Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Science ; 375(6577): 161-167, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1648160

ABSTRACT

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Uracil Nucleotides/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/virology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Disease Models, Animal , Female , Ferrets , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Mononegavirales/drug effects , Mononegavirales/physiology , RNA-Dependent RNA Polymerase/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/physiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Transcription, Genetic , Uracil Nucleotides/administration & dosage , Uracil Nucleotides/metabolism , Virus Replication/drug effects
2.
Sci Rep ; 11(1): 24442, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1577650

ABSTRACT

Therapeutic interventions targeting viral infections remain a significant challenge for both the medical and scientific communities. While specific antiviral agents have shown success as therapeutics, viral resistance inevitably develops, making many of these approaches ineffective. This inescapable obstacle warrants alternative approaches, such as the targeting of host cellular factors. Respiratory syncytial virus (RSV), the major respiratory pathogen of infants and children worldwide, causes respiratory tract infection ranging from mild upper respiratory tract symptoms to severe life-threatening lower respiratory tract disease. Despite the fact that the molecular biology of the virus, which was originally discovered in 1956, is well described, there is no vaccine or effective antiviral treatment against RSV infection. Here, we demonstrate that targeting host factors, specifically, mTOR signaling, reduces RSV protein production and generation of infectious progeny virus. Further, we show that this approach can be generalizable as inhibition of mTOR kinases reduces coronavirus gene expression, mRNA transcription and protein production. Overall, defining virus replication-dependent host functions may be an effective means to combat viral infections, particularly in the absence of antiviral drugs.


Subject(s)
Coronavirus/metabolism , Respiratory Syncytial Virus, Human/metabolism , TOR Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , A549 Cells , Coronavirus/drug effects , Coronavirus/genetics , Gene Expression Regulation, Viral/drug effects , Humans , Protein Biosynthesis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , RNA Interference , RNA, Small Interfering/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/antagonists & inhibitors , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Regulatory-Associated Protein of mTOR/antagonists & inhibitors , Regulatory-Associated Protein of mTOR/genetics , Regulatory-Associated Protein of mTOR/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/isolation & purification , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Viral Proteins/genetics
3.
Molecules ; 26(21)2021 Oct 31.
Article in English | MEDLINE | ID: covidwho-1512510

ABSTRACT

Here we report on the synthesis and characterization of three new N-modified analogues of hemorphin-4 with rhodamine B. Modified with chloroacetyl, chloride cotton fabric has been dyed and color coordinates of the obtained textile materials were determined. Antiviral and virucidal activities of both the peptide-rhodamine B compounds and the dyed textile material were studied. Basic physicochemical properties (acid-base behavior, solvent influence, kinetics) related to the elucidation of structural activity of the new modified peptides based on their steric open/closed ring effect were studied. The obtained results lead to the conclusion that in protic solvent with change in pH of the environment, direct control over the dyeing of textiles can be achieved. Both the new hybrid peptide compounds and the modification of functionalized textile materials with these bioactive hemorphins showed virucidal activity against the human respiratory syncytial virus (HRSV-S2) and human adenovirus serotype 5 (HAdV-5) for different time intervals (30 and 60 min) and the most active compound was Rh-3.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Peptides/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Rhodamines/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemistry , Peptides/isolation & purification , Rhodamines/chemistry , Rhodamines/isolation & purification , Time Factors
4.
Nature ; 595(7868): 596-599, 2021 07.
Article in English | MEDLINE | ID: covidwho-1322487

ABSTRACT

Biomolecular condensates have emerged as an important subcellular organizing principle1. Replication of many viruses, including human respiratory syncytial virus (RSV), occurs in virus-induced compartments called inclusion bodies (IBs) or viroplasm2,3. IBs of negative-strand RNA viruses were recently shown to be biomolecular condensates that form through phase separation4,5. Here we report that the steroidal alkaloid cyclopamine and its chemical analogue A3E inhibit RSV replication by disorganizing and hardening IB condensates. The actions of cyclopamine and A3E were blocked by a point mutation in the RSV transcription factor M2-1. IB disorganization occurred within minutes, which suggests that these molecules directly act on the liquid properties of the IBs. A3E and cyclopamine inhibit RSV in the lungs of infected mice and are condensate-targeting drug-like small molecules that have in vivo activity. Our data show that condensate-hardening drugs may enable the pharmacological modulation of not only many previously undruggable targets in viral replication but also transcription factors at cancer-driving super-enhancers6.


Subject(s)
/virology , Respiratory Syncytial Virus, Human/drug effects , Veratrum Alkaloids/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Female , Humans , Inclusion Bodies , Lung/virology , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus, Human/physiology , Transcription Factors , Viral Proteins
5.
Eur J Med Chem ; 224: 113684, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1292698

ABSTRACT

Respiratory syncytial virus (RSV) causes serious lower respiratory tract infections. Currently, the only clinical anti-RSV drug is ribavirin, but ribavirin has serious toxic side effect and can only be used by critically ill patients. A series of benzimidazole derivatives were synthesized starting from 1,4:3,6-dianhydro-d-fructose and a variety of o-phenylenediamines. Evaluation of their antiviral activity showed that compound a27 had the highest antiviral activity with a half maximal effective concentration (EC50) of 9.49 µM. Investigation of the antiviral mechanism of compound a27 indicated that it can inhibit the replication of RSV by inhibiting apoptosis and autophagy pathways. Retinoic acid-inducible gene (RIG)-I, TNF receptor associated factor (TRAF)-3, TANK binding kinase (TBK)-1, interferon regulatory factor (IRF)-3, nuclear factor Kappa-B (NF-κB), interferon (IFN)-ß, Toll-like receptor (TLR)-3, interleukin (IL)-6 were suppressed at the cellular level. Mouse lung tissue was subjected to hematoxylin and eosin (HE) staining and immunohistochemistry, which showed that RSV antigen and M gene expression could be reduced by compound a27. Decreased expression of RIG-I, IRF-3, IFN-ß, TLR-3, IL-6, interleukin (IL)-8, interleukin (IL)-10, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α was also found in vivo.


Subject(s)
Antiviral Agents/chemical synthesis , Benzimidazoles/chemistry , Drug Design , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Apoptosis/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Line , Cytokines/metabolism , Humans , Isomerism , Lung/metabolism , Lung/pathology , Mice , Molecular Conformation , Reactive Oxygen Species/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/physiology , Structure-Activity Relationship , Toll-Like Receptor 3/metabolism , Virus Replication/drug effects
6.
J Med Chem ; 64(8): 5001-5017, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1174625

ABSTRACT

A discovery program targeting respiratory syncytial virus (RSV) identified C-nucleoside 4 (RSV A2 EC50 = 530 nM) as a phenotypic screening lead targeting the RSV RNA-dependent RNA polymerase (RdRp). Prodrug exploration resulted in the discovery of remdesivir (1, GS-5734) that is >30-fold more potent than 4 against RSV in HEp-2 and NHBE cells. Metabolism studies in vitro confirmed the rapid formation of the active triphosphate metabolite, 1-NTP, and in vivo studies in cynomolgus and African Green monkeys demonstrated a >10-fold higher lung tissue concentration of 1-NTP following molar normalized IV dosing of 1 compared to that of 4. A once daily 10 mg/kg IV administration of 1 in an African Green monkey RSV model demonstrated a >2-log10 reduction in the peak lung viral load. These early data following the discovery of 1 supported its potential as a novel treatment for RSV prior to its development for Ebola and approval for COVID-19 treatment.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Prodrugs/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Caco-2 Cells , Cells, Cultured , Chlorocebus aethiops , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical/methods , Epithelial Cells/virology , Humans , Macaca fascicularis , Male , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Rats, Sprague-Dawley , Respiratory Syncytial Virus Infections/virology , Structure-Activity Relationship , Tissue Distribution , Tubercidin/analogs & derivatives , Tubercidin/chemistry , Viral Load
7.
Viruses ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1060766

ABSTRACT

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG's antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus OC43, Human/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Respiratory Syncytial Virus, Human/drug effects , SARS-CoV-2/drug effects , Thapsigargin/pharmacology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/physiology , Cell Line , Cell Line, Tumor , Cells, Cultured , Coronavirus OC43, Human/physiology , Endoplasmic Reticulum Stress , Humans , Influenza A Virus, H1N1 Subtype/physiology , Mice , Microbial Sensitivity Tests , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/physiology , Ribavirin/pharmacology , SARS-CoV-2/physiology , Thapsigargin/therapeutic use , Virus Replication/drug effects
8.
Influenza Other Respir Viruses ; 14(6): 747-756, 2020 11.
Article in English | MEDLINE | ID: covidwho-713679

ABSTRACT

The controlled human infection model and specifically the human viral challenge model are not dissimilar to standard clinical trials while adding another layer of complexity and safety considerations. The models deliberately infect volunteers, with an infectious challenge agent to determine the effect of the infection and the potential benefits of the experimental interventions. The human viral challenge model studies can shorten the time to assess the efficacy of a new vaccine or treatment by combining this with the assessment of safety. The newly emerging SARS-CoV-2 virus is highly contagious, and an urgent race is on to develop a new vaccine against this virus in a timeframe never attempted before. The use of the human viral challenge model has been proposed to accelerate the development of the vaccine. In the early 2000s, the authors successfully developed a pathogenic human viral challenge model for another virus for which there was no effective treatment and established it to evaluate potential therapies and vaccines against respiratory syncytial virus. Experience gained in the development of that model can help with the development of a COVID-19 HVCM and the authors describe it here.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Models, Biological , Pneumonia, Viral/pathology , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Patient Selection , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , SARS-CoV-2 , Safety , Viral Load/drug effects , Viral Vaccines/adverse effects , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL