Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 596
Filter
2.
Trials ; 23(1): 105, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-2098423

ABSTRACT

BACKGROUND: Noninvasive respiratory support is frequently needed for patients with acute hypoxemic respiratory failure due to coronavirus disease 19 (COVID-19). Helmet noninvasive ventilation has multiple advantages over other oxygen support modalities but data about effectiveness are limited. METHODS: In this multicenter randomized trial of helmet noninvasive ventilation for COVID-19 patients, 320 adult ICU patients (aged ≥14 years or as per local standards) with suspected or confirmed COVID-19 and acute hypoxemic respiratory failure (ratio of arterial oxygen partial pressure to fraction of inspired oxygen < 200 despite supplemental oxygen with a partial/non-rebreathing mask at a flow rate of 10 L/min or higher) will be randomized to helmet noninvasive ventilation with usual care or usual care alone, which may include mask noninvasive ventilation, high-flow nasal oxygen, or standard oxygen therapy. The primary outcome is death from any cause within 28 days after randomization. The trial has 80% power to detect a 15% absolute risk reduction in 28-day mortality from 40 to 25%. The primary outcome will be compared between the helmet and usual care group in the intention-to-treat using the chi-square test. Results will be reported as relative risk  and 95% confidence interval. The first patient was enrolled on February 8, 2021. As of August 1, 2021, 252 patients have been enrolled from 7 centers in Saudi Arabia and Kuwait. DISCUSSION: We developed a detailed statistical analysis plan to guide the analysis of the Helmet-COVID trial, which is expected to conclude enrollment in November 2021. TRIAL REGISTRATION: ClinicalTrials.gov NCT04477668 . Registered on July 20, 2020.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Head Protective Devices , Humans , Noninvasive Ventilation/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , SARS-CoV-2
4.
Semin Respir Crit Care Med ; 42(6): 771-787, 2021 12.
Article in English | MEDLINE | ID: covidwho-2084534

ABSTRACT

Influenza infection causes severe illness in 3 to 5 million people annually, with up to an estimated 650,000 deaths per annum. As such, it represents an ongoing burden to health care systems and human health. Severe acute respiratory infection can occur, resulting in respiratory failure requiring intensive care support. Herein we discuss diagnostic approaches, including development of CLIA-waived point of care tests that allow rapid diagnosis and treatment of influenza. Bacterial and fungal coinfections in severe influenza pneumonia are associated with worse outcomes, and we summarize the approach and treatment options for diagnosis and treatment of bacterial and Aspergillus coinfection. We discuss the available drug options for the treatment of severe influenza, and treatments which are no longer supported by the evidence base. Finally, we describe the supportive management and ventilatory approach to patients with respiratory failure as a result of severe influenza in the intensive care unit.


Subject(s)
Coinfection , Influenza, Human , Respiratory Insufficiency , Critical Care , Humans , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Intensive Care Units , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
5.
Acta Biomed ; 93(5): e2022256, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2091392

ABSTRACT

BACKGROUND AND AIM: Respiratory failure in SARS-CoV-2 patients is characterized by the presence of hypoxemia and hypocapnia without relevant dyspnea. To date, the use of respiratory parameters other than PaO2/FiO2 ratio to stratify the risk of worsening of these patients has not been sufficiently studied.  Aim of this work was to evaluate whether the ratio between partial pressure levels of carbon dioxide (PaCO2) and the fraction of inspired oxygen (FiO2) measured at emergency department (ED) admission is predictive of the clinical course of patients suffering from SARS-CoV-2 pneumonia. METHODS: We retrospectively studied 236 patients with SARS-CoV-2 pneumonia evaluated at the ED of the Perugia Hospital. The end-points were: in-hospital mortality, need for invasive mechanical ventilation (IMV) and length of in-hospital stay (LOS). Clinical, blood gas and laboratory data were collected at ED admission. RESULTS: Of the 236 patients 157 were male, the mean age was 64 ± 16. Thirtythree patients (14%) needed IMV, 49 died (21%). In the univariate analysis, the PaCO2/FiO2 ratio was inversely associated with the need for IMV (p <0.001), mortality (p <0.001) and LOS (p = 0.005). At the multivariate analysis the PaCO2/FiO2 ratio was found to be predictive of the need for IMV, independently from age, gender, number of comorbidities, neutrophils, lymphocytes, glomerular filtrate, d-dimer, LDH and CRP. CONCLUSIONS: the PaCO2/FiO2 ratio is predictive of the risk of respiratory failure worsening in patients with SARS-CoV-2 pneumonia, independently from other several confounding factors.


Subject(s)
COVID-19 , Pneumonia , Respiratory Insufficiency , Humans , Male , Middle Aged , Aged , Aged, 80 and over , Female , SARS-CoV-2 , Retrospective Studies , Carbon Dioxide , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Oxygen
6.
Curr Opin Crit Care ; 28(6): 660-666, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2087890

ABSTRACT

PURPOSE OF REVIEW: To review the clinical problem and noninvasive treatments of hypoxemia in critically-ill patients with coronavirus disease 2019 pneumonia and describe recent advances in evidence supporting bedside decision making. RECENT FINDINGS: High-flow nasal oxygen and noninvasive ventilation, along with awake prone positioning are potentially helpful therapies for acute hypoxemic respiratory failure. High-flow nasal oxygen therapy has been widely implemented as a form of oxygen support supported by prepandemic randomized controlled trials showing possible benefit over noninvasive ventilation. Given the sheer volume of patients, noninvasive ventilation was often required, and based on a well conducted randomized controlled trial there was a developing role for helmet-interface noninvasive. Coupled with noninvasive supports, the use of awake prone positioning demonstrated physiological benefits, but randomized controlled trial data did not demonstrate clear outcome superiority. SUMMARY: The use of noninvasive oxygen strategies and our understanding of the proposed mechanisms are evolving. Variability in patient severity and physiology may dictate a personalized approach to care. High-flow nasal oxygen may be paired with awake and spontaneously breathing prone-positioning to optimize oxygen and lung mechanics but requires further insight before widely applying to clinical practice.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , COVID-19/therapy , Respiratory Insufficiency/therapy , Oxygen Inhalation Therapy , Hypoxia/therapy , Oxygen , Critical Care , Lung , Randomized Controlled Trials as Topic
7.
Respir Care ; 67(10): 1282-1290, 2022 10.
Article in English | MEDLINE | ID: covidwho-1763135

ABSTRACT

BACKGROUND: Postextubation monitoring helps identify patients at risk of developing respiratory failure. This study aimed to evaluate the effect of our standard respiratory therapist (RT) assessment tool versus an automated continuous monitoring alert to initiate postextubation RT-driven care on the re-intubation rate. METHODS: This was a single-center randomized clinical trial from March 2020 to September 2021 of adult subjects who received mechanical ventilation for > 24 h and underwent planned extubation in the ICU. The subjects were assigned to the standard RT assessment tool or an automated monitoring alert to identify the need for postextubation RT-driven care. The primary outcome was the need for re-intubation due to respiratory failure within 72 h. Secondary outcomes included re-intubation within 7 d, ICU and hospital lengths of stay, hospital mortality, ICU cost, and RT time associated with patient assessment and therapy provision. RESULTS: Of 234 randomized subjects, 32 were excluded from the primary analysis due to disruption in RT-driven care during the surge of patients with COVID-19, and 1 subject was excluded due to delay in the automated monitoring initiation. Analysis of the primary outcome included 85 subjects assigned to the standard RT assessment group and 116 assigned to the automated monitoring alert group to initiate RT-driven care. There was no significant difference between the study groups in re-intubation rate, median length of stay, mortality, or ICU costs. The RT time associated with patient assessment (P < .001) and therapy provided (P = .031) were significantly lower in the automated continuous monitoring alert group. CONCLUSIONS: In subjects who received mechanical ventilation for > 24 h, there were no significant outcome or cost differences between our standard RT assessment tool or an automated monitoring alert to initiate postextubation RT-driven care. Using an automated continuous monitoring alert to initiate RT-driven care saved RT time. (ClinicalTrials.gov registration NCT04231890).


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Airway Extubation/adverse effects , Humans , Intensive Care Units , Respiration, Artificial/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Ventilator Weaning
11.
J Infect Dev Ctries ; 16(9): 1424-1431, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2066669

ABSTRACT

INTRODUCTION: The aim of the study was to determine the survival probability of critically ill patients with COVID-19 infection who needed mechanical ventilation and to determine the efficacy of Tocilizumab use. METHODOLOGY: The study was designed as a retrospective analysis of consecutive patients older than 18 years, treated in an intensive care unit. The criteria for admission to the intensive care unit was severe respiratory failure requiring mechanical ventilation. All patients received corticosteroid therapy (methylprednisolone 1-2 mg/kg). Tocilizumab was used at a dose of 8 mg/kg in patients with a severe form of the disease (onset, or developed ARDS), followed by cytokine storm (IL-6 ≥ 40 ng/L and CRP ≥ 50 mg/L). RESULTS: 88 patients were included in the study. Intrahospital mortality was 48.86%. No statistically significant difference was observed between patients with and without tocilizumab therapy. In the group of patients in whom this therapy was applied, the values of intrahospital survival were 45.7%, while in the group without this therapy the probability of intrahospital survival was only 0.93%. The probability of survival in the group with noninvasive mechanical ventilation (NIV) was 94.7%, while in the group with invasive mechanical ventilation (IMV) 0.78%. The duration of symptoms before hospitalization (RR-1.088 CI 1.025-1.155, p < 0.05), as well as the duration of IMV (RR-0.906 CI 0.841-0.976, p < 0.05), were shown to be an independent predictor of poor outcome. CONCLUSIONS: The mortality of patients with the most severe form of respiratory failure caused by COVID-19 infection remains high. Independent predictors of poor outcomes were needed for invasive mechanical ventilation and the duration of symptoms before hospitalization or late initiation of appropriate therapy.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adrenal Cortex Hormones , COVID-19/drug therapy , COVID-19/mortality , Critical Illness , Humans , Interleukin-6 , Methylprednisolone , Respiratory Insufficiency/therapy , Retrospective Studies
12.
Crit Care ; 26(1): 70, 2022 03 24.
Article in English | MEDLINE | ID: covidwho-2064832

ABSTRACT

BACKGROUND: Excessive inspiratory effort could translate into self-inflicted lung injury, thus worsening clinical outcomes of spontaneously breathing patients with acute respiratory failure (ARF). Although esophageal manometry is a reliable method to estimate the magnitude of inspiratory effort, procedural issues significantly limit its use in daily clinical practice. The aim of this study is to describe the correlation between esophageal pressure swings (ΔPes) and nasal (ΔPnos) as a potential measure of inspiratory effort in spontaneously breathing patients with de novo ARF. METHODS: From January 1, 2021, to September 1, 2021, 61 consecutive patients with ARF (83.6% related to COVID-19) admitted to the Respiratory Intensive Care Unit (RICU) of the University Hospital of Modena (Italy) and candidate to escalation of non-invasive respiratory support (NRS) were enrolled. Clinical features and tidal changes in esophageal and nasal pressure were recorded on admission and 24 h after starting NRS. Correlation between ΔPes and ΔPnos served as primary outcome. The effect of ΔPnos measurements on respiratory rate and ΔPes was also assessed. RESULTS: ΔPes and ΔPnos were strongly correlated at admission (R2 = 0.88, p < 0.001) and 24 h apart (R2 = 0.94, p < 0.001). The nasal plug insertion and the mouth closure required for ΔPnos measurement did not result in significant change of respiratory rate and ΔPes. The correlation between measures at 24 h remained significant even after splitting the study population according to the type of NRS (high-flow nasal cannulas [R2 = 0.79, p < 0.001] or non-invasive ventilation [R2 = 0.95, p < 0.001]). CONCLUSIONS: In a cohort of patients with ARF, nasal pressure swings did not alter respiratory mechanics in the short term and were highly correlated with esophageal pressure swings during spontaneous tidal breathing. ΔPnos might warrant further investigation as a measure of inspiratory effort in patients with ARF. TRIAL REGISTRATION: NCT03826797 . Registered October 2016.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Respiration, Artificial/methods , Respiratory Insufficiency/therapy
13.
J Cardiothorac Surg ; 17(1): 263, 2022 Oct 08.
Article in English | MEDLINE | ID: covidwho-2064825

ABSTRACT

BACKGROUND: Crescent cannula adhesion in the setting of COVID-19 respiratory failure requiring extracorporeal membrane oxygenation (ECMO) support is a novel complication. The objective of this case presentation is to highlight this rare complication and to explore potential predisposing factors and our management strategies. CASE PRESENTATION: We present the case of a 25 y.o. patient with COVID-19 respiratory failure requiring ECMO support for 16-days in which a 32 Fr crescent cannula became adherent to the SVC and proximal jugular vein. Attempts to remove the cannula at the bedside failed due to immobility of the cannula. Ultrasound of the right neck was unremarkable, so he was taken to the hybrid OR where both TEE and fluoroscopy were unrevealing. An upper sternotomy was performed, and the superior vena cava and proximal jugular vein were dissected revealing a 2 cm segment of the distal SVC and proximal jugular vein that was densely sclerosed and adherent to the cannula. The vessel was opened across the adherent area at the level of the innominate vein and the cannula was then able to be withdrawn. The patient suffered no ill effects and had an unremarkable recovery to discharge. CONCLUSIONS: To date, there have been no reports of crescent cannula adhesion related complications. In patients with COVID-19 respiratory failure requiring ECMO, clinicians should be aware of widespread hypercoagulability and the potential of unprovoked, localized venous sclerosis and cannula adhesion. We report our technique of decannulation in the setting of cannula adhesion and hope that presentation will shed further light on this complication allowing clinicians to optimize patient care.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/therapy , Cannula , Extracorporeal Membrane Oxygenation/methods , Humans , Male , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Vena Cava, Superior
14.
JAMA ; 328(12): 1212-1222, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2058988

ABSTRACT

Importance: The benefit of high-flow nasal cannula oxygen (high-flow oxygen) in terms of intubation and mortality in patients with respiratory failure due to COVID-19 is controversial. Objective: To determine whether the use of high-flow oxygen, compared with standard oxygen, could reduce the rate of mortality at day 28 in patients with respiratory failure due to COVID-19 admitted in intensive care units (ICUs). Design, Setting, and Participants: The SOHO-COVID randomized clinical trial was conducted in 34 ICUs in France and included 711 patients with respiratory failure due to COVID-19 and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen equal to or below 200 mm Hg. It was an ancillary trial of the ongoing original SOHO randomized clinical trial, which was designed to include patients with acute hypoxemic respiratory failure from all causes. Patients were enrolled from January to December 2021; final follow-up occurred on March 5, 2022. Interventions: Patients were randomly assigned to receive high-flow oxygen (n = 357) or standard oxygen delivered through a nonrebreathing mask initially set at a 10-L/min minimum (n = 354). Main Outcomes and Measures: The primary outcome was mortality at day 28. There were 13 secondary outcomes, including the proportion of patients requiring intubation, number of ventilator-free days at day 28, mortality at day 90, mortality and length of stay in the ICU, and adverse events. Results: Among the 782 randomized patients, 711 patients with respiratory failure due to COVID-19 were included in the analysis (mean [SD] age, 61 [12] years; 214 women [30%]). The mortality rate at day 28 was 10% (36/357) with high-flow oxygen and 11% (40/354) with standard oxygen (absolute difference, -1.2% [95% CI, -5.8% to 3.4%]; P = .60). Of 13 prespecified secondary outcomes, 12 showed no significant difference including in length of stay and mortality in the ICU and in mortality up until day 90. The intubation rate was significantly lower with high-flow oxygen than with standard oxygen (45% [160/357] vs 53% [186/354]; absolute difference, -7.7% [95% CI, -14.9% to -0.4%]; P = .04). The number of ventilator-free days at day 28 was not significantly different between groups (median, 28 [IQR, 11-28] vs 23 [IQR, 10-28] days; absolute difference, 0.5 days [95% CI, -7.7 to 9.1]; P = .07). The most common adverse events were ventilator-associated pneumonia, occurring in 58% (93/160) in the high-flow oxygen group and 53% (99/186) in the standard oxygen group. Conclusions and Relevance: Among patients with respiratory failure due to COVID-19, high-flow nasal cannula oxygen, compared with standard oxygen therapy, did not significantly reduce 28-day mortality. Trial Registration: ClinicalTrials.gov Identifier: NCT04468126.


Subject(s)
COVID-19 , Oxygen Inhalation Therapy , Respiratory Insufficiency , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Cannula/adverse effects , Female , Humans , Male , Masks , Middle Aged , Oxygen/administration & dosage , Oxygen Inhalation Therapy/adverse effects , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/therapy
16.
BMC Anesthesiol ; 22(1): 307, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2053860

ABSTRACT

BACKGROUND: Data on the efficacy of non-invasive ventilation (NIV) after progression of respiratory failure in patients who have already received oxygen therapy, or CPAP outside ICU is limited. The study aimed to find predictors of NIV failure based on breathing pattern, gas exchange, and accessory respiratory muscles evaluation in patients who progressed to moderate-to-severe COVID-19 ARDS. METHODS: This was a prospective observational study in patients with moderate-to-severe COVID-19-ARDS on NIV (n = 80) admitted to COVID-ICU of Sechenov University. The combined success rate for conventional oxygen and CPAP outside ICU was 78.6% (440 of 560 patients). The primary endpoints were intubation rate and mortality. We measured respiratory rate, exhaled tidal volume (Vte), mean peak inspiratory flow (PIF), inspiratory time (Ti), PaO2, SpO2, end-tidal carbon dioxide (PETCO2), and Patrick score, and calculated ROX index, PaO2/FiO2, ventilatory ratio, and alveolar dead space (Vdalv/Vt) on Days 1, 3, 5, 7, 10, and 14. For all significant differences between NIV success and failure groups in measured data, we performed ROC analysis. RESULTS: NIV failure rate in ICU after deterioration of respiratory failure outside ICU was 71.3% (n = 57). Patients with the subsequent NIV failure were older at inclusion, more frail, had longer duration of disease before ICU admission, and higher rate of CPAP use outside ICU. ROC-analysis revealed that the following respiratory parameters after 48 h of NIV can serve as a predictors for NIV failure in moderate-to-severe COVID-19-associated ARDS: PaO2/FiO2 < 112 mmHg (AUROC 0.90 (0.93-0.97), p < 0.0001); PETCO2 < 19.5 mmHg (AUROC 0.84 (0.73-0.94), p < 0.0001); VDalv/VT > 0.43 (AUROC 0.78 (0.68-0.90), p < 0.0001); ROX-index < 5.02 (AUROC 0.89 (0.81-0.97), p < 0.0001); Patrick score > 2 points (AUROC 0.87 (0.78-0.96), p = 0.006). CONCLUSION: In patients who progressed to moderate-to-severe COVID-19-ARDS probability of NIV success rate was about 1/3. Prediction of the NIV failure can be made after 48 h based on ROX index < 5.02, PaO2/FiO2 < 112 mmHg, PETCO2 < 19.5 mmHg, and Patrick score > = 2. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04667923 , registered on 16/12/2020.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , COVID-19/therapy , Carbon Dioxide , Humans , Intensive Care Units , Oxygen , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Respiratory Muscles , Respiratory Rate
17.
Clin Nutr ESPEN ; 51: 377-384, 2022 10.
Article in English | MEDLINE | ID: covidwho-2049034

ABSTRACT

BACKGROUND AND AIMS: Although obesity have been generally shown to be an independent risk factor for poor outcomes in COVID-19 infection, some studies demonstrate a paradoxical protective effect ("obesity paradox"). This study examines the influence of obesity categories on clinical outcomes of severe COVID-19 patients admitted to an intensive care unit with acute hypoxic respiratory failure requiring either non-invasive or invasive mechanical ventilation. METHODS: This is a single centre, retrospective study of consecutive COVID-19 patients admitted to the intensive care unit between 03/2020 to 03/2021. Patients were grouped according to the NICE Body Mass Index (BMI) category. Admission variables including age, sex, comorbidities, and ICU severity indices (APACHE-II, SOFA and PaO2/FiO2) were collected. Data were compared between BMI groups for outcomes such as need for invasive mechanical ventilation (IMV), renal replacement therapy (RRT) and 28-day and overall hospital mortality. RESULTS: 340 patients were identified and of those 333 patients had their BMI documented. Just over half of patients (53%) had obesity. Those with extreme obesity (obesity groups II and III) were younger with fewer comorbidities, but were more hypoxaemic at presentation, than the healthy BMI group. Although non-significant, obesity groups II and III paradoxically showed a lower in-hospital mortality than the healthy weight group. However, adjusted (age, sex, APACHE-II and CCI) competing risk regression analysis showed three-times higher mortality in obese category I (sub-distribution hazard ratio = 3.32 (95% CI 1.30-8.46), p = 0.01) and a trend to higher mortality across all obesity groups compared to the healthy weight group. CONCLUSIONS: In this cohort, those with obesity were at higher risk of mortality after adjustment for confounders. We did not identify an "obesity paradox" in this cohort. The obesity paradox may be explained by confounding factors such as younger age, fewer comorbidities, and less severe organ failures. The impact of obesity on indicators of morbidity including likelihood of requirement for organ support measures was not conclusively demonstrated and requires further scrutiny.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Body Mass Index , COVID-19/therapy , Humans , Obesity/complications , Respiratory Insufficiency/therapy , Retrospective Studies
18.
Can J Anaesth ; 69(10): 1300-1304, 2022 10.
Article in English | MEDLINE | ID: covidwho-2048601

ABSTRACT

BACKGROUND: Freon™ is a halogenated hydrocarbon often used as a refrigerant. When inhaled recreationally, it has the desired effects of euphoria and intoxication. Toxic effects include cardiovascular and neurologic insults such as arrhythmias and seizures, and less well-described toxicities include airway and lung injury. The treatment in general is primarily supportive. CLINICAL FEATURES: We present the case of a 42-yr-old previously healthy male who developed acute bronchiolitis and pneumonitis following inhalation of Freon leading to severe respiratory failure. He was supported by veno-venous extracorporeal membrane oxygenation and managed with high-dose corticosteroids. CONCLUSION: To our knowledge, this is the first case report of an inhaled Freon exposure resulting in acute lung injury refractory to conventional therapy that was salvaged by vv-ECMO as a bridge towards a full recovery.


RéSUMé: CONTEXTE: Le Fréon™ est un hydrocarbure halogéné souvent utilisé comme réfrigérant. Lorsqu'il est inhalé à des fins récréatives, il a les effets souhaités d'euphorie et d'intoxication. Les effets toxiques comprennent les lésions cardiovasculaires et neurologiques telles que les arythmies et les convulsions, et les toxicités moins bien décrites comprennent les lésions des voies aériennes et des poumons. En général, le traitement est principalement un traitement de soutien. CARACTéRISTIQUES CLINIQUES: Nous présentons le cas d'un homme de 42 ans auparavant en bonne santé qui a développé une bronchiolite et une pneumonite aiguës après inhalation de Fréon, entraînant une insuffisance respiratoire sévère. Il a été supplémenté par oxygénation par membrane extracorporelle veino-veineuse et pris en charge avec des corticostéroïdes à forte dose. CONCLUSION: À notre connaissance, il s'agit de la première présentation de cas d'exposition au Fréon inhalé entraînant une lésion pulmonaire aiguë réfractaire au traitement conventionnel et pour laquelle un sauvetage par ECMO-VV a favorisé un rétablissement complet.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Insufficiency , Chlorofluorocarbons , Extracorporeal Membrane Oxygenation/methods , Humans , Male , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
19.
JAMA ; 328(11): 1063-1072, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2047353

ABSTRACT

Importance: Helmet noninvasive ventilation has been used in patients with COVID-19 with the premise that helmet interface is more effective than mask interface in delivering prolonged treatments with high positive airway pressure, but data about its effectiveness are limited. Objective: To evaluate whether helmet noninvasive ventilation compared with usual respiratory support reduces mortality in patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. Design, Setting, and Participants: This was a multicenter, pragmatic, randomized clinical trial that was conducted in 8 sites in Saudi Arabia and Kuwait between February 8, 2021, and November 16, 2021. Adult patients with acute hypoxemic respiratory failure (n = 320) due to suspected or confirmed COVID-19 were included. The final follow-up date for the primary outcome was December 14, 2021. Interventions: Patients were randomized to receive helmet noninvasive ventilation (n = 159) or usual respiratory support (n = 161), which included mask noninvasive ventilation, high-flow nasal oxygen, and standard oxygen. Main Outcomes and Measures: The primary outcome was 28-day all-cause mortality. There were 12 prespecified secondary outcomes, including endotracheal intubation, barotrauma, skin pressure injury, and serious adverse events. Results: Among 322 patients who were randomized, 320 were included in the primary analysis, all of whom completed the trial. Median age was 58 years, and 187 were men (58.4%). Within 28 days, 43 of 159 patients (27.0%) died in the helmet noninvasive ventilation group compared with 42 of 161 (26.1%) in the usual respiratory support group (risk difference, 1.0% [95% CI, -8.7% to 10.6%]; relative risk, 1.04 [95% CI, 0.72-1.49]; P = .85). Within 28 days, 75 of 159 patients (47.2%) required endotracheal intubation in the helmet noninvasive ventilation group compared with 81 of 161 (50.3%) in the usual respiratory support group (risk difference, -3.1% [95% CI, -14.1% to 7.8%]; relative risk, 0.94 [95% CI, 0.75-1.17]). There were no significant differences between the 2 groups in any of the prespecified secondary end points. Barotrauma occurred in 30 of 159 patients (18.9%) in the helmet noninvasive ventilation group and 25 of 161 (15.5%) in the usual respiratory support group. Skin pressure injury occurred in 5 of 159 patients (3.1%) in the helmet noninvasive ventilation group and 10 of 161 (6.2%) in the usual respiratory support group. There were 2 serious adverse events in the helmet noninvasive ventilation group and 1 in the usual respiratory support group. Conclusions and Relevance: Results of this study suggest that helmet noninvasive ventilation did not significantly reduce 28-day mortality compared with usual respiratory support among patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. However, interpretation of the findings is limited by imprecision in the effect estimate, which does not exclude potentially clinically important benefit or harm. Trial Registration: ClinicalTrials.gov Identifier: NCT04477668.


Subject(s)
COVID-19 , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiratory Insufficiency , Acute Disease , Barotrauma/etiology , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Female , Humans , Hypoxia/etiology , Hypoxia/mortality , Hypoxia/therapy , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen/administration & dosage , Oxygen/adverse effects , Oxygen Inhalation Therapy/adverse effects , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/therapy
20.
BMC Pediatr ; 22(1): 138, 2022 03 16.
Article in English | MEDLINE | ID: covidwho-2038685

ABSTRACT

BACKGROUND: To assess the outcome of extracorporeal membrane oxygenation (ECMO) for severe adenovirus (Adv) pneumonia with refractory hypoxic respiratory failure (RHRF) in paediatric patients. METHODS: A retrospective observational study was performed in a tertiary paediatric intensive care unit (PICU) in China. Patients with RHRF caused by Adv pneumonia who received ECMO support after mechanical ventilation failed to achieve adequate oxygenation between 2017 and 2020 were included. The outcome variables were the in-hospital survival rate and the effects of ECMO on the survival rate. RESULTS: In total, 18 children with RHRF received ECMO. The median age was 19 (9.5, 39.8) months, and the median ECMO duration was 196 (152, 309) h. The in-hospital survival rate was 72.2% (13/18). Thirteen patients (72.2%) required continuous renal replacement therapy (CRRT) due to fluid imbalance or acute kidney injury (AKI). At ECMO initiation, compared with survivors, nonsurvivors had a lower PaO2/FiO2 ratio [49 (34.5, 62) vs. 63 (56, 71); p = 0.04], higher oxygen index (OI) [41 (34.5, 62) vs. 30 (26.5, 35); p = 0.03], higher vasoactive inotropic score (VIS) [30 (16.3, 80) vs. 100 (60, 142.5); p = 0.04], longer duration from mechanical ventilation to ECMO support [8 (4, 14) vs. 4 (3, 5.5) h, p=0.02], and longer time from confirmed RHRF to ECMO initiation [9 (4.8, 13) vs. 5 (1.3, 5.5) h; p = 0.004]. Patients with PaO2/FiO2 <61 mmHg or an OI >43 and hypoxic respiratory failure for more than 9 days before the initiation of ECMO had worse outcomes. CONCLUSIONS: ECMO seemed to be effective, as severe paediatric Adv pneumonia patients with RHRF had a cumulative survival rate of 72.2% in our study. Our study provides insight into ECMO rescue in children with severe Adv pneumonia.


Subject(s)
Adenoviridae Infections , Extracorporeal Membrane Oxygenation , Pneumonia, Viral , Respiratory Insufficiency , Adenoviridae , Adult , Child , China , Humans , Hypoxia/etiology , Hypoxia/therapy , Oxygen , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL