Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
Add filters

Document Type
Year range
1.
Sci Rep ; 12(1): 939, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1634211

ABSTRACT

With the advent of highly sensitive real-time PCR, multiple pathogens have been identified from nasopharyngeal swabs of patients with acute respiratory infections (ARIs). However, the detection of microorganisms in the upper respiratory tract does not necessarily indicate disease causation. We conducted a matched case-control study, nested within a broader fever aetiology project, to facilitate determination of the aetiology of ARIs in hospitalised patients in Northeastern Laos. Consenting febrile patients of any age admitted to Xiengkhuang Provincial Hospital were included if they met the inclusion criteria for ARI presentation (at least one of the following: cough, rhinorrhoea, nasal congestion, sore throat, difficulty breathing, and/or abnormal chest auscultation). One healthy control for each patient, matched by sex, age, and village of residence, was recruited for the study. Nasopharyngeal swabs were collected from participants and tested for 33 pathogens by probe-based multiplex real-time RT-PCR (FastTrack Diagnostics Respiratory pathogen 33 kit). Attributable fraction of illness for a given microorganism was calculated by comparing results between patients and controls (= 100 * [OR - 1]/OR) (OR = odds ratio). Between 24th June 2019 and 24th June 2020, 205 consenting ARI patients and 205 matching controls were recruited. After excluding eight pairs due to age mismatch, 197 pairs were included in the analysis. Males were predominant with sex ratio 1.2:1 and children < 5 years old accounted for 59% of participants. At least one potential pathogen was detected in 173 (88%) patients and 175 (89%) controls. ARI in admitted patients were attributed to influenza B virus, influenza A virus, human metapneumovirus (HMPV), and respiratory syncytial virus (RSV) in 17.8%, 17.2%, 7.5%, and 6.5% of participants, respectively. SARS-CoV-2 was not detected in any cases or controls. Determining ARI aetiology in individual patients remains challenging. Among hospitalised patients with ARI symptoms presenting to a provincial hospital in Northeastern Laos, half were determined to be caused by one of several respiratory viruses, in particular influenza A virus, influenza B virus, HMPV, and RSV.


Subject(s)
Hospitalization , RNA Virus Infections , RNA Viruses/genetics , Respiratory Tract Infections , Reverse Transcriptase Polymerase Chain Reaction , Acute Disease , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Laos/epidemiology , Male , RNA Virus Infections/diagnosis , RNA Virus Infections/epidemiology , RNA Virus Infections/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/genetics , Respiratory Tract Infections/virology , Sex Factors
2.
J Environ Public Health ; 2021: 7112548, 2021.
Article in English | MEDLINE | ID: covidwho-1622110

ABSTRACT

Background: Most of the households in developing countries burn biomass fuel in traditional stoves with incomplete combustion that leads to high indoor air pollution and acute respiratory infections. Acute respiratory infection is the most common cause of under-five morbidity and mortality accounting for 2 million deaths worldwide and responsible for 18% of deaths among under-five children in Ethiopia. Although studies were done on acute respiratory infections, the majority of studies neither clinically diagnose respiratory infections nor use instant measurement of particulate matter. Methods: The community-based cross-sectional study design was employed among under-five children in Jimma town from May 21 to June 7, 2020. A total of 265 children through systematic random sampling were included in the study. The data were collected using a pretested semistructured questionnaire and laser pm 2.5 meter for indoor particulate matter concentration. Associations among factors were assessed through correlation analysis, and binary logistic regression was done to predict childhood acute respiratory infections. Variables with p-value less than 0.25 in bivariate regression were the candidate for the final multivariate logistic regression. Two independent sample t-tests were done to compare significant mean difference between concentrations of particulate matter. Results: Among 265 under-five children who were involved in the study, 179 (67.5%) were living in households that predominantly use biomass fuel. Prevalence of acute respiratory infections in the study area was 16%. Children living in households that use biomass fuel were four times more likely to develop acute respiratory infections than their counterparts (AOR: 4.348; 95% CI: 1.632, 11.580). The size of household was significantly associated with the prevalence of acute respiratory infections. Under-five children living in households that have a family size of six and greater had odds of 1.7 increased risk of developing acute respiratory infections than their counterparts (AOR: 1.7; 95% CI: 1.299, 2.212). The other factor associated with acute respiratory infection was separate kitchen; children living in households in which there were no separate kitchen were four times at increased risk of developing acute respiratory infection than children living in households which have separate kitchen (AOR: 4.591; 95% CI: 1.849, 11.402). The concentration of indoor particulate matter was higher in households using biomass fuel than clean fuel. There was statistically higher particulate matter concentration in the kitchen than living rooms (t = 4.509, p ≤ 0.001). Particulate matter 2.5 concentrations (µg/m3) of the households that had parental smoking were significantly higher than their counterparts (AOR: 20.224; 95% CI: 1.72, 12.58). Conclusion: There is an association between acute respiratory infections and biomass fuel usage among under-five children. Focusing on improved energy sources is essential to reduce the burden and assure the safety of children.


Subject(s)
Air Pollution, Indoor , Respiratory Tract Infections , Air Pollution, Indoor/statistics & numerical data , Biomass , Child , Cross-Sectional Studies , Ethiopia/epidemiology , Humans , Particulate Matter/analysis , Particulate Matter/toxicity , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology
3.
BMJ ; 376: e067519, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1622028

ABSTRACT

OBJECTIVE: To assess the impact of the covid-19 pandemic on hospital admission rates and mortality outcomes for childhood respiratory infections, severe invasive infections, and vaccine preventable disease in England. DESIGN: Population based observational study of 19 common childhood respiratory, severe invasive, and vaccine preventable infections, comparing hospital admission rates and mortality outcomes before and after the onset of the pandemic in England. SETTING: Hospital admission data from every NHS hospital in England from 1 March 2017 to 30 June 2021 with record linkage to national mortality data. POPULATION: Children aged 0-14 years admitted to an NHS hospital with a selected childhood infection from 1 March 2017 to 30 June 2021. MAIN OUTCOME MEASURES: For each infection, numbers of hospital admissions every month from 1 March 2017 to 30 June 2021, percentage changes in the number of hospital admissions before and after 1 March 2020, and adjusted odds ratios to compare 60 day case fatality outcomes before and after 1 March 2020. RESULTS: After 1 March 2020, substantial and sustained reductions in hospital admissions were found for all but one of the 19 infective conditions studied. Among the respiratory infections, the greatest percentage reductions were for influenza (mean annual number admitted between 1 March 2017 and 29 February 2020 was 5379 and number of children admitted from 1 March 2020 to 28 February 2021 was 304, 94% reduction, 95% confidence interval 89% to 97%), and bronchiolitis (from 51 655 to 9423, 82% reduction, 95% confidence interval 79% to 84%). Among the severe invasive infections, the greatest reduction was for meningitis (50% reduction, 47% to 52%). For the vaccine preventable infections, reductions ranged from 53% (32% to 68%) for mumps to 90% (80% to 95%) for measles. Reductions were seen across all demographic subgroups and in children with underlying comorbidities. Corresponding decreases were also found for the absolute numbers of 60 day case fatalities, although the proportion of children admitted for pneumonia who died within 60 days increased (age-sex adjusted odds ratio 1.71, 95% confidence interval 1.43 to 2.05). More recent data indicate that some respiratory infections increased to higher levels than usual after May 2021. CONCLUSIONS: During the covid-19 pandemic, a range of behavioural changes (adoption of non-pharmacological interventions) and societal strategies (school closures, lockdowns, and restricted travel) were used to reduce transmission of SARS-CoV-2, which also reduced admissions for common and severe childhood infections. Continued monitoring of these infections is required as social restrictions evolve.


Subject(s)
COVID-19/epidemiology , Infections/epidemiology , Pandemics , Adolescent , Child , Child, Preschool , England/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Infections/mortality , Male , Quarantine , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/mortality , SARS-CoV-2 , Virus Diseases/epidemiology , Virus Diseases/mortality
4.
Vopr Virusol ; 66(6): 425-433, 2022 01 08.
Article in Russian | MEDLINE | ID: covidwho-1620062

ABSTRACT

INTRODUCTION: The relevance of studying the circulation of human respiratory viruses among laboratory primates is associated with the need to test vaccines and antiviral drugs against these infections on monkeys.The aim of this work was to study the prevalence of serological and molecular markers of human respiratory viral infections in laboratory primates born at the Adler Primate Center and in imported monkeys. MATERIAL AND METHODS: Blood serum samples (n = 1971) and lung autopsy material (n = 26) were obtained from different monkey species. These samples were tested for the presence of serological markers of measles, parainfluenza (PI) types 1, 2, 3, influenza A and B, respiratory syncytial (RS) and adenovirus infections using enzyme immunoassay (ELISA). Detection of RS virus, metapneumovirus, PI virus types 1-4, rhinovirus, coronavirus, and adenoviruses B, C, E and bocavirus nucleic acids in this material was performed by reverse transcription polymerase chain reaction (RT-PCR). RESULTS AND DISCUSSION: The overall prevalence of antibodies (Abs) among all monkeys was low and amounted 11.3% (95% CI: 9.2-13.7%, n = 811) for measles virus, 8.9% (95% CI: 6.2-12.2%, n = 381) for PI type 3 virus, 2.5% (95% CI: 0.8-5.6%, n = 204) for PI type 1 virus, and 7.7% (95% CI: 3.8-13.7%, n = 130) for adenoviruses. When testing 26 autopsy lung samples from monkeys of different species that died from pneumonia, 2 samples from Anubis baboons (Papio аnubis) were positive for of parainfluenza virus type 3 RNA. CONCLUSION: Our data suggest the importance of the strict adherence to the terms of quarantine and mandatory testing of monkey sera for the presence of IgM antibodies to the measles virus that indicate the recent infection. The role of PI virus type 3 in the pathology of the respiratory tract in Anubis baboons has been established.


Subject(s)
Haplorhini/virology , Monkey Diseases/epidemiology , Respiratory Tract Infections/veterinary , Adenoviridae , Animals , Biomarkers , Coronavirus , Humans , Immunoglobulin G/blood , Infant , Monkey Diseases/virology , Prevalence , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Russia/epidemiology
5.
PLoS One ; 16(12): e0260658, 2021.
Article in English | MEDLINE | ID: covidwho-1592754

ABSTRACT

BACKGROUND: As advocated by WHO in "Closing the Health Gap in a Generation", dramatic differences in child health are closely linked to degrees of social disadvantage, both within and between communities. Nevertheless, research has not examined whether child health inequalities include, but are not confined to, worse acute respiratory infection (ARI) symptoms among the socioeconomic disadvantaged in Pakistan. In addition to such disadvantages as the child's gender, maternal education, and household poverty, the present study also examined the linkages between the community environment and ARI symptoms among Pakistan children under five. Furthermore, we have assessed gender contingencies related to the aforementioned associations. METHODS: Using data from the nationally representative 2017-2018 Pakistan Demographic and Health Survey, a total of 11,908 surviving preschool age children (0-59 months old) living in 561 communities were analyzed. We employed two-level multilevel logistic regressions to model the relationship between ARI symptoms and individual-level and community-level social factors. RESULTS: The social factors at individual and community levels were found to be significantly associated with an increased risk of the child suffering from ARI symptoms. A particularly higher risk was observed among girls who resided in urban areas (AOR = 1.42; p<0.01) and who had a birth order of three or greater. DISCUSSIONS: Our results underscore the need for socioeconomic interventions in Pakistan that are targeted at densely populated households and communities within urban areas, with a particular emphasis on out-migration, in order to improve unequal economic underdevelopment. This could be done by targeting improvements in socio-economic structures, including maternal education.


Subject(s)
Health Surveys , Respiratory Tract Infections/pathology , Socioeconomic Factors , Child, Preschool , Educational Status , Family Characteristics , Female , Humans , Infant , Infant, Newborn , Logistic Models , Male , Multilevel Analysis , Pakistan/epidemiology , Respiratory Tract Infections/epidemiology , Risk Factors , Urban Population
6.
Medicine (Baltimore) ; 100(52): e28334, 2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1594572

ABSTRACT

ABSTRACT: In the wake of the COVID-19 pandemic, research indicates that the COVID-19 disease susceptibility varies among individuals depending on their ABO blood groups. Researchers globally commenced investigating potential methods to stratify cases according to prognosis depending on several clinical parameters. Since there is evidence of a link between ABO blood groups and disease susceptibility, it could be argued that there is a link between blood groups and disease manifestation and progression. The current study investigates whether clinical manifestation, laboratory, and imaging findings vary among ABO blood groups of hospitalized confirmed COVID-19 patients.This retrospective cohort study was conducted between March 1, 2020 and March 31, 2021 in King Faisal Specialist Hospital and Research Centre Riyadh and Jeddah, Saudi Arabia. Demographic information, clinical information, laboratory findings, and imaging investigations were extracted from the data warehouse for all confirmed COVID-19 patients.A total of 285 admitted patients were included in the study. Of these, 81 (28.4%) were blood group A, 43 (15.1%) were blood group B, 11 (3.9%) were blood group AB, and 150 (52.6%) were blood group O. This was almost consistent with the distribution of blood groups among the Saudi Arabia community. The majority of the study participants (79.6% [n = 227]) were asymptomatic. The upper respiratory tract infection (P = .014) and shortness of breath showed statistically significant differences between the ABO blood group (P = .009). Moreover, the incidence of the symptoms was highly observed in blood group O followed by A then B except for pharyngeal exudate observed in blood group A. The one-way ANOVA test indicated that among the studied hematological parameters, glucose (P = .004), absolute lymphocyte count (P = .001), and IgA (P = .036) showed statistically significant differences between the means of the ABO blood group. The differences in both X-ray and computed tomography scan findings were statistically nonsignificant among the ABO age group. Only 86 (30.3%) patients were admitted to an intensive care unit, and the majority of them were blood groups O 28.7% (n = 43) and A 37.0% (n = 30). However, the differences in complications' outcomes were statistically nonsignificant among the ABO age group.ABO blood groups among hospitalized COVID-19 patients are not associated with clinical, hematological, radiological, and complications abnormality.


Subject(s)
ABO Blood-Group System , COVID-19/blood , Disease Susceptibility , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Dyspnea/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Pandemics , Respiratory Tract Infections/epidemiology , Retrospective Studies , SARS-CoV-2 , Saudi Arabia/epidemiology , Severity of Illness Index , Young Adult
7.
PLoS One ; 16(11): e0259910, 2021.
Article in English | MEDLINE | ID: covidwho-1581787

ABSTRACT

BACKGROUND: Clinical observations have shown that there is a relationship between coronavirus disease 2019 (COVID-19) and atypical lymphocytes in the peripheral blood; however, knowledge about the time course of the changes in atypical lymphocytes and the association with the clinical course of COVID-19 is limited. OBJECTIVE: Our purposes were to investigate the dynamics of atypical lymphocytes in COVID-19 patients and to estimate their clinical significance for diagnosis and monitoring disease course. MATERIALS AND METHODS: We retrospectively identified 98 inpatients in a general ward at Kashiwa Municipal Hospital from May 1st, 2020, to October 31st, 2020. We extracted data on patient demographics, symptoms, comorbidities, blood test results, radiographic findings, treatment after admission and clinical course. We compared clinical findings between patients with and without atypical lymphocytes, investigated the behavior of atypical lymphocytes throughout the clinical course of COVID-19, and determined the relationships among the development of pneumonia, the use of supplemental oxygen and the presence of atypical lymphocytes. RESULTS: Patients with atypical lymphocytes had a significantly higher prevalence of pneumonia (80.4% vs. 42.6%, p < 0.0001) and the use of supplemental oxygen (25.5% vs. 4.3%, p = 0.0042). The median time to the appearance of atypical lymphocytes after disease onset was eight days, and atypical lymphocytes were observed in 16/98 (16.3%) patients at the first visit. Atypical lymphocytes appeared after the confirmation of lung infiltrates in 31/41 (75.6%) patients. Of the 13 oxygen-treated patients with atypical lymphocytes, approximately two-thirds had a stable or improved clinical course after the appearance of atypical lymphocytes. CONCLUSION: Atypical lymphocytes frequently appeared in the peripheral blood of COVID-19 patients one week after disease onset. Patients with atypical lymphocytes were more likely to have pneumonia and to need supplemental oxygen; however, two-thirds of them showed clinical improvement after the appearance of atypical lymphocytes.


Subject(s)
COVID-19/diagnosis , Leukocyte Disorders/diagnosis , Pneumonia/diagnosis , Respiratory Tract Infections/diagnosis , Adult , COVID-19/complications , COVID-19/epidemiology , COVID-19/virology , Female , Hospitalization , Humans , Intensive Care Units , Leukocyte Disorders/complications , Leukocyte Disorders/epidemiology , Leukocyte Disorders/virology , Leukocytes, Mononuclear/pathology , Lymphocytes/pathology , Male , Middle Aged , Oxygen/blood , Pneumonia/blood , Pneumonia/epidemiology , Pneumonia/virology , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , SARS-CoV-2/pathogenicity
8.
Emerg Infect Dis ; 28(1): 62-68, 2022 01.
Article in English | MEDLINE | ID: covidwho-1581411

ABSTRACT

To determine the effects of nonpharmaceutical interventions (NPIs) for coronavirus disease on pediatric hospitalizations for infection with respiratory viruses other than severe acute respiratory syndrome coronavirus 2, we analyzed hospital data for 2017-2021. Compared with 2017-2019, age-specific hospitalization rates associated with respiratory viruses greatly decreased in 2020, when NPIs were in place. Also when NPIs were in place, rates of hospitalization decreased among children of all ages for infection with influenza A and B viruses, respiratory syncytial virus, adenovirus, parainfluenza viruses, human metapneumovirus, and rhinovirus/enterovirus. Regression models adjusted for age and seasonality indicated that hospitalization rates for acute febrile illness/respiratory symptoms of any cause were reduced by 76% and by 85%-99% for hospitalization for infection with these viruses. NPIs in Hong Kong were clearly associated with reduced pediatric hospitalizations for respiratory viruses; implementing NPIs and reopening schools were associated with only a small increase in hospitalizations for rhinovirus/enterovirus infections.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Hong Kong/epidemiology , Hospitalization , Humans , Infant , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2
9.
Viruses ; 13(12)2021 12 16.
Article in English | MEDLINE | ID: covidwho-1580428

ABSTRACT

BACKGROUND: We aimed to compare the clinical severity in patients who were coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rhinovirus or monoinfected with a single one of these viruses. METHODS: The study period ranged from 1 March 2020 to 28 February 2021 (one year). SARS-CoV-2 and other respiratory viruses were identified by real-time reverse-transcription-PCR as part of the routine work at Marseille University hospitals. Bacterial and fungal infections were detected by standard methods. Clinical data were retrospectively collected from medical files. This study was approved by the ethical committee of our institute. RESULTS: A total of 6034/15,157 (40%) tested patients were positive for at least one respiratory virus. Ninety-three (4.3%) SARS-CoV-2-infected patients were coinfected with another respiratory virus, with rhinovirus being the most frequent (62/93, 67%). Patients coinfected with SARS-CoV-2 and rhinovirus were significantly more likely to report a cough than those with SARS-CoV-2 monoinfection (62% vs. 31%; p = 0.0008). In addition, they were also significantly more likely to report dyspnea than patients with rhinovirus monoinfection (45% vs. 36%; p = 0.02). They were also more likely to be transferred to an intensive care unit and to die than patients with rhinovirus monoinfection (16% vs. 5% and 7% vs. 2%, respectively) but these differences were not statistically significant. CONCLUSIONS: A close surveillance and investigation of the co-incidence and interactions of SARS-CoV-2 and other respiratory viruses is needed. The possible higher risk of increased clinical severity in SARS-CoV-2-positive patients coinfected with rhinovirus warrants further large scale studies.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Picornaviridae Infections/epidemiology , Adolescent , Adult , Aged , COVID-19/diagnosis , Child , Coinfection/diagnosis , Female , Humans , Incidence , Male , Middle Aged , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Rhinovirus , SARS-CoV-2 , Severity of Illness Index , Young Adult
11.
MMWR Morb Mortal Wkly Rep ; 70(47): 1623-1628, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1534933

ABSTRACT

Enterovirus D68 (EV-D68) is associated with a broad spectrum of illnesses, including mild to severe acute respiratory illness (ARI) and acute flaccid myelitis (AFM). Enteroviruses, including EV-D68, are typically detected in the United States during late summer through fall, with year-to-year fluctuations. Before 2014, EV-D68 was infrequently reported to CDC (1). However, numbers of EV-D68 detection have increased in recent years, with a biennial pattern observed during 2014-2018 in the United States, after the expansion of surveillance and wider availability of molecular testing. In 2014, a national outbreak of EV-D68 was detected (2). EV-D68 was also reported in 2016 via local (3) and passive national (4) surveillance. EV-D68 detections were limited in 2017, but substantial circulation was observed in 2018 (5). To assess recent levels of circulation, EV-D68 detections in respiratory specimens collected from patients aged <18 years* with ARI evaluated in emergency departments (EDs) or admitted to one of seven U.S. medical centers† within the New Vaccine Surveillance Network (NVSN) were summarized. This report provides a provisional description of EV-D68 detections during July-November in 2018, 2019 and 2020, and describes the demographic and clinical characteristics of these patients. In 2018, a total of 382 EV-D68 detections in respiratory specimens obtained from patients aged <18 years with ARI were reported by NVSN; the number decreased to six detections in 2019 and 30 in 2020. Among patients aged <18 years with EV-D68 in 2020, 22 (73%) were non-Hispanic Black (Black) persons. EV-D68 detections in 2020 were lower than anticipated based on the biennial circulation pattern observed since 2014. The circulation of EV-D68 in 2020 might have been limited by widespread COVID-19 mitigation measures; how these changes in behavior might influence the timing and levels of circulation in future years is unknown. Ongoing monitoring of EV-D68 detections is warranted for preparedness for EV-D68-associated ARI and AFM.


Subject(s)
Disease Outbreaks , Enterovirus D, Human/isolation & purification , Enterovirus Infections/epidemiology , Population Surveillance/methods , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Adolescent , Child , Child, Preschool , Enterovirus D, Human/genetics , Enterovirus Infections/virology , Female , Humans , Infant , Male , United States/epidemiology
13.
BMJ Open ; 11(10): e052473, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1523027

ABSTRACT

PURPOSE: We describe here a multicentric community-dwelling cohort of older adults (>60 years of age) established to estimate incidence, study risk factors, healthcare utilisation and economic burden associated with influenza and respiratory syncytial virus (RSV) in India. PARTICIPANTS: The four sites of this cohort are in northern (Ballabgarh), southern (Chennai), eastern (Kolkata) and western (Pune) parts of India. We enrolled 5336 participants across 4220 households and began surveillance in July 2018 for viral respiratory infections with additional participants enrolled annually. Trained field workers collected data about individual-level and household-level risk factors at enrolment and quarterly assessed frailty and grip strength. Trained nurses surveilled weekly to identify acute respiratory infections (ARI) and clinically assessed individuals to diagnose acute lower respiratory infection (ALRI) as per protocol. Nasal and oropharyngeal swabs are collected from all ALRI cases and one-fifth of the other ARI cases for laboratory testing. Cost data of the episode are collected using the WHO approach for estimating the economic burden of seasonal influenza. Handheld tablets with Open Data Kit platform were used for data collection. FINDINGS TO DATE: The attrition of 352 participants due to migration and deaths was offset by enrolling 680 new entrants in the second year. All four sites reported negligible influenza vaccination uptake (0.1%-0.4%), low health insurance coverage (0.4%-22%) and high tobacco use (19%-52%). Ballabgarh had the highest proportion (54.4%) of households in the richest wealth quintile, but reported high solid fuel use (92%). Frailty levels were highest in Kolkata (11.3%) and lowest in Pune (6.8%). The Chennai cohort had highest self-reported morbidity (90.1%). FUTURE PLANS: The findings of this cohort will be used to inform prioritisation of strategies for influenza and RSV control for older adults in India. We also plan to conduct epidemiological studies of SARS-CoV-2 using this platform.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Aged , Humans , India/epidemiology , Infant , Influenza, Human/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2
14.
J Med Virol ; 94(1): 298-302, 2022 01.
Article in English | MEDLINE | ID: covidwho-1513873

ABSTRACT

For preventing the spread of the coronavirus disease 2019 (COVID-19) pandemic, measures like wearing masks, social distancing, and hand hygiene played crucial roles. These measures may also have affected the expansion of other infectious diseases like respiratory tract infections (RTI) and gastro-intestinal infections (GII). Therefore, we aimed to investigate non-COVID-19 related RTI and GII during the COVID-19 pandemic. Patients with a diagnosis of an acute RTI (different locations) or acute GII documented anonymously in 994 general practitioner (GP) or 192 pediatrician practices in Germany were included. We compared the prevalence of acute RTI and GII between April 2019-March 2020 and April 2020-March 2021. In GP practices, 715,440 patients were diagnosed with RTI or GII in the nonpandemic period versus 468,753 in the pandemic period; the same trend was observed by pediatricians (275,033 vs. 165,127). By GPs, the strongest decrease was observed for the diagnosis of influenza (-71%, p < 0.001), followed by acute laryngitis (-64%, p < 0.001), acute lower respiratory infections (bronchitis) (-62%, p < 0.001), and intestinal infections (-40%, p < 0.001). In contrast, the relatively rare viral pneumonia strongly increased by 229% (p < 0.001). In pediatrician practices, there was a strong decrease in infection diagnoses, especially influenza (-90%, p < 0.001), pneumonia (-73%, p < 0.001 viral; -76%, p < 0.001 other pneumonias), and acute sinusitis (-66%, p < 0.001). No increase was observed for viral pneumonia in children. The considerable limitations concerning social life implemented during the COVID-19 pandemic to combat the spread of SARS-CoV-2 also resulted in an inadvertent but welcome reduction in other non-Covid-19 respiratory tract and gastro-intestinal infections.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Gastrointestinal Diseases/epidemiology , Respiratory Tract Infections/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Electronic Health Records/statistics & numerical data , Female , Germany/epidemiology , Hand Hygiene/methods , Humans , Male , Masks , Middle Aged , Physical Distancing , Prevalence , Young Adult
15.
PLoS One ; 16(11): e0259908, 2021.
Article in English | MEDLINE | ID: covidwho-1511834

ABSTRACT

INTRODUCTION: The incidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in the Belgian community is mainly estimated based on test results of patients with coronavirus disease (COVID-19)-like symptoms. The aim of this study was to investigate the evolution of the SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) positivity ratio and distribution of viral loads within a cohort of asymptomatic patients screened prior hospitalization or surgery, stratified by age category. MATERIALS/METHODS: We retrospectively studied data on SARS-CoV-2 real-time RT-PCR detection in respiratory tract samples of asymptomatic patients screened pre-hospitalization or pre-surgery in nine Belgian hospitals located in Flanders over a 12-month period (1 April 2020-31 March 2021). RESULTS: In total, 255925 SARS-CoV-2 RT-PCR test results and 2421 positive results for which a viral load was reported, were included in this study. An unweighted overall SARS-CoV-2 real-time RT-PCR positivity ratio of 1.27% was observed with strong spatiotemporal differences. SARS-CoV-2 circulated predominantly in 80+ year old individuals across all time periods except between the first and second COVID-19 wave and in 20-30 year old individuals before the second COVID-19 wave. In contrast to the first wave, a significantly higher positivity ratio was observed for the 20-40 age group in addition to the 80+ age group compared to the other age groups during the second wave. The median viral load follows a similar temporal evolution as the positivity rate with an increase ahead of the second wave and highest viral loads observed for 80+ year old individuals. CONCLUSION: There was a high SARS-CoV-2 circulation among asymptomatic patients with a predominance and highest viral loads observed in the elderly. Moreover, ahead of the second COVID-19 wave an increase in median viral load was noted with the highest overall positivity ratio observed in 20-30 year old individuals, indicating they could have been the hidden drivers of this wave.


Subject(s)
Asymptomatic Diseases/epidemiology , COVID-19/diagnosis , Respiratory Tract Infections/epidemiology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Female , Hospitalization , Humans , Male , Middle Aged , Respiratory Tract Infections/pathology , Respiratory Tract Infections/surgery , Respiratory Tract Infections/virology , SARS-CoV-2/pathogenicity , Young Adult
16.
Zhonghua Yu Fang Yi Xue Za Zhi ; 55(11): 1321-1327, 2021 Nov 06.
Article in Chinese | MEDLINE | ID: covidwho-1505483

ABSTRACT

Objective: To investigate the epidemiological characteristics of human coronavirus (HCoV) in hospitalized children with respiratory tract infection in Hebei region, providing evidence for the diagnosis and prevention of children with respiratory tract infection. Methods: A retrospective study was conducted on 1 062 HCoV positive children hospitalized for respiratory tract infection in Children's Hospital of Hebei Province from January 2015 to December 2020, aged from 33 days to 14 years, with a median age of 2 years. 27 932 (60.9%) were males and 17 944(39.1%) were females. And the gender, ages, seasonal distribution, HCoV-positive rates, co-detection distribution and clinical diagnosis of HCoV positive cases were analyzed by SPSS 25.0. Enumeration data were expressed by frequency and percentage; categorical variable were compared by the Pearson χ2test. Results: The overall HCoV-positive rate was 2.31% (1 062/45 876), which was 2.37% (662/27 932) in male children and 2.23% (400/17 944) in female children. There was no statistically significant difference between genders (χ²=0.916, P=0.339). Children at age groups<1 years (2.44%) and 1-<3 years (2.63%) had higher HCoV-positive rates than those at age groups 3-<5 years (1.97%) and ≥5 years (1.38%) (χ²=27.332,P<0.01). The HCoV-positive rates from 2015 to 2018 were 2.13%, 2.45%, 2.28% and 2.23%. The HCoV-positive rate of 2019 (1.71%) was significantly lower than in 2016 (χ²=12.05, P<0.01), 2017 (χ²=7.34, P=0.01) and 2018 (χ²=6.78, P=0.01), but there was no significant difference compared with 2015 (χ²=2.84, P=0.09). The HCoV-positive rate of 2020 (3.37%) was significantly higher than in 2015 (χ²=13.636, P<0.01), 2016 (χ²=11.099, P<0.01), 2017 (χ²=15.482, P<0.01), 2018(χ²=18.601, P<0.01) and 2019(χ²=45.580, P<0.01). The positive rate was highest in spring (March to May) in 2015 and 2017 to 2018. February to April and July to September of 2016 were the peak periods of positive detection. No obvious seasonal change was observed in 2019 and the HCoV-positive rate of 2020 was extremely low from January to July, following significantly increased from August to December. 26.37% (280/1 062) of HCoV were co-detected with other respiratory pathogens and the most frequently identified mixed detection was RSV. Three or more pathogens were detected in 7.34% (78/1 062) of the HCoV-positive samples. Bronchopneumonia and bronchiolitis were more frequently observed in the single HCoV positive (61.89% and 16.75%) children compared to co-detected children(34.29% and 9.64%)(χ²=63.394 and 8.228, P<0.01). However, compared to those with HCoV mono-detection, co-detected children were more likely to have severe pneumonia (4.6% and 47.14%) (χ²=280.171, P<0.01). Conclusions: HCoV is one of the respiratory pathogens in children in Hebei region and more prevalent in spring. The susceptible population of HCoV is mainly children under the age of 3 years old. HCoV often co-detects with other respiratory pathogens, and the co-infection is one of the risk factors of severe pneumonia in children with respiratory infection.


Subject(s)
Coinfection , Coronavirus Infections , Coronavirus , Respiratory Tract Infections , Child , Child, Hospitalized , Child, Preschool , Coronavirus Infections/epidemiology , Female , Humans , Infant , Male , Respiratory Tract Infections/epidemiology , Retrospective Studies , Seasons
17.
BMJ Glob Health ; 6(7)2021 07.
Article in English | MEDLINE | ID: covidwho-1504985

ABSTRACT

INTRODUCTION: The burden of acute lower respiratory infections (ALRI), and common viral ALRI aetiologies among 5-19 years are less well understood. We conducted a systematic review to estimate global burden of all-cause and virus-specific ALRI in 5-19 years. METHODS: We searched eight databases and Google for studies published between 1995 and 2019 and reporting data on burden of all-cause ALRI or ALRI associated with influenza virus, respiratory syncytial virus, human metapneumovirus and human parainfluenza virus. We assessed risk of bias using a modified Newcastle-Ottawa Scale. We developed an analytical framework to report burden by age, country and region when there were sufficient data (all-cause and influenza-associated ALRI hospital admissions). We estimated all-cause ALRI in-hospital deaths and hospital admissions for ALRI associated with respiratory syncytial virus, human metapneumovirus and human parainfluenza virus by region. RESULTS: Globally, an estimated 5.5 million (UR 4.0-7.8) all-cause ALRI hospital admissions occurred annually between 1995 and 2019 in 5-19 year olds, causing 87 900 (UR 40 300-180 600) in-hospital deaths annually. Influenza virus and respiratory syncytial virus were associated with 1 078 600 (UR 4 56 500-2 650 200) and 231 800 (UR 142 700-3 73 200) ALRI hospital admissions in 5-19 years. Human metapneumovirus and human parainfluenza virus were associated with 105 500 (UR 57 200-181 700) and 124 800 (UR 67 300-228 500) ALRI hospital admissions in 5-14 years. About 55% of all-cause ALRI hospital admissions and 63% of influenza-associated ALRI hospital admissions occurred in those 5-9 years globally. All-cause and influenza-associated ALRI hospital admission rates were highest in upper-middle income countries, Asia-Pacific region and the Latin America and Caribbean region. CONCLUSION: Incidence and mortality data for all-cause and virus-specific ALRI in 5-19 year olds are scarce. The lack of data in low-income countries and Eastern Europe and Central Asia, South Asia, and West and Central Africa warrants efforts to improve the development and access to healthcare services, diagnostic capacity, and data reporting.


Subject(s)
Global Health , Respiratory Tract Infections , Adolescent , Child , Hospital Mortality , Hospitalization , Hospitals , Humans , Respiratory Tract Infections/epidemiology
18.
BMJ Glob Health ; 6(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1504055

ABSTRACT

INTRODUCTION: Despite acute respiratory infections (ARIs) being the single largest reason for antibiotic use in under-5 children in Bangladesh, the prevalence of antibiotic use in the community for an ARI episode and factors associated with antibiotic use in this age group are unknown. METHODS: We analysed nationally representative, population-based, household survey data from the Bangladesh Demographic and Health Survey 2014 to determine the prevalence of antibiotic use in the community for ARI in under-5 children. Using a causal graph and multivariable logistical regression, we then identified and determined the sociodemographic and antibiotic source factors significantly associated with the use of antibiotics for an episode of ARI. RESULTS: We analysed data for 2 144 children aged <5 years with symptoms of ARI from 17 300 households. In our sample, 829 children (39%) received antibiotics for their ARI episode (95% CI 35.4% to 42.0%). Under-5 children from rural households were 60% (adjusted OR (aOR): 1.6; 95% CI 1.2 to 2.1) more likely to receive antibiotics compared with those from urban households, largely driven by prescriptions from unqualified or traditional practitioners. Private health facilities were 50% (aOR: 0.5; 95% CI 0.3 to 0.7) less likely to be sources of antibiotics compared with public health facilities and non-governmental organisations. Age of children, sex of children or household wealth had no impact on use of antibiotics. CONCLUSION: In this first nationally representative analysis of antibiotic use in under-5 children in Bangladesh, we found almost 40% of children received antibiotics for an ARI episode. The significant prevalence of antibiotic exposure in under-5 children supports the need for coordinated policy interventions and implementation of clinical practice guidelines at point of care to minimise the adverse effects attributed to antibiotic overuse.


Subject(s)
Anti-Bacterial Agents , Respiratory Tract Infections , Anti-Bacterial Agents/therapeutic use , Bangladesh/epidemiology , Child , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Rural Population
19.
Virol J ; 18(1): 159, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1496199

ABSTRACT

BACKGROUND: The multifaceted non-pharmaceutical interventions (NPIs) taken during the COVID-19 pandemic not only decrease the spreading of the SARS-CoV-2, but have impact on the prevalence of other viruses. This study aimed to explore the prevalence of common respiratory viruses among hospitalized children with lower respiratory tract infections (LRTI) in China during the COVID-19 pandemic. METHODS: Respiratory specimens were obtained from children with LRTI at Children's Hospital of Fudan University for detection of respiratory syncytial virus (RSV), adenovirus (ADV), parainfluenza virus (PIV) 1 to 3, influenza virus A (FluA), influenza virus B (FluB), human metapneumovirus (MPV) and rhinovirus (RV). The data were analyzed and compared between the year of 2020 (COVID-19 pandemic) and 2019 (before COVID-19 pandemic). RESULTS: A total of 7107 patients were enrolled, including 4600 patients in 2019 and 2507 patients in 2020. Compared with 2019, we observed an unprecedented reduction of RSV, ADV, FluA, FluB, and MPV infections in 2020, despite of reopening of schools in June, 2020. However, the RV infection was significantly increased in 2020 and a sharp increase was observed especially after reopening of schools. Besides, the PIV infection showed resurgent characteristic after September of 2020. The mixed infections were significantly less frequent in 2020 compared with the year of 2019. CONCLUSIONS: The NPIs during the COVID-19 pandemic have great impact on the prevalence of common respiratory viruses in China. Meanwhile, we do need to be cautious of a possible resurgence of some respiratory viruses as the COVID-19 restrictions are relaxed.


Subject(s)
COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Age Distribution , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Coinfection/epidemiology , Coinfection/virology , Female , Hospitalization , Hospitals, Pediatric , Humans , Infant , Male , Prevalence , SARS-CoV-2 , Seasons , Viruses/classification , Viruses/isolation & purification
20.
Int J Environ Res Public Health ; 18(8)2021 04 07.
Article in English | MEDLINE | ID: covidwho-1453251

ABSTRACT

In Italy, the influenza season lasts from October until April of the following year. Influenza A and B viruses are the two viral types that cocirculate during seasonal epidemics and are the main causes of respiratory infections. We analyzed influenza A and B viruses in samples from hospitalized patients at Le Scotte University Hospital in Siena (Central Italy). From 2015 to 2020, 182 patients with Severe Acute Respiratory Infections were enrolled. Oropharyngeal swabs were collected from patients and tested by means of reverse transcriptase-polymerase chain reaction to identify influenza A(H3N2), A(H1N1)pdm09 and B. Epidemiological and virological surveillance remain an essential tool for monitoring circulating viruses and possible mismatches with seasonal vaccine strains, and provide information that can be used to improve the composition of influenza vaccines.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Respiratory Tract Infections , Humans , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human/epidemiology , Italy/epidemiology , Respiratory Tract Infections/epidemiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...