Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
EBioMedicine ; 77: 103891, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1709186

ABSTRACT

BACKGROUND: Gut microbiota-derived short-chain fatty-acid (SFCA) acetate protects mice against RSV A2 strain infection by increasing interferon-ß production and expression of interferon-stimulated genes (ISGs). However, the role of SFCA in RSV infection using strains isolated from patients is unknown. METHODS: We first used RSV clinical strains isolated from infants hospitalized with RSV bronchiolitis to investigate the effects of in vitro SCFA-acetate treatment of human pulmonary epithelial cells. We next examined whether SCFA-acetate treatment is beneficial in a mouse model of RSV infection using clinical isolates. We sought to investigate the relationship of gut microbiota and fecal acetate with disease severity among infants hospitalized with RSV bronchiolitis, and whether treating their respiratory epithelial cells with SCFA-acetate ex-vivo impacts viral load and ISG expression. We further treated epithelial cells from SARS-CoV-2 infected patients with SCFA-acetate. FINDINGS: In vitro pre-treatment of A549 cells with SCFA-acetate reduced RSV infection with clinical isolates and increased the expression of RIG-I and ISG15. Animals treated with SCFA-acetate intranasally recovered significantly faster, with reduction in the RSV clinical isolates viral load, and increased lung expression of IFNB1 and the RIG-I. Experiments in RIG-I knockout A549 cells demonstrated that the protection relies on RIG-I presence. Gut microbial profile was associated with bronchiolitis severity and with acetate in stool. Increased SCFA-acetate levels were associated with increasing oxygen saturation at admission, and shorter duration of fever. Ex-vivo treatment of patients' respiratory cells with SCFA-acetate reduced RSV load and increased expression of ISGs OAS1 and ISG15, and virus recognition receptors MAVS and RIG-I, but not IFNB1. These SCFA-acetate effects were not found on cells from SARS-CoV-2 infected patients. INTERPRETATION: SCFA-acetate reduces the severity of RSV infection and RSV viral load through modulation of RIG-I expression. FUNDING: FAPERGS (FAPERGS/MS/CNPq/SESRS no. 03/2017 - PPSUS 17/2551-0001380-8 and COVID-19 20/2551-0000258-6); CNPq 312504/2017-9; CAPES) - Finance Code 001.


Subject(s)
Bronchiolitis , COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Acetates/metabolism , Acetates/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bronchiolitis/drug therapy , Bronchiolitis/metabolism , Fatty Acids, Volatile/metabolism , Humans , Infant , Lung/metabolism , Mice , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human/physiology , SARS-CoV-2
2.
Rev Med Virol ; 31(6): e2234, 2021 11.
Article in English | MEDLINE | ID: covidwho-1574124

ABSTRACT

The coronavirus disease (Covid-19) pandemic is the most serious event of the year 2020, causing considerable global morbidity and mortality. The goal of this review is to provide a comprehensive summary of reported associations between inter-individual immunogenic variants and disease susceptibility or symptoms caused by the coronavirus strains severe acute respiratory syndrome-associated coronavirus, severe acute respiratory syndrome-associated coronavirus-2, and two of the main respiratory viruses, respiratory syncytial virus and influenza virus. The results suggest that the genetic background of the host could affect the levels of proinflammatory and anti-inflammatory cytokines and might modulate the progression of Covid-19 in affected patients. Notably, genetic variations in innate immune components such as toll-like receptors and mannose-binding lectin 2 play critical roles in the ability of the immune system to recognize coronavirus and initiate an early immune response to clear the virus and prevent the development of severe symptoms. This review provides promising clues related to the potential benefits of using immunotherapy and immune modulation for respiratory infectious disease treatment in a personalized manner.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Genetic Predisposition to Disease , Influenza, Human/immunology , Respiratory Syncytial Virus Infections/immunology , Severe Acute Respiratory Syndrome/immunology , Antiviral Agents/therapeutic use , Biological Variation, Individual , COVID-19/drug therapy , COVID-19/genetics , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Gene Expression , Humans , Immunity, Innate , Immunologic Factors/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/immunology , SARS Virus/drug effects , SARS Virus/immunology , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
3.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501860

ABSTRACT

SARS-CoV-2 promotes an imbalanced host response that underlies the development and severity of COVID-19. Infections with viruses are known to modulate transposable elements (TEs), which can exert downstream effects by modulating host gene expression, innate immune sensing, or activities encoded by their protein products. We investigated the impact of SARS-CoV-2 infection on TE expression using RNA-Seq data from cell lines and from primary patient samples. Using a bioinformatics tool, Telescope, we showed that SARS-CoV-2 infection led to upregulation or downregulation of TE transcripts, a subset of which differed from cells infected with SARS, Middle East respiratory syndrome coronavirus (MERS-CoV or MERS), influenza A virus (IAV), respiratory syncytial virus (RSV), and human parainfluenza virus type 3 (HPIV3). Differential expression of key retroelements specifically identified distinct virus families, such as Coronaviridae, with unique retroelement expression subdividing viral species. Analysis of ChIP-Seq data showed that TEs differentially expressed in SARS-CoV-2 infection were enriched for binding sites for transcription factors involved in immune responses and for pioneer transcription factors. In samples from patients with COVID-19, there was significant TE overexpression in bronchoalveolar lavage fluid and downregulation in PBMCs. Thus, although the host gene transcriptome is altered by infection with SARS-CoV-2, the retrotranscriptome may contain the most distinctive features of the cellular response to SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , Endogenous Retroviruses/genetics , Long Interspersed Nucleotide Elements/genetics , A549 Cells , Cell Line , Chromatin Immunoprecipitation Sequencing , Computational Biology , Coronavirus Infections/genetics , DNA Transposable Elements/genetics , Down-Regulation , Host Microbial Interactions/genetics , Humans , In Vitro Techniques , Influenza A virus , Influenza, Human/genetics , Middle East Respiratory Syndrome Coronavirus , Parainfluenza Virus 3, Human , RNA-Seq , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Viruses , Respirovirus Infections/genetics , Retroelements/genetics , SARS Virus , SARS-CoV-2 , Severe Acute Respiratory Syndrome/genetics , Transcriptome , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL