Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
2.
Transpl Infect Dis ; 24(1): e13725, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1794555

ABSTRACT

BACKGROUND: Lower respiratory tract infections (LRTIs) are a significant cause of morbidity and mortality in lung transplant (LTx) recipients. Timely and precise pathogen detection is vital to successful treatment. Multiplex PCR kits with short turnover times like the BioFire Pneumonia Plus (BFPPp) (manufactured by bioMérieux) may be a valuable addition to conventional tests. METHODS: We performed a prospective observational cohort study in 60 LTx recipients with suspected LRTI. All patients received BFPPp testing of bronchoalveolar lavage fluid in addition to conventional tests including microbiological cultures and conventional diagnostics for respiratory viruses. Primary outcome was time-to-test-result; secondary outcomes included time-to-clinical-decision and BFPPp test accuracy compared to conventional tests. RESULTS: BFPPp provided results faster than conventional tests (2.3 h [2-2.8] vs. 23.4 h [21-62], p < 0.001), allowing for faster clinical decisions (2.8 [2.2-44] vs. virology 28.1 h [23.1-70.6] and microbiology 32.6 h [4.6-70.9], both p < 0.001). Based on all available diagnostic modalities, 26 (43%) patients were diagnosed with viral LRTI, nine (15 %) with non-viral LRTI, and five (8 %) with combined viral and non-viral LRTI. These diagnoses were established by BFPPp in 92%, 78%, and 100%, respectively. The remaining 20 patients (33 %) received a diagnosis other than LRTI. Preliminary therapies based on BFPPp results were upheld in 90% of cases. There were six treatment modifications based on pathogen-isolation by conventional testing missed by BFPPp, including three due to fungal pathogens not covered by the BFPPp. CONCLUSION: BFPPp offered faster test results compared to conventional tests with good concordance. The absence of fungal pathogens from the panel is a potential weakness in a severely immunosuppressed population.


Subject(s)
Lung Transplantation , Pneumonia , Respiratory Tract Infections , Clinical Decision-Making , Humans , Lung Transplantation/adverse effects , Prospective Studies , Respiratory Tract Infections/diagnosis
3.
Front Cell Infect Microbiol ; 11: 778808, 2021.
Article in English | MEDLINE | ID: covidwho-1789350

ABSTRACT

Objectives: Overuse of antibiotics and antibiotic resistance are global healthcare problems. In pediatric patients with respiratory infections, viral and bacterial etiologies are challenging to distinguish, leading to irrational antibiotic use. Rapid and accurate molecular diagnostic testing methods for respiratory pathogens has been shown to facilitate effective clinical decision-making and guide antibiotic stewardship interventions in the developed regions, but its impacts on pediatric patient care in the developing countries remain unclear. Methods: In this single-center, retrospective case-control study, we compared demographics, clinical characteristics, especially microbiological findings, and antibiotic usage between pediatric patients with respiratory infection receiving FilmArray Respiratory Panel (FilmArray RP) testing and a matched routine testing control group. Our primary outcome was the duration of intravenous antibiotics treatment (DOT) during hospitalization. Results: Each group consisted of 346 children with a respiratory infection. In the FilmArray RP testing group, the DOT was shorter than that in the routine testing group (6.41 ± 3.67 days versus 7.23 ± 4.27 days; p = 0.006). More patients in the FilmArray RP testing group de-escalated antibiotic treatments within 72 hours of hospitalization (7.80%, 27/346 versus 2.60%, 9/346; p = 0.002). By contrast, fewer patients in the FilmArray RP testing group had escalated antibiotic treatments between 72 hours and seven days (7.80% versus 14.16%; p = 0.007). The cost of hospitalization was significantly lower in the FilmArray RP testing group ($ 1413.51 ± 1438.01 versus $ 1759.37 ± 1929.22; p = 0.008). Notably, the subgroup analyses revealed that the FilmArray RP test could shorten the DOT, improve early de-escalation of intravenous antibiotics within 72 hours of hospitalization, decline the escalation of intravenous antibiotics between 72 hours and seven days, and reduce the cost of hospitalization for both patient populations with or without underlying diseases. Conclusions: Molecular point-of-care testing for respiratory pathogens could help to reduce intravenous antibiotic use and health care costs of pediatric patients with respiratory infections in developing countries.


Subject(s)
Respiratory Tract Infections , Anti-Bacterial Agents/therapeutic use , Case-Control Studies , Child , Humans , Molecular Diagnostic Techniques , Point-of-Care Testing , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Retrospective Studies
4.
Semin Respir Crit Care Med ; 42(6): 747-758, 2021 12.
Article in English | MEDLINE | ID: covidwho-1768957

ABSTRACT

Respiratory tract infection is one of the most common diseases in human worldwide. Many viruses are implicated in these infections, including emerging viruses, such as the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Identification of the causative viral pathogens of respiratory tract infections is important to select a correct management of patients, choose an appropriate treatment, and avoid unnecessary antibiotics use. Different diagnostic approaches present variable performance in terms of accuracy, sensitivity, specificity, and time-to-result, that have to be acknowledged to be able to choose the right diagnostic test at the right time, in the right patient. This review describes currently available rapid diagnostic strategies and syndromic approaches for the detection of viruses commonly responsible for respiratory diseases.


Subject(s)
Early Diagnosis , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , COVID-19/diagnosis , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors
5.
J Epidemiol Glob Health ; 11(4): 413-425, 2021 12.
Article in English | MEDLINE | ID: covidwho-1766934

ABSTRACT

The expansion and standardization of clinical trials, as well as the use of sensitive and specific molecular diagnostics methods, provide new information on the age-specific roles of influenza and other respiratory viruses in development of severe acute respiratory infections (SARI). Here, we present the results of the multicenter hospital-based study aimed to detect age-specific impact of influenza and other respiratory viruses (ORV). The 2018-2019 influenza season in Russia was characterized by co-circulation of influenza A(H1N1)pdm09 and A(H3N2) virus subtypes which were detected among hospitalized patients with SARI in 19.3% and 16.4%, respectively. RSV dominated among ORV (15.1% of total cases and 26.8% in infants aged ≤ 2 years). The most significant SARI agents in intensive care units were RSV and influenza A(H1N1)pdm09 virus, (37.3% and 25.4%, respectively, of PCR-positive cases). Hyperthermia was the most frequently registered symptom for influenza cases. In contrast, hypoxia, decreased blood O2 concentration, and dyspnea were registered more often in RSV, rhinovirus, and metapneumovirus infection in young children. Influenza vaccine effectiveness (IVE) against hospitalization of patients with PCR-confirmed influenza was evaluated using test-negative case-control design. IVE for children and adults was estimated to be 57.0% and 62.0%, respectively. Subtype specific IVE was higher against influenza A(H1N1)pdm09, compared to influenza A(H3N2) (60.3% and 45.8%, respectively). This correlates with delayed antigenic drift of the influenza A(H1N1)pdm09 virus and genetic heterogeneity of the influenza A(H3N2) population. These studies demonstrate the need to improve seasonal influenza prevention and control in all countries as states by the WHO Global Influenza Strategy for 2019-2030 initiative.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Respiratory Tract Infections , Adult , Age Factors , Child , Child, Preschool , Hospitalization , Humans , Infant , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Seasons
6.
Pediatr Emerg Care ; 38(1): e398-e403, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1767003

ABSTRACT

OBJECTIVES: Respiratory syncytial virus (RSV) in pediatric patients has been associated with low risk of concomitant bacterial infection. However, in children with severe disease, it occurs in 22% to 50% of patients. As viral testing becomes routine, bacterial codetections are increasingly identified in patients with non-RSV viruses. We hypothesized, among patients intubated for respiratory failure secondary to suspected infection, there are similar rates of codetection between RSV and non-RSV viral detections. METHODS: This retrospective chart review, conducted over a 5-year period, included all patients younger than 2 years who required intubation secondary to respiratory failure from an infectious etiology in a single pediatric emergency department. Patients intubated for noninfectious causes were excluded. RESULTS: We reviewed 274 patients, of which 181 had positive viral testing. Of these, 48% were RSV-positive and 52% were positive for viruses other than RSV. Codetection of bacteria was found in 76% (n = 65; 95% confidence interval [CI], 66%, 84%) of RSV-positive patients and 66% (n = 63, 95% CI: 57%, 76%) of patients positive with non-RSV viruses. Among patients with negative viral testing, 33% had bacterial growth on lower respiratory culture. Male sex was the only patient-related factor associated with increased odds of codetection (odds ratio [OR], 2.2; 95% CI, 1.08-4.38). The odds of codetection between RSV-positive patients and non-RSV viruses were not significantly different (OR, 1.3; 95% CI, 0.62-2.71). CONCLUSIONS: Bacterial codetection is common and not associated with anticipated patient-related factors or with a specific virus. These results suggest consideration of empiric antibiotics in infants with respiratory illness requiring intubation.


Subject(s)
Bacterial Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Bacteria , Child , Humans , Infant , Male , Respiratory Syncytial Virus Infections/complications , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Retrospective Studies
7.
PLoS One ; 17(3): e0264855, 2022.
Article in English | MEDLINE | ID: covidwho-1736511

ABSTRACT

Since December 2019 the world has been facing the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Identification of infected patients and discrimination from other respiratory infections have so far been accomplished by using highly specific real-time PCRs. Here we present a rapid multiplex approach (RespiCoV), combining highly multiplexed PCRs and MinION sequencing suitable for the simultaneous screening for 41 viral and five bacterial agents related to respiratory tract infections, including the human coronaviruses NL63, HKU1, OC43, 229E, Middle East respiratory syndrome coronavirus, SARS-CoV, and SARS-CoV-2. RespiCoV was applied to 150 patient samples with suspected SARS-CoV-2 infection and compared with specific real-time PCR. Additionally, several respiratory tract pathogens were identified in samples tested positive or negative for SARS-CoV-2. Finally, RespiCoV was experimentally compared to the commercial RespiFinder 2SMART multiplex screening assay (PathoFinder, The Netherlands).


Subject(s)
Bacteria/genetics , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA Viruses/genetics , Respiratory Tract Infections/diagnosis , SARS-CoV-2/genetics , Bacteria/isolation & purification , COVID-19/virology , Coronavirus/genetics , Coronavirus/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Humans , Multiplex Polymerase Chain Reaction , Nanopores , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA Viruses/isolation & purification , RNA, Viral/chemistry , RNA, Viral/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification
8.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1726022

ABSTRACT

There is currently debate about human coronavirus (HCoV) seasonality and pathogenicity, as epidemiological data are scarce. Here, we provide epidemiological and clinical features of HCoV patients with acute respiratory infection (ARI) examined in primary care general practice. We also describe HCoV seasonality over six influenza surveillance seasons (week 40 to 15 of each season) from the period 2014/2015 to 2019/2020 in Corsica (France). A sample of patients of all ages presenting for consultation for influenza-like illness (ILI) or ARI was included by physicians of the French Sentinelles Network during this period. Nasopharyngeal samples were tested for the presence of 21 respiratory pathogens by real-time RT-PCR. Among the 1389 ILI/ARI patients, 105 were positive for at least one HCoV (7.5%). On an annual basis, HCoVs circulated from week 48 (November) to weeks 14-15 (May) and peaked in week 6 (February). Overall, among the HCoV-positive patients detected in this study, HCoV-OC43 was the most commonly detected virus, followed by HCoV-NL63, HCoV-HKU1, and HCoV-229E. The HCoV detection rates varied significantly with age (p = 0.00005), with the age group 0-14 years accounting for 28.6% (n = 30) of HCoV-positive patients. Fever and malaise were less frequent in HCoV patients than in influenza patients, while sore throat, dyspnoea, rhinorrhoea, and conjunctivitis were more associated with HCoV positivity. In conclusion, this study demonstrates that HCoV subtypes appear in ARI/ILI patients seen in general practice, with characteristic outbreak patterns primarily in winter. This study also identified symptoms associated with HCoVs in patients with ARI/ILI. Further studies with representative samples should be conducted to provide additional insights into the epidemiology and clinical features of HCoVs.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Respiratory Tract Infections/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Female , Humans , Infant , Infant, Newborn , Influenza, Human/epidemiology , Male , Middle Aged , Nasopharynx/virology , Primary Health Care , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2 , Seasons , Young Adult
9.
Semin Respir Crit Care Med ; 43(1): 60-74, 2022 02.
Article in English | MEDLINE | ID: covidwho-1688937

ABSTRACT

Severe viral infections may result in severe illnesses capable of causing acute respiratory failure that could progress rapidly to acute respiratory distress syndrome (ARDS), related to worse outcomes, especially in individuals with a higher risk of infection, including the elderly and those with comorbidities such as asthma, diabetes mellitus and chronic respiratory or cardiovascular disease. In addition, in cases of severe viral pneumonia, co-infection with bacteria such as Streptococcus pneumoniae and Staphylococcus aureus is related to worse outcomes. Respiratory viruses like influenza, rhinovirus, parainfluenza, adenovirus, metapneumovirus, respiratory syncytial virus, and coronavirus have increasingly been detected. This trend has become more prevalent, especially in critically ill patients, due to the availability and implementation of molecular assays in clinical practice. Respiratory viruses have been diagnosed as a frequent cause of severe pneumonia, including cases of community-acquired pneumonia, hospital-acquired pneumonia, and ventilator-associated pneumonia. In this review, we will discuss the epidemiology, diagnosis, clinical characteristics, management, and prognosis of patients with severe infections due to respiratory viruses, with a focus on influenza viruses, non-influenza viruses, and coronaviruses.


Subject(s)
Respiratory Tract Infections , Virus Diseases , Aged , Coronavirus , Humans , Patient Acuity , Prognosis , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/therapy , Respiratory Tract Infections/virology , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Virus Diseases/therapy
10.
Pediatr Infect Dis J ; 41(4): e146-e148, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1706949

ABSTRACT

Respiratory viruses were detected by multiplex-polymerase chain reaction from oropharyngeal swabs in 114/168 (67.9%) children with acute respiratory infection presenting to 5 pediatric practices in Germany between November 2020 and April 2021. In contrast to rhino- (48.8%), adeno- (14.3%) and endemic coronaviruses (14.9%), SARS-CoV-2 and influenza virus were detected only once; respiratory syncytial virus was not detected. This demonstrates differing impacts of pandemic infection control measures on the spread of respiratory viruses.


Subject(s)
Primary Health Care , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Virus Diseases/epidemiology , Virus Diseases/etiology , Adolescent , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Disease Susceptibility , Female , Humans , Incidence , Infant , Infant, Newborn , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/therapy , SARS-CoV-2 , Virus Diseases/diagnosis , Virus Diseases/therapy
11.
Ital J Pediatr ; 48(1): 18, 2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1690896

ABSTRACT

INTRODUCTION: The incidence of acute respiratory tract infections (ARTIs) in children is difficult to estimate because they are typically treated in outpatient settings and the majority of epidemiological data originate from hospital settings and refer to the most severe illnesses. Therefore, the incidence of ARTIs in a real-world setting remains largely unexplored. Therefore, this study aims to estimate the incidence of ARTIs, upper respiratory tract infections (URTIs), and lower respiratory tract infections (LRTIs) in children aged 0-5 years in an outpatient setting. METHODS: This prospective cohort study was conducted in Lombardy, Italy, from October 1st, 2019, to March 31st, 2021, before and during the COVID-19 pandemic that began in March 2020. Caucasian healthy children aged 0-5 years were recruited from 69 Family Pediatricians (FP) and followed-up in an outpatient setting. Data were collected whenever a child was referred to FP and ARTI was diagnosed (Covid-19 related ARTI were excluded). The primary outcome was an estimate of the incidence of ARTIs. The incidence of ARTIs in different age groups and the effect of the COVID-19 pandemic on the incidence of ARTIs were secondary outcomes. RESULTS: We enrolled 484 children, 249 male (51.8%), mean age of 2.39 ± 1.68 years. The mean estimated incidence of ARTIs was 12.1/100 children × 30 days (95% CIs: 9.5-12.9), with the highest value observed in infants aged 1-12 months (24.9/100 children × 30 days; 95% CIs: 17.6-28.9). The mean estimated incidence of URTIs was higher than that of LRTIs (8.3 - CIs: 7.6-8.9 vs 3.8/100 children × 30 days - CIs: 6.4-4.3, respectively). The comparison of ARTIs, which occurred in the pre-pandemic winter, to those measured during the COVID-19 pandemic, revealed an impressive 82.1% drop in the incidence rate (CIs: 77.8-85.7). CONCLUSIONS: This study showed that infants aged 1-12 months are more likely to develop ARTIs than older children and that COVID-19 pandemic has dramatically altered the epidemiology of ARTIs in children aged 0-5 years.


Subject(s)
COVID-19 , Respiratory Tract Infections , Acute Disease , Adolescent , Child , Child, Preschool , Humans , Incidence , Infant , Infant, Newborn , Male , Outpatients , Pandemics , Prospective Studies , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , SARS-CoV-2
13.
Microbiol Spectr ; 10(1): e0109021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1673362

ABSTRACT

The rapid emergence of the coronavirus disease 2019 (COVID-19) pandemic has introduced a new challenge in diagnosing and differentiating respiratory infections. Accurate diagnosis of respiratory infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is complicated by overlapping symptomology, and stepwise approaches to testing for each infection would lead to increased reagent usage and cost, as well as delays in clinical interventions. To avoid these issues, multiplex molecular assays have been developed to differentiate between respiratory viruses in a single test to meet clinical diagnostic needs. To evaluate the analytical performance of the FDA emergency use authorization (EUA)-approved Abbott Alinity m resp-4-plex assay (Alinity m) in testing for SARS-CoV-2, influenza A virus, influenza B virus, and respiratory syncytial virus (RSV), we compared its performance to those of both the EUA-approved Cepheid Xpert Xpress SARS-CoV-2, influenza A/B virus, and RSV assay (Xpert Xpress) and the EUA-approved Roche Cobas SARS-CoV-2 and influenza A/B virus assay (Cobas) in a single-center retrospective analysis. High concordance was observed among all three assays, with kappa statistics showing an almost perfect agreement (>0.90). The limit of detection (LOD) results for SARS-CoV-2 showed the Alinity m exhibiting the lowest LOD at 26 copies/mL, followed by the Cobas at 58 copies/mL and the Xpert Xpress at 83 copies/mL, with LOD results for the influenza A virus, influenza B virus, and RSV viral targets also showing equivalent or better performance on the Alinity m compared to the other two platforms. The Alinity m can be used as a high-volume testing platform for SARS-CoV-2, influenza A virus, influenza B virus, and RSV and exhibits analytical performance comparable to those of both the Xpert Xpress and Cobas assays. IMPORTANCE The rapid emergence of SARS-CoV-2 has introduced a new challenge in diagnosing and differentiating respiratory infections, especially considering the overlapping symptomology of many of these infections and differences in clinical interventions depending on the pathogen identified. To avoid these issues, multiplex molecular assays like the one described in this article need to be developed to differentiate between the most common respiratory pathogens in a single test and most effectively meet clinical diagnostic needs.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Infections/diagnosis , SARS-CoV-2/isolation & purification , Diagnosis, Differential , Humans , Respiratory Tract Infections/virology , Sensitivity and Specificity , Time Factors
14.
PLoS One ; 17(1): e0262874, 2022.
Article in English | MEDLINE | ID: covidwho-1643288

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has circulated worldwide and causes coronavirus disease 2019 (COVID-19). At the onset of the COVID-19 pandemic, infection control measures were taken, such as hand washing, mask wearing, and behavioral restrictions. However, it is not fully clear how the effects of these non-pharmaceutical interventions changed the prevalence of other pathogens associated with respiratory infections. In this study, we collected 3,508 nasopharyngeal swab samples from 3,249 patients who visited the Yamanashi Central Hospital in Japan from March 1, 2020 to February 28, 2021. We performed multiplex polymerase chain reaction (PCR) using the FilmArray Respiratory Panel and singleplex quantitative reverse transcription PCR targeting SARS-CoV-2 to detect respiratory disease-associated pathogens. At least one pathogen was detected in 246 (7.0%) of the 3,508 samples. Eleven types of pathogens were detected in the samples collected from March-May 2020, during which non-pharmaceutical interventions were not well implemented. In contrast, after non-pharmaceutical interventions were thoroughly implemented, only five types of pathogens were detected, and the majority were SARS-CoV-2, adenoviruses, or human rhinoviruses / enteroviruses. The 0-9 year age group had a higher prevalence of infection with adenoviruses and human rhinoviruses / enteroviruses compared with those 10 years and older, while those 10 years and older had a higher prevalence of infection with SARS-CoV-2 and other pathogens. These results indicated that non-pharmaceutical interventions likely reduced the diversity of circulating pathogens. Moreover, differences in the prevalence of pathogens were observed among the different age groups.


Subject(s)
Adenoviruses, Human/genetics , COVID-19/epidemiology , Enterovirus/genetics , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , SARS-CoV-2/genetics , Adenoviruses, Human/classification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , Enterovirus/classification , Female , Hand Disinfection/methods , Humans , Infant , Infant, Newborn , Japan/epidemiology , Male , Masks/supply & distribution , Middle Aged , Multiplex Polymerase Chain Reaction , Nasopharynx/virology , Prevalence , Quarantine/organization & administration , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Rhinovirus/classification , SARS-CoV-2/pathogenicity
15.
Sci Rep ; 12(1): 939, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1634211

ABSTRACT

With the advent of highly sensitive real-time PCR, multiple pathogens have been identified from nasopharyngeal swabs of patients with acute respiratory infections (ARIs). However, the detection of microorganisms in the upper respiratory tract does not necessarily indicate disease causation. We conducted a matched case-control study, nested within a broader fever aetiology project, to facilitate determination of the aetiology of ARIs in hospitalised patients in Northeastern Laos. Consenting febrile patients of any age admitted to Xiengkhuang Provincial Hospital were included if they met the inclusion criteria for ARI presentation (at least one of the following: cough, rhinorrhoea, nasal congestion, sore throat, difficulty breathing, and/or abnormal chest auscultation). One healthy control for each patient, matched by sex, age, and village of residence, was recruited for the study. Nasopharyngeal swabs were collected from participants and tested for 33 pathogens by probe-based multiplex real-time RT-PCR (FastTrack Diagnostics Respiratory pathogen 33 kit). Attributable fraction of illness for a given microorganism was calculated by comparing results between patients and controls (= 100 * [OR - 1]/OR) (OR = odds ratio). Between 24th June 2019 and 24th June 2020, 205 consenting ARI patients and 205 matching controls were recruited. After excluding eight pairs due to age mismatch, 197 pairs were included in the analysis. Males were predominant with sex ratio 1.2:1 and children < 5 years old accounted for 59% of participants. At least one potential pathogen was detected in 173 (88%) patients and 175 (89%) controls. ARI in admitted patients were attributed to influenza B virus, influenza A virus, human metapneumovirus (HMPV), and respiratory syncytial virus (RSV) in 17.8%, 17.2%, 7.5%, and 6.5% of participants, respectively. SARS-CoV-2 was not detected in any cases or controls. Determining ARI aetiology in individual patients remains challenging. Among hospitalised patients with ARI symptoms presenting to a provincial hospital in Northeastern Laos, half were determined to be caused by one of several respiratory viruses, in particular influenza A virus, influenza B virus, HMPV, and RSV.


Subject(s)
Hospitalization , RNA Virus Infections , RNA Viruses/genetics , Respiratory Tract Infections , Reverse Transcriptase Polymerase Chain Reaction , Acute Disease , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Laos/epidemiology , Male , RNA Virus Infections/diagnosis , RNA Virus Infections/epidemiology , RNA Virus Infections/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/genetics , Respiratory Tract Infections/virology , Sex Factors
16.
Vopr Virusol ; 66(6): 425-433, 2022 01 08.
Article in Russian | MEDLINE | ID: covidwho-1620062

ABSTRACT

INTRODUCTION: The relevance of studying the circulation of human respiratory viruses among laboratory primates is associated with the need to test vaccines and antiviral drugs against these infections on monkeys.The aim of this work was to study the prevalence of serological and molecular markers of human respiratory viral infections in laboratory primates born at the Adler Primate Center and in imported monkeys. MATERIAL AND METHODS: Blood serum samples (n = 1971) and lung autopsy material (n = 26) were obtained from different monkey species. These samples were tested for the presence of serological markers of measles, parainfluenza (PI) types 1, 2, 3, influenza A and B, respiratory syncytial (RS) and adenovirus infections using enzyme immunoassay (ELISA). Detection of RS virus, metapneumovirus, PI virus types 1-4, rhinovirus, coronavirus, and adenoviruses B, C, E and bocavirus nucleic acids in this material was performed by reverse transcription polymerase chain reaction (RT-PCR). RESULTS AND DISCUSSION: The overall prevalence of antibodies (Abs) among all monkeys was low and amounted 11.3% (95% CI: 9.2-13.7%, n = 811) for measles virus, 8.9% (95% CI: 6.2-12.2%, n = 381) for PI type 3 virus, 2.5% (95% CI: 0.8-5.6%, n = 204) for PI type 1 virus, and 7.7% (95% CI: 3.8-13.7%, n = 130) for adenoviruses. When testing 26 autopsy lung samples from monkeys of different species that died from pneumonia, 2 samples from Anubis baboons (Papio аnubis) were positive for of parainfluenza virus type 3 RNA. CONCLUSION: Our data suggest the importance of the strict adherence to the terms of quarantine and mandatory testing of monkey sera for the presence of IgM antibodies to the measles virus that indicate the recent infection. The role of PI virus type 3 in the pathology of the respiratory tract in Anubis baboons has been established.


Subject(s)
Haplorhini/virology , Monkey Diseases/epidemiology , Respiratory Tract Infections/veterinary , Adenoviridae , Animals , Biomarkers , Coronavirus , Humans , Immunoglobulin G/blood , Infant , Monkey Diseases/virology , Prevalence , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Russia/epidemiology
17.
BMC Public Health ; 22(1): 103, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1619904

ABSTRACT

BACKGROUND: Home-based swabbing has not been widely used. The objective of this analysis was to compare respiratory swabs collected by mothers of 7-12-year-olds living in low-income, multilingual communities in the United States with technician collected swabs. METHODS: Retrospective data analysis of respiratory samples collected at home by mothers compared to technicians. Anterior nasal and throat specimens collected using flocked swabs were combined in dry tubes. Test was done using TaqMan array cards for viral and bacterial pathogens. Cycle threshold (Ct) values of ribonuclease P (RNP) gene were used to assess specimen quality. Ct < 40 was interpreted as a positive result. Concordance of pathogen yield from mother versus technician collected swabs were analyzed using Cohen's Kappa coefficients. Correlation analysis, paired t-test, and Wilcoxon signed-rank test for paired samples were used for RNP Ct values. RESULTS: We enrolled 36 households in Cincinnati (African American) and 44 (predominately Chinese or Latino) in Boston. In Cincinnati, eight of 32 (25%) mothers did not finish high school, and 11 (34%) had finished high school only. In Boston, 13 of 44 (30%) mothers had less than a high school diploma, 23 (52%) had finished high school only. Mother versus technician paired swabs (n = 62) had similar pathogen yield (paired t-test and Wilcoxon signed rank test p-values = 0.62 and 0.63, respectively; 95% confidence interval of the difference between the two measurements = - 0.45-0.75). Median Ct value for RNP was 22.6 (interquartile range, IQR = 2.04) for mother-collected and 22.4 (IQR = 2.39) for technician-collected swabs (p = 0.62). Agreement on pathogen yield between samples collected by mothers vs. technicians was higher for viruses than for bacterial pathogens, with high concordance for rhinovirus/enterovirus, human metapneumovirus, and adenovirus (Cohen's kappa coefficients ≥80%, p < 0.0001). For bacterial pathogens, concordance was lower to moderate, except for Chlamydia pneumoniae, for which kappa coefficient indicated perfect agreement. CONCLUSION: Mothers with a range of education levels from low-income communities were able to swab their children equally well as technicians. Home-swabbing using dry tubes, and less invasive collection procedures, could enhance respiratory disease surveillance.


Subject(s)
Respiratory Tract Infections , Viruses , Bacteria , Child , Humans , Nose/microbiology , Parents , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Retrospective Studies , Specimen Handling/methods , United States , Viruses/genetics
18.
Br J Gen Pract ; 72(716): e217-e224, 2022 03.
Article in English | MEDLINE | ID: covidwho-1608429

ABSTRACT

BACKGROUND: There is little evidence about the relationship between aetiology, illness severity, and clinical course of respiratory tract infections (RTIs) in primary care. Understanding these associations would aid in the development of effective management strategies for these infections. AIM: To investigate whether clinical presentation and illness course differ between RTIs where a viral pathogen was detected and those where a potential bacterial pathogen was found. DESIGN AND SETTING: Post hoc analysis of data from a pragmatic randomised trial on the effects of oseltamivir in patients with flu-like illness in primary care (n = 3266) in 15 European countries. METHOD: Patient characteristics and their signs and symptoms of disease were registered at baseline. Nasopharyngeal (adults) or nasal and pharyngeal (children) swabs were taken for polymerase chain reaction analysis. Patients were followed up until 28 days after inclusion. Regression models and Kaplan-Meier curves were used to analyse the relationship between aetiology, clinical presentation at baseline, and course of disease including complications. RESULTS: Except for a less prominent congested nose (odds ratio [OR] 0.55, 95% confidence interval [CI] = 0.35 to 0.86) and acute cough (OR 0.42, 95% CI = 0.27 to 0.65) in patients with flu-like illness in whom a possible bacterial pathogen was isolated, there were no clear clinical differences in presentations between those with a possible bacterial aetiology compared with those with a viral aetiology. Also, course of disease and complications were not related to aetiology. CONCLUSION: Given current available microbiological tests and antimicrobial treatments, and outside pandemics such as COVID-19, microbiological testing in primary care patients with flu-like illness seems to have limited value. A wait-and-see policy in most of these patients with flu-like illness seems the best option.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , Adult , Child , Humans , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Virus Diseases/complications , Virus Diseases/diagnosis , Virus Diseases/epidemiology
19.
Microbiol Spectr ; 9(3): e0016421, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1599285

ABSTRACT

Respiratory tract infections (RTIs) are ubiquitous among children in the community. A prospective observational study was performed to evaluate the diagnostic performance and quality of at-home parent-collected (PC) nasal and saliva swab samples, compared to nurse-collected (NC) swab samples, from children with RTI symptoms. Children with RTI symptoms were swabbed at home on the same day by a parent and a nurse. We compared the performance of PC swab samples as the test with NC swab samples as the reference for the detection of respiratory pathogen gene targets by reverse transcriptase PCR, with quality assessment using a human gene. PC and NC paired nasal and saliva swab samples were collected from 91 and 92 children, respectively. Performance and interrater agreement (Cohen's κ) of PC versus NC nasal swab samples for viruses combined showed sensitivity of 91.6% (95% confidence interval [CI], 85.47 to 95.73%) and κ of 0.84 (95% CI, 0.79 to 0.88), respectively; the respective values for bacteria combined were 91.4% (95% CI, 86.85 to 94.87%) and κ of 0.85 (95% CI, 0.80 to 0.89). In saliva samples, viral and bacterial sensitivities were lower at 69.0% (95% CI, 57.47 to 79.76%) and 78.1% (95% CI, 71.60 to 83.76%), as were κ values at 0.64 (95% CI, 0.53 to 0.72) and 0.70 (95% CI, 0.65 to 0.76), respectively. Quality assessment for human biological material (18S rRNA) indicated perfect interrater agreement. At-home PC nasal swab samples performed comparably to NC swab samples, whereas PC saliva swab samples lacked sensitivity for the detection of respiratory microbes. IMPORTANCE RTIs are ubiquitous among children. Diagnosis involves a swab sample being taken by a health professional, which places a considerable burden on community health care systems, given the number of cases involved. The coronavirus disease 2019 (COVID-19) pandemic has seen an increase in the at-home self-collection of upper respiratory tract swab samples without the involvement of health professionals. It is advised that parents conduct or supervise swabbing of children. Surprisingly, few studies have addressed the quality of PC swab samples for subsequent identification of respiratory pathogens. We compared NC and PC nasal and saliva swab samples taken from the same child with RTI symptoms, for detection of respiratory pathogens. The PC nasal swab samples performed comparably to NC samples, whereas saliva swab samples lacked sensitivity for the detection of respiratory microbes. Collection of swab samples by parents would greatly reduce the burden on community nurses without reducing the effectiveness of diagnoses.


Subject(s)
Respiratory Tract Infections/diagnosis , Specimen Handling/methods , Adult , Bacteria/genetics , Bacteria/isolation & purification , Child, Preschool , Female , Health Personnel , Humans , Infant , Male , Middle Aged , Nose/microbiology , Nose/virology , Parents , Prospective Studies , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Saliva , Specimen Handling/standards , Viruses/genetics , Viruses/isolation & purification , Young Adult
20.
PLoS One ; 16(11): e0259910, 2021.
Article in English | MEDLINE | ID: covidwho-1581787

ABSTRACT

BACKGROUND: Clinical observations have shown that there is a relationship between coronavirus disease 2019 (COVID-19) and atypical lymphocytes in the peripheral blood; however, knowledge about the time course of the changes in atypical lymphocytes and the association with the clinical course of COVID-19 is limited. OBJECTIVE: Our purposes were to investigate the dynamics of atypical lymphocytes in COVID-19 patients and to estimate their clinical significance for diagnosis and monitoring disease course. MATERIALS AND METHODS: We retrospectively identified 98 inpatients in a general ward at Kashiwa Municipal Hospital from May 1st, 2020, to October 31st, 2020. We extracted data on patient demographics, symptoms, comorbidities, blood test results, radiographic findings, treatment after admission and clinical course. We compared clinical findings between patients with and without atypical lymphocytes, investigated the behavior of atypical lymphocytes throughout the clinical course of COVID-19, and determined the relationships among the development of pneumonia, the use of supplemental oxygen and the presence of atypical lymphocytes. RESULTS: Patients with atypical lymphocytes had a significantly higher prevalence of pneumonia (80.4% vs. 42.6%, p < 0.0001) and the use of supplemental oxygen (25.5% vs. 4.3%, p = 0.0042). The median time to the appearance of atypical lymphocytes after disease onset was eight days, and atypical lymphocytes were observed in 16/98 (16.3%) patients at the first visit. Atypical lymphocytes appeared after the confirmation of lung infiltrates in 31/41 (75.6%) patients. Of the 13 oxygen-treated patients with atypical lymphocytes, approximately two-thirds had a stable or improved clinical course after the appearance of atypical lymphocytes. CONCLUSION: Atypical lymphocytes frequently appeared in the peripheral blood of COVID-19 patients one week after disease onset. Patients with atypical lymphocytes were more likely to have pneumonia and to need supplemental oxygen; however, two-thirds of them showed clinical improvement after the appearance of atypical lymphocytes.


Subject(s)
COVID-19/diagnosis , Leukocyte Disorders/diagnosis , Pneumonia/diagnosis , Respiratory Tract Infections/diagnosis , Adult , COVID-19/complications , COVID-19/epidemiology , COVID-19/virology , Female , Hospitalization , Humans , Intensive Care Units , Leukocyte Disorders/complications , Leukocyte Disorders/epidemiology , Leukocyte Disorders/virology , Leukocytes, Mononuclear/pathology , Lymphocytes/pathology , Male , Middle Aged , Oxygen/blood , Pneumonia/blood , Pneumonia/epidemiology , Pneumonia/virology , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL