case for other health care providers.


Subject(s)
COVID-19 , Emergency Medicine , Respiratory Insufficiency , Status Asthmaticus , Adolescent , Child , Humans , Male , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
14.
Chest ; 161(2): e71-e73, 2022 02.
Article in English | MEDLINE | ID: covidwho-1664778

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by progressive scar tissue formation. An acute exacerbation of IPF (AE-IPF) is a clinically significant respiratory decompensation that accounts for a significant proportion of IPF-related morbidity and mortality. AE-IPF can be idiopathic or associated with pulmonary embolism, infection, aspiration, surgery, and drug toxicity. In this novel case report, we describe a potential association between AE-IPF and BNT162b2 mRNA COVID-19 vaccination that was successfully treated with a short course of glucocorticoids. While our aim is to raise awareness for this yet-to-be-described adverse event, immunization against vaccine-preventable disease remains widely recommended in vulnerable patients with chronic lung disease such as IPF.


Subject(s)
COVID-19/prevention & control , Idiopathic Pulmonary Fibrosis , Lung/diagnostic imaging , Methylprednisolone/administration & dosage , Respiratory Insufficiency , Aged , /adverse effects , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Disease Progression , Drug Tapering/methods , Glucocorticoids/administration & dosage , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/physiopathology , Idiopathic Pulmonary Fibrosis/therapy , Male , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , Risk Assessment/methods , SARS-CoV-2 , Tomography, X-Ray Computed/methods , Treatment Outcome
15.
J Innate Immun ; 14(5): 493-501, 2022.
Article in English | MEDLINE | ID: covidwho-1642959

ABSTRACT

The course of COVID-19 is unpredictable, ranging from asymptomatic to respiratory failure and death. Prognostic biomarkers are urgently needed. We hypothesized that long pentraxin PTX3 could be a valuable plasma biomarker due to its essential role in inflammatory processes. In a prospective hospitalized COVID-19 derivation cohort (n = 126) during the spring of 2020, we measured PTX3 within 4 days of admission. The predictive value of mechanical ventilation (MV) and 30-day mortality compared with clinical parameters and other markers of inflammation were assessed by logistic regression analysis and expressed as odds ratio (OR) with 95% confidence interval (CI). Analyses were repeated in a prospective validation cohort (n = 112) of hospitalized patients with COVID-19 treated with remdesivir and dexamethasone. Thirty-day mortality in the derivation cohort was 26.2%. In patients who died, the median PTX3 concentration upon admission was 19.5 ng/mL (IQR: 12.5-33.3) versus 6.6 ng/mL (IQR 2.9-12.3) (p < 0.0001) for survivors. After adjustment for covariates, the odds of 30-day mortality increased two-fold for each doubling of PTX3 (OR 2.03 [95% CI: 1.23-3.34], p = 0.006), which was also observed in the validation cohort (OR 1.70 [95% CI: 1.09-2.67], p = 0.02). Similarly, PTX3 levels were associated with MV. After adjustment for covariates, OR of MV was 2.34 (95% CI: 1.33-4.12, p = 0.003) in the derivation cohort and 1.64 (95% CI: 1.03-2.62, p = 0.04) in the validation cohort. PTX3 appears to be a useful clinical biomarker to predict 30-day respiratory failure and mortality risk in COVID-19 patients treated with and without remdesivir and dexamethasone.


Subject(s)
COVID-19 , Respiratory Insufficiency , Biomarkers , C-Reactive Protein/analysis , COVID-19/drug therapy , Dexamethasone , Humans , Prognosis , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/drug therapy , Serum Amyloid P-Component/analysis
16.
Am J Emerg Med ; 53: 215-221, 2022 03.
Article in English | MEDLINE | ID: covidwho-1616338

ABSTRACT

BACKGROUND: The COVID 19 pandemic has had a crucial effect on the patterns of disease and treatment in the healthcare system. This study examines the effect of the COVID-19 pandemic on respiratory ED visits and admissions broken down by age group and respiratory diagnostic category. METHODS: Data on non-COVID related ED visits and hospitalizations from the ED were obtained in a retrospective analysis for 29 acute care hospitals, covering 98% of ED beds in Israel, and analyzed by 5 age groups: under one-year-old, 1-17, 18-44, 45-74 and 75 and over. Diagnoses were classified into three categories: Upper respiratory tract infections (URTI), pneumonia, and COPD or asthma. Data were collected for the whole of 2020, and compared for each month to the average number of cases in the three pre-COVID years (2017-2019). RESULTS: In 2020 compared to 2017-2019, there was a decrease of 34% in non-COVID ED visits due to URTI, 40% for pneumonia and a 35% decrease for COPD and asthma. Reductions occurred in most age groups, but were most marked among infants under a year, during and following lockdowns, with an 80% reduction. Patients over 75 years old displayed a marked drop in URTI visits. Pediatric asthma visits fell during lockdowns, but spiked when restrictions were lifted, accompanied by a higher proportion admitted. The percent of admissions from the ED visits remained mostly stable for pneumonia; the percent of young adults admitted with URTI decreased significantly from March to October. CONCLUSIONS: Changing patterns of ED use were probably due to a combination of a reduced rate of viral diseases, availability of additional virtual services, and avoidance of exposure to the ED environment. Improved hygiene measures during peaks of respiratory infections could be implemented in future to reduce respiratory morbidity; and continued provision of remote health services may reduce overuse of ED services for mild cases.


Subject(s)
COVID-19/prevention & control , Emergency Service, Hospital/statistics & numerical data , Patient Acceptance of Health Care/statistics & numerical data , Respiratory Insufficiency/diagnosis , Adolescent , Adult , Aged , COVID-19/transmission , Child , Child, Preschool , Emergency Service, Hospital/organization & administration , Female , Humans , Infant , Israel/epidemiology , Male , Middle Aged , Respiratory Insufficiency/epidemiology , Retrospective Studies
17.
Biol Sex Differ ; 12(1): 63, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528694

ABSTRACT

BACKGROUND: Several biomarkers have been identified to predict the outcome of COVID-19 severity, but few data are available regarding sex differences in their predictive role. Aim of this study was to identify sex-specific biomarkers of severity and progression of acute respiratory distress syndrome (ARDS) in COVID-19. METHODS: Plasma levels of sex hormones (testosterone and 17ß-estradiol), sex-hormone dependent circulating molecules (ACE2 and Angiotensin1-7) and other known biomarkers for COVID-19 severity were measured in male and female COVID-19 patients at admission to hospital. The association of plasma biomarker levels with ARDS severity at admission and with the occurrence of respiratory deterioration during hospitalization was analysed in aggregated and sex disaggregated form. RESULTS: Our data show that some biomarkers could be predictive both for males and female patients and others only for one sex. Angiotensin1-7 plasma levels and neutrophil count predicted the outcome of ARDS only in females, whereas testosterone plasma levels and lymphocytes counts only in males. CONCLUSIONS: Sex is a biological variable affecting the choice of the correct biomarker that might predict worsening of COVID-19 to severe respiratory failure. The definition of sex specific biomarkers can be useful to alert patients to be safely discharged versus those who need respiratory monitoring.


Subject(s)
Biomarkers/blood , COVID-19/complications , Hospitalization , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/diagnosis , Respiratory Insufficiency/complications , Respiratory Insufficiency/diagnosis , Sex Characteristics , Adult , Angiotensin-Converting Enzyme 2/blood , Angiotensins/blood , COVID-19/blood , Estradiol/blood , Female , Humans , Male , Middle Aged , Respiratory Distress Syndrome/blood , Respiratory Insufficiency/blood , SARS-CoV-2 , Testosterone/blood
18.
Ann Surg ; 275(2): 242-246, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1522450

ABSTRACT

OBJECTIVE: To assess the association between the timing of surgery relative to the development of Covid-19 and the risks of postoperative complications. SUMMARY BACKGROUND DATA: It is unknown whether patients who recovered from Covid-19 and then underwent a major elective operation have an increased risk of developing postoperative complications. METHODS: The risk of postoperative complications for patients with Covid-19 undergoing 18 major types of elective operations in the Covid-19 Research Database was evaluated using multivariable logistic regression. Patients were grouped by time of surgery relative to SARS-CoV-2 infection; that is, surgery performed: (1) before January 1, 2020 ("pre-Covid-19"), (2) 0 to 4 weeks after SARS-CoV-2 infection ("peri-Covid-19"), (3) 4 to 8 weeks after infection ("early post-Covid-19"), and (4) ≥8 weeks after infection ("late post-Covid-19"). RESULTS: Of the 5479 patients who met study criteria, patients with peri-Covid-19 had an elevated risk of developing postoperative pneumonia [adjusted odds ratio (aOR), 6.46; 95% confidence interval (CI): 4.06-10.27], respiratory failure (aOR, 3.36; 95% CI: 2.22-5.10), pulmonary embolism (aOR, 2.73; 95% CI: 1.35-5.53), and sepsis (aOR, 3.67; 95% CI: 2.18-6.16) when compared to pre-Covid-19 patients. Early post-Covid-19 patients had an increased risk of developing postoperative pneumonia when compared to pre-Covid-19 patients (aOR, 2.44; 95% CI: 1.20-4.96). Late post-Covid-19 patients did not have an increased risk of postoperative complications when compared to pre-Covid-19 patients. CONCLUSIONS: Major, elective surgery 0 to 4 weeks after SARS-CoV-2 infection is associated with an increased risk of postoperative complications. Surgery performed 4 to 8 weeks after SARS-CoV-2 infection is still associated with an increased risk of postoperative pneumonia, whereas surgery 8 weeks after Covid-19 diagnosis is not associated with increased complications.


Subject(s)
COVID-19/diagnosis , Elective Surgical Procedures/adverse effects , Postoperative Complications/diagnosis , Time-to-Treatment , COVID-19 Testing , Humans , Pneumonia/diagnosis , Pulmonary Embolism/diagnosis , Respiratory Insufficiency/diagnosis , Risk Factors , SARS-CoV-2 , Sepsis/diagnosis , United States
20.
Inflamm Res ; 71(1): 57-67, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1491056

ABSTRACT

OBJECTIVE: Severe COVID-19 is characterized by a dysregulated immune response in which neutrophils play a critical role. Calprotectin reflects neutrophil activation and is involved in the self-amplifying thrombo-inflammatory storm in severe COVID-19. We aimed to evaluate the role of calprotectin in early prediction of severity in COVID-19 patients. METHODS: This was a multicenter prospective observational study enrolling consecutive adult COVID-19 patients. On arrival to emergency department, blood samples were collected for laboratory tests, including serum calprotectin. The primary outcome was severe respiratory failure requiring invasive mechanical ventilation and the secondary outcome was need for Intensive Care Unit (ICU) admission. RESULTS: Study population included 395 patients, 57 (14.4%) required invasive mechanical ventilation and 100 (25.3%) were admitted to ICU. Median serum calprotectin levels were significantly higher in intubated (3.73 mg/L vs. 2.63 mg/L; p < 0.001) and ICU patients (3.48 mg/L vs. 2.60 mg/L; p = 0.001). Calprotectin showed a significant accuracy to predict the need for invasive mechanical ventilation (ROC AUC 0.723) and ICU admission (ROC AUC 0.650). In multivariate analysis, serum calprotectin was an independent predictor of invasive mechanical ventilation (OR 1.161) and ICU admission (OR 1.068). CONCLUSION: Serum calprotectin can be used as an early predictor of severity in COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/diagnosis , Leukocyte L1 Antigen Complex/blood , Neutrophil Activation , Neutrophils/cytology , Respiration, Artificial , Respiratory Insufficiency/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19/complications , Female , Humans , Immune System , Inflammation , Intensive Care Units , Male , Middle Aged , Multivariate Analysis , Predictive Value of Tests , Prospective Studies , ROC Curve , Respiratory Insufficiency/complications , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL