Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Rev Med Virol ; 31(6): e2234, 2021 11.
Article in English | MEDLINE | ID: covidwho-1574124

ABSTRACT

The coronavirus disease (Covid-19) pandemic is the most serious event of the year 2020, causing considerable global morbidity and mortality. The goal of this review is to provide a comprehensive summary of reported associations between inter-individual immunogenic variants and disease susceptibility or symptoms caused by the coronavirus strains severe acute respiratory syndrome-associated coronavirus, severe acute respiratory syndrome-associated coronavirus-2, and two of the main respiratory viruses, respiratory syncytial virus and influenza virus. The results suggest that the genetic background of the host could affect the levels of proinflammatory and anti-inflammatory cytokines and might modulate the progression of Covid-19 in affected patients. Notably, genetic variations in innate immune components such as toll-like receptors and mannose-binding lectin 2 play critical roles in the ability of the immune system to recognize coronavirus and initiate an early immune response to clear the virus and prevent the development of severe symptoms. This review provides promising clues related to the potential benefits of using immunotherapy and immune modulation for respiratory infectious disease treatment in a personalized manner.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Genetic Predisposition to Disease , Influenza, Human/immunology , Respiratory Syncytial Virus Infections/immunology , Severe Acute Respiratory Syndrome/immunology , Antiviral Agents/therapeutic use , Biological Variation, Individual , COVID-19/drug therapy , COVID-19/genetics , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Gene Expression , Humans , Immunity, Innate , Immunologic Factors/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/immunology , SARS Virus/drug effects , SARS Virus/immunology , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
2.
Viruses ; 12(8)2020 07 27.
Article in English | MEDLINE | ID: covidwho-1512665

ABSTRACT

Acute viral bronchiolitis causes significant mortality in the developing world, is the number one cause of infant hospitalisation in the developed world, and is associated with the later development of chronic lung diseases such as asthma. A vaccine against respiratory syncytial virus (RSV), the leading cause of viral bronchiolitis in infancy, remains elusive, and hence new therapeutic modalities are needed to limit disease severity. However, much remains unknown about the underlying pathogenic mechanisms. Neutrophilic inflammation is the predominant phenotype observed in infants with both mild and severe disease, however, a clear understanding of the beneficial and deleterious effects of neutrophils is lacking. In this review, we describe the multifaceted roles of neutrophils in host defence and antiviral immunity, consider their contribution to bronchiolitis pathogenesis, and discuss whether new approaches that target neutrophil effector functions will be suitable for treating severe RSV bronchiolitis.


Subject(s)
Bronchiolitis, Viral/immunology , Bronchiolitis, Viral/pathology , Immunity, Innate , Neutrophils/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus, Human/immunology , Acute Disease , Animals , Clinical Trials as Topic , Humans , Inflammation/virology , Lung/virology , Mice , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/pathogenicity
3.
Sci Rep ; 11(1): 21519, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500511

ABSTRACT

A high neutrophil to lymphocyte ratio (NLR) is considered an unfavorable prognostic factor in various diseases, including COVID-19. The prognostic value of NLR in other respiratory viral infections, such as Influenza, has not hitherto been extensively studied. We aimed to compare the prognostic value of NLR in COVID-19, Influenza and Respiratory Syncytial Virus infection (RSV). A retrospective cohort of COVID-19, Influenza and RSV patients admitted to the Tel Aviv Medical Center from January 2010 to October 2020 was analyzed. Laboratory, demographic, and clinical parameters were collected. Two way analyses of variance (ANOVA) was used to compare the association between NLR values and poor outcomes among the three groups. ROC curve analyses for each virus was applied to test the discrimination ability of NLR. 722 COVID-19, 2213 influenza and 482 RSV patients were included. Above the age of 50, NLR at admission was significantly lower among COVID-19 patients (P < 0.001). NLR was associated with poor clinical outcome only in the COVID-19 group. ROC curve analysis was performed; the area under curve of poor outcomes for COVID-19 was 0.68, compared with 0.57 and 0.58 for Influenza and RSV respectively. In the COVID-19 group, multivariate logistic regression identified a high NLR (defined as a value above 6.82) to be a prognostic factor for poor clinical outcome, after adjusting for age, sex and Charlson comorbidity score (odds ratio of 2.9, P < 0.001). NLR at admission is lower and has more prognostic value in COVID-19 patients, when compared to Influenza and RSV.


Subject(s)
COVID-19/pathology , Influenza, Human/pathology , Respiratory Syncytial Virus Infections/pathology , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19/immunology , COVID-19/virology , Female , Humans , Influenza, Human/immunology , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Middle Aged , Neutrophils/cytology , Neutrophils/metabolism , Prognosis , ROC Curve , Respiratory Syncytial Virus Infections/immunology , Retrospective Studies , SARS-CoV-2/isolation & purification
4.
Acta Med Acad ; 49(2): 130-143, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1414828

ABSTRACT

In this review, we discuss the latest developments in research pertaining to virus-induced asthma exacerbations and consider recent advances in treatment options. Asthma is a chronic disease of the airways that continues to impose a substantial clinical burden worldwide. Asthma exacerbations, characterised by an acute deterioration in respiratory symptoms and airflow obstruction, are associated with significant morbidity and mortality. These episodes are most commonly triggered by respiratory virus infections. The mechanisms underlying the pathogenesis of virus-induced exacerbations have been the focus of extensive biomedical research. Developing a robust understanding of the interplay between respiratory viruses and the host immune response will be critical for developing more efficacious, targeted therapies for exacerbations. CONCLUSION: There has been significant recent progress in our understanding of the mechanisms underlying virus-induced airway inflammation in asthma and these advances will underpin the development of future clinical therapies.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Asthma/drug therapy , Respiratory Tract Infections/drug therapy , Virus Diseases/drug therapy , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/physiopathology , Administration, Inhalation , Asthma/immunology , Asthma/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Disease Progression , Humans , Influenza, Human/drug therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Interferon-beta/therapeutic use , Macrolides/therapeutic use , Omalizumab/therapeutic use , Paramyxoviridae Infections/drug therapy , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/physiopathology , Picornaviridae Infections/drug therapy , Picornaviridae Infections/immunology , Picornaviridae Infections/physiopathology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/physiopathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/physiopathology , Virus Diseases/immunology , Virus Diseases/physiopathology
6.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
7.
J Infect Dis ; 221(4): 534-543, 2020 02 03.
Article in English | MEDLINE | ID: covidwho-1207300

ABSTRACT

BACKGROUND: The safety and immunogenicity of live respiratory syncytial virus (RSV) candidate vaccine, LID/ΔM2-2/1030s, with deletion of RSV ribonucleic acid synthesis regulatory protein M2-2 and genetically stabilized temperature-sensitivity mutation 1030s in the RSV polymerase protein was evaluated in RSV-seronegative children. METHODS: Respiratory syncytial virus-seronegative children ages 6-24 months received 1 intranasal dose of 105 plaque-forming units (PFU) of LID/ΔM2-2/1030s (n = 21) or placebo (n = 11). The RSV serum antibodies, vaccine shedding, and reactogenicity were assessed. During the following RSV season, medically attended acute respiratory illness (MAARI) and pre- and postsurveillance serum antibody titers were monitored. RESULTS: Eighty-five percent of vaccinees shed LID/ΔM2-2/1030s vaccine (median peak nasal wash titers: 3.1 log10 PFU/mL by immunoplaque assay; 5.1 log10 copies/mL by reverse-transcription quantitative polymerase chain reaction) and had ≥4-fold rise in serum-neutralizing antibodies. Respiratory symptoms and fever were common (60% vaccinees and 27% placebo recipients). One vaccinee had grade 2 wheezing with rhinovirus but without concurrent LID/ΔM2-2/1030s shedding. Five of 19 vaccinees had ≥4-fold increases in antibody titers postsurveillance without RSV-MAARI, indicating anamnestic responses without significant illness after infection with community-acquired RSV. CONCLUSIONS: LID/ΔM2-2/1030s had excellent infectivity without evidence of genetic instability, induced durable immunity, and primed for anamnestic antibody responses, making it an attractive candidate for further evaluation.


Subject(s)
Gene Deletion , RNA-Dependent RNA Polymerase/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccination , Viral Proteins/genetics , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Body Temperature , Double-Blind Method , Female , Humans , Immunogenicity, Vaccine , Infant , Male , Point Mutation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus, Human/genetics , Vaccines, Attenuated , Virus Replication/genetics
8.
Front Immunol ; 12: 650331, 2021.
Article in English | MEDLINE | ID: covidwho-1156125

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection represents a global health crisis. Immune cell activation via pattern recognition receptors has been implicated as a driver of the hyperinflammatory response seen in COVID-19. However, our understanding of the specific immune responses to SARS-CoV-2 remains limited. Mast cells (MCs) and eosinophils are innate immune cells that play pathogenic roles in many inflammatory responses. Here we report MC-derived proteases and eosinophil-associated mediators are elevated in COVID-19 patient sera and lung tissues. Stimulation of viral-sensing toll-like receptors in vitro and administration of synthetic viral RNA in vivo induced features of hyperinflammation, including cytokine elevation, immune cell airway infiltration, and MC-protease production-effects suppressed by an anti-Siglec-8 monoclonal antibody which selectively inhibits MCs and depletes eosinophils. Similarly, anti-Siglec-8 treatment reduced disease severity and airway inflammation in a respiratory viral infection model. These results suggest that MC and eosinophil activation are associated with COVID-19 inflammation and anti-Siglec-8 antibodies are a potential therapeutic approach for attenuating excessive inflammation during viral infections.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , COVID-19/immunology , Eosinophils/immunology , Lectins/immunology , Mast Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , SARS-CoV-2/immunology , Toll-Like Receptors/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Cytokines/metabolism , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Eosinophils/virology , Host-Pathogen Interactions , Humans , Lectins/antagonists & inhibitors , Lectins/genetics , Lectins/metabolism , Mast Cells/drug effects , Mast Cells/metabolism , Mast Cells/virology , Mice, Transgenic , Peptide Hydrolases/metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Toll-Like Receptors/metabolism
9.
Mucosal Immunol ; 14(1): 14-25, 2021 01.
Article in English | MEDLINE | ID: covidwho-922255

ABSTRACT

Infection with respiratory viruses such as influenza, respiratory syncytial virus and coronavirus provides a difficult immunological challenge for the host, where a balance must be established between controlling viral replication and limiting damage to the delicate lung structure. Although the genetic architecture of host responses to respiratory viral infections is not yet understood, it is clear there is underlying heritability that influences pathogenesis. Immune control of virus replication is essential in respiratory infections, but overt activation can enhance inflammation and disease severity. Cytokines initiate antiviral immune responses but are implicated in viral pathogenesis. Here, we discuss how host genetic variation may influence cytokine responses to respiratory viral infections and, based on our current understanding of the role that cytokines play in viral pathogenesis, how this may influence disease severity. We also discuss how induced pluripotent stem cells may be utilised to probe the mechanistic implications of allelic variation in genes in virus-induced inflammatory responses. Ultimately, this could help to design better immune modulators, stratify high risk patients and tailor anti-inflammatory treatments, potentially expanding the ability to treat respiratory virus outbreaks in the future.


Subject(s)
Cytokines/genetics , Inflammation/genetics , Influenza A virus/immunology , Respiratory Syncytial Viruses/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/pathology , Cytokines/blood , Genetic Variation/genetics , Genetic Variation/immunology , Humans , Induced Pluripotent Stem Cells , Inflammation/pathology , Influenza, Human/immunology , Lung/pathology , Lung/virology , Respiratory Syncytial Virus Infections/immunology
10.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: covidwho-873186

ABSTRACT

Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/diagnosis , Henipavirus Infections/diagnosis , High-Throughput Screening Assays , Respiratory Syncytial Virus Infections/diagnosis , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/virology , Cell Fusion , Convalescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans , Immune Sera/chemistry , Luciferases/genetics , Luciferases/metabolism , Models, Molecular , Nipah Virus/immunology , Nipah Virus/pathogenicity , Protein Conformation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Swine , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/metabolism , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
11.
J Innate Immun ; 12(1): 4-20, 2020.
Article in English | MEDLINE | ID: covidwho-774824

ABSTRACT

The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.


Subject(s)
Coronavirus Infections/virology , Coronavirus/pathogenicity , Immunity, Innate , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/pathogenicity , Animals , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/immunology , Host Microbial Interactions , Humans , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/immunology , Signal Transduction , Virus Internalization , Virus Replication
12.
Microbes Infect ; 22(9): 403-404, 2020 10.
Article in English | MEDLINE | ID: covidwho-618770

Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Syncytial Virus Infections/prevention & control , Severe Acute Respiratory Syndrome/prevention & control , Viral Vaccines/administration & dosage , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/pathology , Eosinophils/virology , Humans , Lung/drug effects , Lung/immunology , Lung/pathology , Lung/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Monocytes/drug effects , Monocytes/immunology , Monocytes/pathology , Monocytes/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/pathogenicity , SARS Virus/immunology , SARS Virus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Viral Vaccines/adverse effects
13.
J Infect ; 81(1): 115-120, 2020 07.
Article in English | MEDLINE | ID: covidwho-88437

ABSTRACT

OBJECTIVES: The study was aimed at investigating the characteristics of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus (2019-nCoV) pneumonia. METHODS: Children with 2019-nCoV pneumonia or with respiratory syncytial virus (RSV) pneumonia were included. Data including lymphocyte subsets and serum cytokines were collected and analyzed. RESULTS: 56 patients were included in the study, 40 children with 2019-nCoV pneumonia and 16 children with RSV pneumonia. Compared with children with RSV pneumonia, patients with 2019-nCoV pneumonia had higher count of CD3+8+ lymphocyte, higher percentages of CD3+, CD3+8+ lymphocytes and a lower percentage of CD19+ lymphocyte. The serum IL-10 level was significantly higher in children with RSV pneumonia. One 2019-nCoV pneumonia child who was with an obvious increase of IL-10 developed severe pneumonia. CONCLUSIONS: Immune response played a very important role in the development of 2019-nCoV pneumonia. The effective CD8+ T cell response might influence the severity of 2019-nCoV pneumonia. The adaptable change in IL-10 level might contribute to the relatively mild pneumonia symptoms in children with 2019-nCoV pneumonia and bacterial co-infection might be a risk factor of severe 2019-nCoV pneumonia.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Cytokines/blood , Lymphocyte Count , Pneumonia, Viral/blood , T-Lymphocyte Subsets , COVID-19 , Child , Child, Preschool , Coronavirus Infections/immunology , Female , Humans , Infant , Male , Pandemics , Pneumonia, Viral/immunology , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...