Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nat Commun ; 13(1): 719, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692616

ABSTRACT

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.


Subject(s)
COVID-19/drug therapy , Disease Models, Animal , Lactams/administration & dosage , Leucine/administration & dosage , Nitriles/administration & dosage , Proline/administration & dosage , SARS-CoV-2/drug effects , Viral Protease Inhibitors/administration & dosage , A549 Cells , Administration, Oral , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cricetinae , Humans , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mesocricetus , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Vero Cells , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
2.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1675572

ABSTRACT

BACKGROUND: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS: We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS: We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION: These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.


Subject(s)
Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/administration & dosage , Administration, Topical , Androgens/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Epithelial Cells , Esters/pharmacology , Gene Expression , Goblet Cells/immunology , Goblet Cells/metabolism , Guanidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Serine Endopeptidases/genetics , Signal Transduction , Virus Internalization/drug effects , Virus Replication/drug effects
3.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1662694

ABSTRACT

Polyethyleneimine (PEI) induced immune responses were investigated in human bronchial epithelial (hBE) cells and mice. PEI rapidly induced ATP release from hBE cells and pretreatment with glutathione (GSH) blocked the response. PEI activated two conductive pathways, VDAC-1 and pannexin 1, which completely accounted for ATP efflux across the plasma membrane. Moreover, PEI increased intracellular Ca2+ concentration ([Ca2+]i), which was reduced by the pannexin 1 inhibitor, 10Panx (50 µM), the VDAC-1 inhibitor, DIDS (100 µM), and was nearly abolished by pretreatment with GSH (5 mM). The increase in [Ca2+]i involved Ca2+ uptake through two pathways, one blocked by oxidized ATP (oATP, 300 µM) and another that was blocked by the TRPV-1 antagonist A784168 (100 nM). PEI stimulation also increased IL-33 mRNA expression and protein secretion. In vivo experiments showed that acute (4.5 h) PEI exposure stimulated secretion of Th2 cytokines (IL-5 and IL-13) into bronchoalveolar lavage (BAL) fluid. Conjugation of PEI with ovalbumin also induced eosinophil recruitment and secretion of IL-5 and IL-13 into BAL fluid, which was inhibited in IL-33 receptor (ST2) deficient mice. In conclusion, PEI-induced oxidative stress stimulated type 2 immune responses by activating ATP-dependent Ca2+ uptake leading to IL-33 secretion, similar to allergens derived from Alternaria.


Subject(s)
Adenosine Triphosphate/immunology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Immunity/drug effects , Nanoparticles/administration & dosage , Oxidative Stress/drug effects , Polyethyleneimine/pharmacology , Allergens/immunology , Animals , Calcium/immunology , Cells, Cultured , Cytokines/immunology , Female , Humans , Immunity/immunology , Mice , Mice, Inbred BALB C , Oxidative Stress/immunology , RNA, Messenger/immunology , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology
4.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1625612

ABSTRACT

Repurposing of the anthelminthic drug niclosamide was proposed as an effective treatment for inflammatory airway diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Niclosamide may also be effective for the treatment of viral respiratory infections, such as SARS-CoV-2, respiratory syncytial virus, and influenza. While systemic application of niclosamide may lead to unwanted side effects, local administration via aerosol may circumvent these problems, particularly when the drug is encapsulated into small polyethylene glycol (PEG) hydrospheres. In the present study, we examined whether PEG-encapsulated niclosamide inhibits the production of mucus and affects the pro-inflammatory mediator CLCA1 in mouse airways in vivo, while effects on mucociliary clearance were assessed in excised mouse tracheas. The potential of encapsulated niclosamide to inhibit TMEM16A whole-cell Cl- currents and intracellular Ca2+ signalling was assessed in airway epithelial cells in vitro. We achieved encapsulation of niclosamide in PEG-microspheres and PEG-nanospheres (Niclo-spheres). When applied to asthmatic mice via intratracheal instillation, Niclo-spheres strongly attenuated overproduction of mucus, inhibited secretion of the major proinflammatory mediator CLCA1, and improved mucociliary clearance in tracheas ex vivo. These effects were comparable for niclosamide encapsulated in PEG-nanospheres and PEG-microspheres. Niclo-spheres inhibited the Ca2+ activated Cl- channel TMEM16A and attenuated mucus production in CFBE and Calu-3 human airway epithelial cells. Both inhibitory effects were explained by a pronounced inhibition of intracellular Ca2+ signals. The data indicate that poorly dissolvable compounds such as niclosamide can be encapsulated in PEG-microspheres/nanospheres and deposited locally on the airway epithelium as encapsulated drugs, which may be advantageous over systemic application.


Subject(s)
Niclosamide/administration & dosage , Pneumonia/drug therapy , Respiratory System/drug effects , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , COVID-19/complications , COVID-19/drug therapy , Cells, Cultured , Disease Models, Animal , Drug Carriers/chemistry , Drug Compounding , Humans , Hydrogels/chemistry , Instillation, Drug , Mice , Microspheres , Mucus/drug effects , Mucus/metabolism , Nanospheres/administration & dosage , Nanospheres/chemistry , Niclosamide/chemistry , Niclosamide/pharmacokinetics , Pneumonia/pathology , Polyethylene Glycols/chemistry , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory System/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Trachea
5.
Front Immunol ; 12: 743890, 2021.
Article in English | MEDLINE | ID: covidwho-1581344

ABSTRACT

Background: Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective: To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods: Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results: Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1ß, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-ß expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion: Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-ß expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Asthma , COVID-19 , Imiquimod/pharmacology , Interferon-beta/drug effects , Respiratory Mucosa/drug effects , Adjuvants, Immunologic/pharmacology , Adult , Aged , Bronchi/drug effects , Bronchi/immunology , Bronchi/virology , Cells, Cultured , Female , Humans , Interferon-beta/immunology , Male , Middle Aged , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2
6.
Respir Res ; 22(1): 200, 2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1450712

ABSTRACT

BACKGROUND: The first step in SARS-CoV-2 infection is binding of the virus to angiotensin converting enzyme 2 (ACE2) on the airway epithelium. Asthma affects over 300 million people world-wide, many of whom may encounter SARS-CoV-2. Epidemiologic data suggests that asthmatics who get infected may be at increased risk of more severe disease. Our objective was to assess whether maintenance inhaled corticosteroids (ICS), a major treatment for asthma, is associated with airway ACE2 expression in asthmatics. METHODS: Large airway epithelium (LAE) of asthmatics treated with maintenance ICS (ICS+), asthmatics not treated with ICS (ICS-), and healthy controls (controls) was analyzed for expression of ACE2 and other coronavirus infection-related genes using microarrays. RESULTS: As a group, there was no difference in LAE ACE2 expression in all asthmatics vs controls. In contrast, subgroup analysis demonstrated that LAE ACE2 expression was higher in asthmatics ICS+ compared to ICS‾ and ACE2 expression was higher in male ICS+ compared to female ICS+ and ICS‾ of either sex. ACE2 expression did not correlate with serum IgE, absolute eosinophil level, or change in FEV1 in response to bronchodilators in either ICS- or ICS+. CONCLUSION: Airway ACE2 expression is increased in asthmatics on long-term treatment with ICS, an observation that should be taken into consideration when assessing the use of inhaled corticosteroids during the pandemic.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Angiotensin-Converting Enzyme 2/metabolism , Asthma/drug therapy , Receptors, Virus/metabolism , Respiratory Mucosa/drug effects , Administration, Inhalation , Adrenal Cortex Hormones/adverse effects , Adult , Angiotensin-Converting Enzyme 2/genetics , Asthma/diagnosis , Asthma/enzymology , Asthma/genetics , COVID-19/enzymology , COVID-19/virology , Case-Control Studies , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Receptors, Virus/genetics , Respiratory Mucosa/enzymology , SARS-CoV-2/pathogenicity , Time Factors , Up-Regulation , Virus Internalization , Young Adult
7.
PLoS One ; 16(9): e0257784, 2021.
Article in English | MEDLINE | ID: covidwho-1440991

ABSTRACT

Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature'-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR<0.05, log2FC>1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development.


Subject(s)
COVID-19/drug therapy , Drug Repositioning/methods , SARS-CoV-2/genetics , Antiviral Agents/therapeutic use , Drug Evaluation, Preclinical/methods , Epithelial Cells/drug effects , Epithelium/drug effects , Humans , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory System/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
8.
Commun Biol ; 4(1): 654, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1253994

ABSTRACT

SARS-CoV-2 infection of human airway epithelium activates genetic programs leading to progressive hyperinflammation in COVID-19 patients. Here, we report on transcriptomes activated in primary airway cells by interferons and their suppression by Janus kinase (JAK) inhibitors. Deciphering the regulation of the angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, is paramount for understanding the cell tropism of SARS-CoV-2 infection. ChIP-seq for activating histone marks and Pol II loading identified candidate enhancer elements controlling the ACE2 locus, including the intronic dACE2 promoter. Employing RNA-seq, we demonstrate that interferons activate expression of dACE2 and, to a lesser extent, the genuine ACE2 gene. Interferon-induced gene expression was mitigated by the JAK inhibitors baricitinib and ruxolitinib, used therapeutically in COVID-19 patients. Through integrating RNA-seq and ChIP-seq data we provide an in-depth understanding of genetic programs activated by interferons, and our study highlights JAK inhibitors as suitable tools to suppress these in bronchial cells.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , COVID-19/drug therapy , Interferons/pharmacology , Janus Kinase Inhibitors/pharmacology , Transcriptional Activation/drug effects , COVID-19/genetics , Cell Line , Humans , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Transcriptome/drug effects
9.
Sci Rep ; 11(1): 371, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-1242035

ABSTRACT

Vaccines and therapeutics using in vitro transcribed mRNA hold enormous potential for human and veterinary medicine. Transfection agents are widely considered to be necessary to protect mRNA and enhance transfection, but they add expense and raise concerns regarding quality control and safety. We found that such complex mRNA delivery systems can be avoided when transfecting epithelial cells by aerosolizing the mRNA into micron-sized droplets. In an equine in vivo model, we demonstrated that the translation of mRNA into a functional protein did not depend on the addition of a polyethylenimine (PEI)-derived transfection agent. We were able to safely and effectively transfect the bronchial epithelium of foals using naked mRNA (i.e., mRNA formulated in a sodium citrate buffer without a delivery vehicle). Endoscopic examination of the bronchial tree and histology of mucosal biopsies indicated no gross or microscopic adverse effects of the transfection. Our data suggest that mRNA administered by an atomization device eliminates the need for chemical transfection agents, which can reduce the cost and the safety risks of delivering mRNA to the respiratory tract of animals and humans.


Subject(s)
Horses , Nasal Sprays , RNA, Messenger/administration & dosage , Respiratory Mucosa , Animals , Animals, Newborn , Cells, Cultured , Drug Carriers/administration & dosage , Drug Carriers/adverse effects , Drug Carriers/pharmacokinetics , Drug Delivery Systems/adverse effects , Drug Delivery Systems/methods , Drug Delivery Systems/veterinary , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/drug effects , Lung/metabolism , Nebulizers and Vaporizers/veterinary , Polyethyleneimine/administration & dosage , Polyethyleneimine/chemistry , RNA, Messenger/adverse effects , RNA, Messenger/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Transcription, Genetic , Transfection/methods , Transfection/veterinary , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Vaccines, DNA/pharmacokinetics
10.
Theranostics ; 11(13): 6193-6213, 2021.
Article in English | MEDLINE | ID: covidwho-1224320

ABSTRACT

Rationale: The pandemic caused by the novel coronavirus SARS-CoV-2 is advancing rapidly. In particular, the number of severe courses of the disease is still dramatically high. An efficient drug therapy that helps to improve significantly the fatal combination of damages in the airway epithelia, in the extensive pulmonary microvascularization and finally multiorgan failure, is missing. The physiological, inorganic polymer, polyphosphate (polyP) is a molecule which could prevent the initial phase of the virus life cycle, the attachment of the virus to the target cells, and improve the epithelial integrity as well as the mucus barrier. Results: Surprisingly, polyP matches perfectly with the cationic groove on the RBD. Subsequent binding studies disclosed that polyP, with a physiological chain length of 40 phosphate residues, abolishes the binding propensity of the RBD to the ACE2 receptor. In addition to this first mode of action of polyP, this polymer causes in epithelial cells an increased gene expression of the major mucins in the airways, of MUC5AC and MUC1, as well as a subsequent glycoprotein production. MUC5AC forms a gel-like mucus layer trapping inhaled particles which are then transported out of the airways, while MUC1 constitutes the periciliary liquid layer and supports ciliary beating. As a third mode of action, polyP undergoes enzymatic hydrolysis of the anhydride bonds in the airway system by alkaline phosphatase, releasing metabolic energy. Conclusions: This review summarizes the state of the art of the biotherapeutic potential of the polymer polyP and the findings from basic research and outlines future biomedical applications.


Subject(s)
COVID-19/drug therapy , Pandemics/prevention & control , Polyphosphates/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Disease Models, Animal , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Mice , Mucins/metabolism , Nanoparticles/chemistry , Polyphosphates/chemistry , Polyphosphates/therapeutic use , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Virus Attachment/drug effects
11.
mBio ; 12(2)2021 04 27.
Article in English | MEDLINE | ID: covidwho-1206005

ABSTRACT

SARS-CoV-2 infection causing the COVID-19 pandemic calls for immediate interventions to avoid viral transmission, disease progression, and subsequent excessive inflammation and tissue destruction. Primary normal human bronchial epithelial cells are among the first targets of SARS-CoV-2 infection. Here, we show that ColdZyme medical device mouth spray efficiently protected against virus entry, excessive inflammation, and tissue damage. Applying ColdZyme to fully differentiated, polarized human epithelium cultured at an air-liquid interphase (ALI) completely blocked binding of SARS-CoV-2 and increased local complement activation mediated by the virus as well as productive infection of the tissue model. While SARS-CoV-2 infection resulted in exaggerated intracellular complement activation immediately following infection and a drop in transepithelial resistance, these parameters were bypassed by single pretreatment of the tissues with ColdZyme mouth spray. Crucially, our study highlights the importance of testing already evaluated and safe drugs such as ColdZyme mouth spray for maintaining epithelial integrity and hindering SARS-CoV-2 entry within standardized three-dimensional (3D) in vitro models mimicking the in vivo human airway epithelium.IMPORTANCE Although our understanding of COVID-19 continuously progresses, essential questions regarding prophylaxis and treatment remain open. A hallmark of severe SARS-CoV-2 infection is a hitherto-undescribed mechanism leading to excessive inflammation and tissue destruction associated with enhanced pathogenicity and mortality. To tackle the problem at the source, transfer of SARS-CoV-2, subsequent binding, infection, and inflammatory responses have to be avoided. In this study, we used fully differentiated, mucus-producing, and ciliated human airway epithelial cultures to test the efficacy of ColdZyme medical device mouth spray in terms of protection from SARS-CoV-2 infection. Importantly, we found that pretreatment of the in vitro airway cultures using ColdZyme mouth spray resulted in significantly shielding the epithelial integrity, hindering virus binding and infection, and blocking excessive intrinsic complement activation within the airway cultures. Our in vitro data suggest that ColdZyme mouth spray may have an impact in prevention of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Respiratory Mucosa/drug effects , SARS-CoV-2/drug effects , Bronchi/cytology , COVID-19/prevention & control , COVID-19/virology , Complement C3/immunology , Epithelial Cells , Humans , Immunity, Innate/drug effects , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/virology , Oral Sprays , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/physiology , Virus Attachment/drug effects
12.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054610

ABSTRACT

Among seven coronaviruses that infect humans, three (severe acute respiratory syndrome coronavirus [SARS-CoV], Middle East respiratory syndrome coronavirus [MERS-CoV], and the newly identified severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) are associated with a severe, life-threatening respiratory infection and multiorgan failure. We previously proposed that the cationically modified chitosan N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) is a potent inhibitor of human coronavirus NL63 (HCoV-NL63). Next, we demonstrated the broad-spectrum antiviral activity of the compound, as it inhibited all low-pathogenicity human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1). Here, using in vitro and ex vivo models of human airway epithelia, we show that HTCC effectively blocks MERS-CoV and SARS-CoV-2 infection. We also confirmed the mechanism of action for these two viruses, showing that the polymer blocks the virus entry into the host cell by interaction with the S protein.IMPORTANCE The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the health care measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of an HTCC compound, previously developed by us, which may be used as a potential inhibitor of currently circulating highly pathogenic coronaviruses-SARS-CoV-2 and MERS-CoV.


Subject(s)
COVID-19/drug therapy , Chitosan/analogs & derivatives , Coronavirus Infections/drug therapy , Middle East Respiratory Syndrome Coronavirus/drug effects , Quaternary Ammonium Compounds/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/virology , Chitosan/pharmacology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Middle East Respiratory Syndrome Coronavirus/metabolism , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
13.
Mar Drugs ; 18(12)2020 Dec 14.
Article in English | MEDLINE | ID: covidwho-977761

ABSTRACT

The mucus layer of the nasopharynx and bronchial epithelium has a barrier function against inhaled pathogens such as the coronavirus SARS-CoV-2. We recently found that inorganic polyphosphate (polyP), a physiological, metabolic energy (ATP)-providing polymer released from blood platelets, blocks the binding of the receptor binding domain (RBD) to the cellular ACE2 receptor in vitro. PolyP is a marine natural product and is abundantly present in marine bacteria. Now, we have approached the in vivo situation by studying the effect of polyP on the human alveolar basal epithelial A549 cells in a mucus-like mucin environment. These cells express mucins as well as the ectoenzymes alkaline phosphatase (ALP) and adenylate kinase (ADK), which are involved in the extracellular production of ATP from polyP. Mucin, integrated into a collagen-based hydrogel, stimulated cell growth and attachment. The addition of polyP to the hydrogel significantly increased cell attachment and also the expression of the membrane-tethered mucin MUC1 and the secreted mucin MUC5AC. The increased synthesis of MUC1 was also confirmed by immunostaining. This morphogenetic effect of polyP was associated with a rise in extracellular ATP level. We conclude that the nontoxic and non-immunogenic polymer polyP could possibly also exert a protective effect against SARS-CoV-2-cell attachment; first, by stimulating the innate antiviral response by strengthening the mucin barrier with its antimicrobial proteins, and second, by inhibiting virus attachment to the cells, as deduced from the reduction in the strength of binding between the viral RBD and the cellular ACE2 receptor.


Subject(s)
Aquatic Organisms/metabolism , Biological Products/pharmacology , COVID-19/prevention & control , Polyphosphates/pharmacology , Respiratory Mucosa/drug effects , A549 Cells , Bacteria/metabolism , Biological Products/therapeutic use , COVID-19/virology , Humans , Immunity, Innate/drug effects , Mucin 5AC/metabolism , Mucin-1/metabolism , Polyphosphates/metabolism , Polyphosphates/therapeutic use , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Secondary Metabolism , Virus Attachment/drug effects
14.
CPT Pharmacometrics Syst Pharmacol ; 10(2): 89-99, 2021 02.
Article in English | MEDLINE | ID: covidwho-966959

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak initiated the global coronavirus disease 2019 (COVID-19) pandemic resulting in 42.9 million confirmed infections and > 1.1 million deaths worldwide as of October 26, 2020. Remdesivir is a broad-spectrum nucleotide prodrug shown to be effective against enzootic coronaviruses. The pharmacokinetics (PKs) of remdesivir in plasma have recently been described. However, the distribution of its active metabolite nucleoside triphosphate (NTP) to the site of pulmonary infection is unknown in humans. Our objective was to use existing in vivo mouse PK data for remdesivir and its metabolites to develop a mechanism-based model to allometrically scale and simulate the human PK of remdesivir in plasma and NTP in lung homogenate. Remdesivir and GS-441524 concentrations in plasma and total phosphorylated nucleoside concentrations in lung homogenate from Ces1c-/- mice administered 25 or 50 mg/kg of remdesivir subcutaneously were simultaneously fit to estimate PK parameters. The mouse PK model was allometrically scaled to predict human PK parameters to simulate the clinically recommended 200 mg loading dose followed by 100 mg daily maintenance doses administered as 30-minute intravenous infusions. Simulations of unbound remdesivir concentrations in human plasma were below 2.48 µM, the 90% maximal inhibitory concentration for SARS-CoV-2 inhibition in vitro. Simulations of NTP in the lungs were below high efficacy in vitro thresholds. We have identified a need for alternative dosing strategies to achieve more efficacious concentrations of NTP in human lungs, perhaps by reformulating remdesivir for direct pulmonary delivery.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacokinetics , COVID-19/drug therapy , Models, Animal , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/therapeutic use , Alanine/pharmacokinetics , Alanine/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/metabolism , Cells, Cultured , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Species Specificity
15.
Aging (Albany NY) ; 12(22): 22425-22444, 2020 11 22.
Article in English | MEDLINE | ID: covidwho-969889

ABSTRACT

With the current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality. The inhibition of viral entry and thus spread is a plausible therapeutic avenue. SARS-CoV-2 uses receptor-mediated entry into a human host via the angiotensin-converting enzyme 2 (ACE2), which is expressed in lung tissue as well as the oral and nasal mucosa, kidney, testes and gastrointestinal tract. The modulation of ACE2 levels in these gateway tissues may be an effective strategy for decreasing disease susceptibility. Cannabis sativa, especially those high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been found to alter gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. However, its effects on ACE2 expression remain unknown. Working under a Health Canada research license, we developed over 800 new C. sativa cultivars and hypothesized that high-CBD C. sativa extracts may be used to down-regulate ACE2 expression in target COVID-19 tissues. Using artificial 3D human models of oral, airway and intestinal tissues, we identified 13 high-CBD C. sativa extracts that decrease ACE2 protein levels. Some C. sativa extracts down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV-2 entry into host cells. While our most effective extracts require further large-scale validation, our study is important for future analyses of the effects of medical cannabis on COVID-19. The extracts of our most successful novel high-CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the prevention/treatment of COVID-19 as an adjunct therapy.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19/prevention & control , Cannabis/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , COVID-19/epidemiology , COVID-19/virology , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Computer Simulation , Gene Expression Regulation/drug effects , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Models, Anatomic , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Mouth Mucosa/virology , Pandemics/prevention & control , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects
16.
PLoS One ; 15(12): e0242536, 2020.
Article in English | MEDLINE | ID: covidwho-965821

ABSTRACT

Retinoic acid (RA) has been shown to improve epithelial and endothelial barrier function and development and even suppress damage inflicted by inflammation on these barriers through regulating immune cell activity. This paper thus sought to determine whether RA could improve baseline barrier function and attenuate TNF-α-induced barrier leak in the human bronchial epithelial cell culture model, 16HBE14o- (16HBE). We show for the first time that RA increases baseline barrier function of these cell layers indicated by an 89% increase in transepithelial electrical resistance (TER) and 22% decrease in 14C-mannitol flux. A simultaneous, RA-induced 70% increase in claudin-4 attests to RA affecting the tight junctional (TJ) complex itself. RA was also effective in alleviating TNF-α-induced 16HBE barrier leak, attenuating 60% of the TNF-α-induced leak to 14C-mannitol and 80% of the leak to 14C-inulin. Interleukin-6-induced barrier leak was also reduced by RA. Treatment of 16HBE cell layers with TNF-α resulted in dramatic decrease in immunostaining for occludin and claudin-4, as well as a downward "band-shift" in occludin Western immunoblots. The presence of RA partially reversed TNF-α's effects on these select TJ proteins. Lastly, RA completely abrogated the TNF-α-induced increase in ERK-1,2 phosphorylation without significantly decreasing the TNF-driven increase in total ERK-1,2. This study suggests RA could be effective as a prophylactic agent in minimizing airway barrier leak and as a therapeutic in preventing leak triggered by inflammatory cascades. Given the growing literature suggesting a "cytokine storm" may be related to COVID-19 morbidity, RA may be a useful adjuvant for use with anti-viral therapies.


Subject(s)
Bronchi/drug effects , Respiratory Mucosa/drug effects , Tretinoin/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Bronchi/cytology , Bronchi/metabolism , Cell Line , Humans , Inflammation/drug therapy , Inflammation/metabolism , Permeability/drug effects , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism
17.
Drug Discov Ther ; 14(5): 256-258, 2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-895583

ABSTRACT

In the ongoing coronavirus diseases-2019 (COVID-19) crisis that caused immense suffering and deaths, the choice of therapy for the prevention and life-saving conditions must be based on sound scientific evidence. Uncertainty and apprehension are exacerbated in people using angiotensin-converting enzyme (ACE) inhibitors to control their comorbidities such as hypertension and diabetes. These drugs are reported to result in unfavorable outcome as they tend to increase the levels of ACE2 which mediates the entry of SARS-CoV-2. Amiloride, a prototypic inhibitor of epithelial sodium channels (ENaC) can be an ideal candidate for COVID-19 patients, given its ACE reducing and cytosolic pH increasing effects. Moreover, its potassium-sparing and anti-epileptic activities make it a promising alternative or a combinatorial agent.


Subject(s)
Amiloride/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Epithelial Sodium Channel Blockers/pharmacology , Pneumonia, Viral/drug therapy , Respiratory Mucosa/drug effects , Virus Internalization/drug effects , A549 Cells , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Down-Regulation , Host-Pathogen Interactions , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , Respiratory Mucosa/enzymology , Respiratory Mucosa/virology , SARS-CoV-2
18.
mBio ; 11(5)2020 10 20.
Article in English | MEDLINE | ID: covidwho-883314

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Lipopeptides/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , HEK293 Cells , Humans , Lipopeptides/chemistry , Membrane Fusion/drug effects , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Protein Domains , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS Virus/chemistry , SARS Virus/drug effects , SARS Virus/physiology , SARS-CoV-2 , Vero Cells
19.
EMBO J ; 39(21): e106057, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-846583

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 and has spread across the globe. SARS-CoV-2 is a highly infectious virus with no vaccine or antiviral therapy available to control the pandemic; therefore, it is crucial to understand the mechanisms of viral pathogenesis and the host immune responses to SARS-CoV-2. SARS-CoV-2 is a new member of the betacoronavirus genus like other closely related viruses including SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Both SARS-CoV and MERS-CoV have caused serious outbreaks and epidemics in the past eighteen years. Here, we report that one of the interferon-stimulated genes (ISGs), cholesterol 25-hydroxylase (CH25H), is induced by SARS-CoV-2 infection in vitro and in COVID-19-infected patients. CH25H converts cholesterol to 25-hydrocholesterol (25HC) and 25HC shows broad anti-coronavirus activity by blocking membrane fusion. Furthermore, 25HC inhibits USA-WA1/2020 SARS-CoV-2 infection in lung epithelial cells and viral entry in human lung organoids. Mechanistically, 25HC inhibits viral membrane fusion by activating the ER-localized acyl-CoA:cholesterol acyltransferase (ACAT) which leads to the depletion of accessible cholesterol from the plasma membrane. Altogether, our results shed light on a potentially broad antiviral mechanism by 25HC through depleting accessible cholesterol on the plasma membrane to suppress virus-cell fusion. Since 25HC is a natural product with no known toxicity at effective concentrations, it provides a potential therapeutic candidate for COVID-19 and emerging viral diseases in the future.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Cholesterol/metabolism , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Respiratory Mucosa/virology , Steroid Hydroxylases/pharmacology , Virus Internalization/drug effects , Acetyl-CoA C-Acetyltransferase/metabolism , Animals , COVID-19 , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorocebus aethiops , Enzyme Activation/drug effects , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Organoids/virology , Pandemics , Respiratory Mucosa/drug effects , SARS Virus/drug effects , SARS-CoV-2 , Vero Cells
20.
Front Immunol ; 11: 1959, 2020.
Article in English | MEDLINE | ID: covidwho-732901

ABSTRACT

The lung is the vital target organ of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the majority of patients the most active virus replication seems to be found in the upper respiratory tract, severe cases however suffer from SARS-like disease associated with virus replication in lung tissues. Due to the current lack of suitable anti-viral drugs the induction of protective immunity such as neutralizing antibodies in the lung is the key aim of the only alternative approach-the development and application of SARS-CoV-2 vaccines. However, past experience from experimental animals, livestock, and humans showed that induction of immunity in the lung is limited following application of vaccines at peripheral sides such as skin or muscles. Based on several considerations we therefore propose here to consider the application of a Modified Vaccinia virus Ankara (MVA)-based vaccine to mucosal surfaces of the respiratory tract as a favorable approach to combat COVID-19.


Subject(s)
Betacoronavirus/chemistry , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccinia virus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Administration, Mucosal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bronchi/immunology , COVID-19 , Coronavirus Infections/virology , Humans , Immunoglobulin A/metabolism , Lymphoid Tissue/immunology , Plasma Cells/immunology , Pneumonia, Viral/virology , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , SARS-CoV-2 , T-Lymphocytes/immunology , Vaccination , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL