Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
J Med Virol ; 93(11): 6116-6123, 2021 11.
Article in English | MEDLINE | ID: covidwho-1349155


Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.

Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Viral Proteins/metabolism , Virus Diseases/immunology , Viruses/immunology , Animals , HIV/immunology , HIV/metabolism , HIV/pathogenicity , Hepacivirus/immunology , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Herpesviridae/immunology , Herpesviridae/metabolism , Herpesviridae/pathogenicity , Humans , Measles virus/immunology , Measles virus/metabolism , Measles virus/pathogenicity , Pathogen-Associated Molecular Pattern Molecules/chemistry , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/metabolism , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Virus Diseases/virology , Viruses/metabolism , Viruses/pathogenicity
Cells ; 10(11)2021 11 07.
Article in English | MEDLINE | ID: covidwho-1512135


The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.

Endothelial Cells/pathology , Oxidative Stress , Respiratory Distress Syndrome/pathology , Virus Diseases/pathology , Epigenesis, Genetic , Humans , Influenza A Virus, H1N1 Subtype/physiology , Pulmonary Edema/genetics , Pulmonary Edema/pathology , Pulmonary Edema/virology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/virology , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology
Epidemiol Infect ; 149: e96, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1182771


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.

COVID-19/transmission , SARS-CoV-2/pathogenicity , Viral Load , Adenoviridae/pathogenicity , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Communicable Disease Control , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cricetinae , Enterovirus/pathogenicity , Ferrets , Humans , Macaca mulatta , Mice , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Orthomyxoviridae/pathogenicity , Respiratory Syncytial Viruses/pathogenicity , Rhinovirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/virology
PLoS One ; 15(4): e0232188, 2020.
Article in English | MEDLINE | ID: covidwho-659620


OBJECTIVE: The World Health Organization created the Severe Acute Respiratory Infection (SARI) criteria in 2011 to monitor influenza (flu)-related hospitalization. Many studies have since used the SARI case definition as inclusion criteria for surveillance studies. We sought to determine the sensitivity, specificity, positive predictive value, and negative predictive value of the SARI criteria for detecting ten different respiratory viruses in a Middle Eastern pediatric cohort. MATERIALS AND METHODS: The data for this study comes from a prospective acute respiratory surveillance study of hospitalized children <2 years in Amman, Jordan from March 16, 2010 to March 31, 2013. Participants were recruited if they had a fever and/or respiratory symptoms. Nasal and throat swabs were obtained and tested by real-time RT-PCR for eleven viruses. Subjects meeting SARI criteria were determined post-hoc. Sensitivity, specificity, positive predictive value, and negative predictive value of the SARI case definition for detecting ten different viruses were calculated and results were stratified by age. RESULTS: Of the 3,175 patients enrolled, 3,164 were eligible for this study, with a median age of 3.5 months, 60.4% male, and 82% virus-positive (44% RSV and 3.8% flu). The sensitivity and specificity of the SARI criteria for detecting virus-positive patients were 44% and 77.9%, respectively. Sensitivity of SARI criteria for any virus was lowest in children <3 months at 22.4%. Removing fever as a criterion improved the sensitivity by 65.3% for detecting RSV in children <3 months; whereas when cough was removed, the sensitivity improved by 45.5% for detecting flu in same age group. CONCLUSIONS: The SARI criteria have poor sensitivity for detecting RSV, flu, and other respiratory viruses-particularly in children <3 months. Researchers and policy makers should use caution if using the criteria to estimate burden of disease in children.

Respiratory Syncytial Virus Infections/diagnosis , Cough/virology , Female , Fever/virology , Hospitalization , Humans , Infant , Influenza, Human/diagnosis , Influenza, Human/virology , Jordan , Male , Prospective Studies , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/pathogenicity , Seasons , Sensitivity and Specificity , World Health Organization
J Med Virol ; 92(11): 2623-2630, 2020 11.
Article in English | MEDLINE | ID: covidwho-935126


The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world, causing serious illness and death and creating a heavy burden on the healthcare systems of many countries. Since the virus first emerged in late November 2019, its spread has coincided with peak circulation of several seasonal respiratory viruses, yet some studies have noted limited coinfections between SARS-CoV-2 and other viruses. We use a mathematical model of viral coinfection to study SARS-CoV-2 coinfections, finding that SARS-CoV-2 replication is easily suppressed by many common respiratory viruses. According to our model, this suppression is because SARS-CoV-2 has a lower growth rate (1.8/d) than the other viruses examined in this study. The suppression of SARS-CoV-2 by other pathogens could have implications for the timing and severity of a second wave.

COVID-19/virology , Coinfection/virology , Common Cold/epidemiology , Influenza, Human/epidemiology , Models, Theoretical , COVID-19/epidemiology , Coinfection/epidemiology , Common Cold/virology , Humans , Influenza, Human/virology , Respiratory Syncytial Viruses/pathogenicity , Rhinovirus/pathogenicity , SARS-CoV-2/pathogenicity
J Innate Immun ; 12(1): 4-20, 2020.
Article in English | MEDLINE | ID: covidwho-774824


The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.

Coronavirus Infections/virology , Coronavirus/pathogenicity , Immunity, Innate , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/pathogenicity , Animals , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/immunology , Host Microbial Interactions , Humans , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/immunology , Signal Transduction , Virus Internalization , Virus Replication
Microbes Infect ; 22(9): 403-404, 2020 10.
Article in English | MEDLINE | ID: covidwho-618770

Betacoronavirus/pathogenicity , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Syncytial Virus Infections/prevention & control , Severe Acute Respiratory Syndrome/prevention & control , Viral Vaccines/administration & dosage , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/pathology , Eosinophils/virology , Humans , Lung/drug effects , Lung/immunology , Lung/pathology , Lung/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Monocytes/drug effects , Monocytes/immunology , Monocytes/pathology , Monocytes/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/pathogenicity , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Viral Vaccines/adverse effects