Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add filters

Document Type
Year range
1.
Toxins (Basel) ; 12(4)2020 04 02.
Article in English | MEDLINE | ID: covidwho-1453289

ABSTRACT

Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/microbiology , Bacterial Toxins/metabolism , Lung/microbiology , Respiratory Tract Infections/microbiology , Adaptive Immunity , Animals , Bacteria/immunology , Bacteria/metabolism , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Disease Progression , Host-Pathogen Interactions , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/pathology , Signal Transduction
2.
Acta Med Acad ; 49(2): 130-143, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1414828

ABSTRACT

In this review, we discuss the latest developments in research pertaining to virus-induced asthma exacerbations and consider recent advances in treatment options. Asthma is a chronic disease of the airways that continues to impose a substantial clinical burden worldwide. Asthma exacerbations, characterised by an acute deterioration in respiratory symptoms and airflow obstruction, are associated with significant morbidity and mortality. These episodes are most commonly triggered by respiratory virus infections. The mechanisms underlying the pathogenesis of virus-induced exacerbations have been the focus of extensive biomedical research. Developing a robust understanding of the interplay between respiratory viruses and the host immune response will be critical for developing more efficacious, targeted therapies for exacerbations. CONCLUSION: There has been significant recent progress in our understanding of the mechanisms underlying virus-induced airway inflammation in asthma and these advances will underpin the development of future clinical therapies.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Asthma/drug therapy , Respiratory Tract Infections/drug therapy , Virus Diseases/drug therapy , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/physiopathology , Administration, Inhalation , Asthma/immunology , Asthma/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Disease Progression , Humans , Influenza, Human/drug therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Interferon-beta/therapeutic use , Macrolides/therapeutic use , Omalizumab/therapeutic use , Paramyxoviridae Infections/drug therapy , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/physiopathology , Picornaviridae Infections/drug therapy , Picornaviridae Infections/immunology , Picornaviridae Infections/physiopathology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/physiopathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/physiopathology , Virus Diseases/immunology , Virus Diseases/physiopathology
3.
Arch Immunol Ther Exp (Warsz) ; 69(1): 25, 2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1411512

ABSTRACT

The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.


Subject(s)
Antimicrobial Cationic Peptides/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Pandemics , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/therapeutic use , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/immunology , Antiviral Agents/chemical synthesis , Antiviral Agents/immunology , Clinical Trials as Topic , Coronavirus/drug effects , Coronavirus/physiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Immunomodulation , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology
5.
Front Immunol ; 12: 621440, 2021.
Article in English | MEDLINE | ID: covidwho-1305640

ABSTRACT

The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections.


Subject(s)
Down Syndrome/immunology , Immune System/physiology , Orthomyxoviridae/physiology , Respiratory Syncytial Viruses/physiology , Respiratory Tract Infections/immunology , SARS-CoV-2/physiology , Virus Diseases/immunology , Adult , Animals , COVID-19 , Down Syndrome/genetics , Down Syndrome/mortality , Humans , Pneumonia , Respiratory Tract Infections/genetics , Respiratory Tract Infections/mortality , Risk , Virus Diseases/genetics , Virus Diseases/mortality
6.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1299441

ABSTRACT

Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.


Subject(s)
Bacteria/metabolism , Bacterial Outer Membrane/metabolism , Extracellular Vesicles/metabolism , Pneumonia, Bacterial/microbiology , Adaptive Immunity , Animals , Antigens, Bacterial/immunology , Bacteria/immunology , Bacterial Outer Membrane/immunology , Bacterial Vaccines/immunology , Host-Pathogen Interactions/immunology , Humans , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/prevention & control , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Virulence
7.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1280019

ABSTRACT

Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Animals , Humans , SARS-CoV-2/physiology , Species Specificity , Vaccination
8.
Front Immunol ; 12: 660298, 2021.
Article in English | MEDLINE | ID: covidwho-1256379

ABSTRACT

In addition to SARS-CoV-2 and its variants, emerging viruses that cause respiratory viral infections will continue to arise. Increasing evidence suggests a delayed, possibly suppressed, type 1 interferon (IFN-I) response occurs early during COVID-19 and other viral respiratory infections such as SARS and MERS. These observations prompt considering IFN-ß as a prophylactic or early intervention for respiratory viral infections. A rationale for developing and testing intranasal interferon beta (IFN-ß) as an immediately available intervention for new respiratory viral infections that will arise unexpectedly in the future is presented and supported by basic and clinical trial observations. IFN-ß prophylaxis could limit the spread and consequences of an emerging respiratory viral infection in at-risk individuals while specific vaccines are being developed.


Subject(s)
Interferon Type I/administration & dosage , Pre-Exposure Prophylaxis , Respiratory Tract Infections/prevention & control , Virus Diseases/prevention & control , Administration, Intranasal , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , Severity of Illness Index , Virus Diseases/drug therapy , Virus Diseases/immunology
9.
Annu Rev Virol ; 8(1): 393-414, 2021 09 29.
Article in English | MEDLINE | ID: covidwho-1255635

ABSTRACT

Biological sex affects the outcome of diverse respiratory viral infections. The pathogenesis of respiratory infections caused by viruses ranging from respiratory syncytial virus to influenza viruses and severe acute respiratory syndrome coronavirus 2 differs between the sexes across the life course. Generally, males are more susceptible to severe outcomes from respiratory viral infections at younger and older ages. During reproductive years (i.e., after puberty and prior to menopause), females are often at greater risk than males for severe outcomes. Pregnancy and biological sex affect the pathogenesis of respiratory viral infections. In addition to sex differences in the pathogenesis of disease, there are consistent sex differences in responses to treatments, with females often developing greater immune responses but experiencing more adverse reactions than males. Animal models provide mechanistic insights into the causes of sex differences in respiratory virus pathogenesis and treatment outcomes, where available.


Subject(s)
Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/therapy , Virus Physiological Phenomena , Age Factors , Animals , Female , Humans , Male , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Severity of Illness Index , Sex Characteristics , Sex Factors , Viruses/classification
10.
Curr Opin Virol ; 49: 21-26, 2021 08.
Article in English | MEDLINE | ID: covidwho-1198681

ABSTRACT

Impacts of respiratory tract viruses have long been appreciated to highly heterogeneous both between and within various populations. The SARS-CoV-2 pandemic, which is the first time that a pathogen's spread across the globe has been extensively monitored by direct detection of the pathogen itself rather just than the morbidity left in its wake, indicates such heterogeneity is not limited to outcomes of infections but whether infection of a particular host occurs at all. This suggests an important role for yet to be discovered environmental (i.e. non-genetic) factors that influence whether an exposure to the virus initiates a productive infection and, moreover, the severity of disease that results. This article discusses the emerging hypothesis that the composition of a host's commensal microbial communities, that is, its 'microbiome', may be one such determinant that influences outcomes following encounters with respiratory viral pathogens in general and SARS-CoV-2 in particular. Specifically, we will review the rationales and evidence that supports this hypothesis and, moreover, speculate as to possible approaches to manipulate microbiota to ameliorate disease induced by respiratory viral pathogens.


Subject(s)
COVID-19/microbiology , COVID-19/therapy , Microbiota/physiology , Adaptive Immunity , COVID-19/epidemiology , COVID-19/immunology , Gastrointestinal Microbiome , Host-Pathogen Interactions , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/virology , Microbial Interactions , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2
11.
Recent Pat Biotechnol ; 15(2): 112-136, 2021 Oct 04.
Article in English | MEDLINE | ID: covidwho-1194530

ABSTRACT

BACKGROUND: Viral respiratory infections could result in perturbation of the gut microbiota due to a probable cross-talk between lungs and gut microbiota. This can affect pulmonary health and the gastrointestinal system. OBJECTIVE: This review aimed to discuss the impact of probiotics/prebiotics and supplements on the prevention and treatment of respiratory infections, especially emerging pathogens. METHODS: The data were searched in PubMed, Scopus, Google Scholar, Google Patents, and The Lens-Patent using keywords of probiotics and viral respiratory infections in the title, abstract, and keywords. RESULTS: Probiotics consumption could decrease the susceptibility to viral respiratory infections, such as COVID-19 and simultaneously enhance vaccine efficiency in infectious disease prevention through the immune system enhancement. Probiotics improve the gut microbiota and the immune system via regulating the innate system response and production of anti-inflammatory cytokines. Moreover, treatment with probiotics contributes to intestinal homeostasis restitution under antibiotic pressure and decreasing the risk of secondary infections due to viral respiratory infections. Probiotics present varied performances in different conditions; thus, promoting their efficacy through combining with supplements (prebiotics, postbiotics, nutraceuticals, berberine, curcumin, lactoferrin, minerals, and vitamins) is important. Several supplements reported to enhance the probiotics' efficacy and their mechanisms as well as probiotics- related patents are summarized in this review. Using nanotechnology and microencapsulation techniques can also improve probiotics' efficiency. CONCLUSION: Given the global challenge of COVID-19, probiotic/prebiotic and following nutritional guidelines should be regarded seriously. Additionally, their role as an adjuvant in vaccination for immune response augmentation needs attention.


Subject(s)
Prebiotics , Probiotics , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control , Adjuvants, Immunologic , COVID-19/drug therapy , COVID-19/immunology , COVID-19/microbiology , COVID-19/prevention & control , Dietary Supplements , Gastrointestinal Microbiome , Humans , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , SARS-CoV-2
12.
Front Immunol ; 12: 634181, 2021.
Article in English | MEDLINE | ID: covidwho-1177976

ABSTRACT

Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.


Subject(s)
Bacterial Infections/immunology , Immunocompromised Host , Immunoglobulins/deficiency , Primary Immunodeficiency Diseases/immunology , Respiratory Tract Infections/immunology , Agammaglobulinemia/blood , Agammaglobulinemia/immunology , Agammaglobulinemia/therapy , Animals , Bacterial Infections/blood , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Class I Phosphatidylinositol 3-Kinases/blood , Class I Phosphatidylinositol 3-Kinases/immunology , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/therapy , Humans , Immunoglobulins/blood , Primary Immunodeficiency Diseases/blood , Primary Immunodeficiency Diseases/therapy , Prognosis , Respiratory Tract Infections/blood , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Risk Assessment , Risk Factors
13.
Nat Rev Microbiol ; 19(7): 425-441, 2021 07.
Article in English | MEDLINE | ID: covidwho-1171552

ABSTRACT

Influenza viruses cause annual epidemics and occasional pandemics of respiratory tract infections that produce a wide spectrum of clinical disease severity in humans. The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has since caused a pandemic. Both viral and host factors determine the extent and severity of virus-induced lung damage. The host's response to viral infection is necessary for viral clearance but may be deleterious and contribute to severe disease phenotypes. Similarly, tissue repair mechanisms are required for recovery from infection across the spectrum of disease severity; however, dysregulated repair responses may lead to chronic lung dysfunction. Understanding of the mechanisms of immunopathology and tissue repair following viral lower respiratory tract infection may broaden treatment options. In this Review, we discuss the pathogenesis, the contribution of the host response to severe clinical phenotypes and highlight early and late epithelial repair mechanisms following influenza virus infection, each of which has been well characterized. Although we are still learning about SARS-CoV-2 and its disease manifestations in humans, throughout the Review we discuss what is known about SARS-CoV-2 in the context of this broad knowledge of influenza virus, highlighting the similarities and differences between the respiratory viruses.


Subject(s)
COVID-19/virology , Influenza, Human/virology , Orthomyxoviridae/physiology , Respiratory System/virology , Respiratory Tract Infections/virology , SARS-CoV-2/physiology , COVID-19/immunology , Humans , Influenza, Human/immunology , Respiratory Tract Infections/immunology
15.
Gene ; 783: 145574, 2021 May 30.
Article in English | MEDLINE | ID: covidwho-1135333

ABSTRACT

Epidemiological and clinical evidence suggests that Bacille Calmette-Guérin (BCG) vaccine induced trained immunity protects against non-specific infections. Multiple clinical trials are currently underway to assess effectiveness of the vaccine in the coronavirus disease 2019 (COVID-19). However, the durability and mechanism of BCG trained immunity remain unclear. Here, an integrative analysis of available epidemiological transcriptomic data related to BCG vaccination and respiratory tract viral infections as well as of reported transcriptomic alterations in COVID-19 is presented toward addressing this gap. Results suggest that the vaccine induces very long-lasting transcriptomic changes that mimic viral infections by, consistent with the present concept of trained immunity, upregulation of antiviral defense response, and oppose viral infections by, inconsistent with the concept, downregulation of myeloid cell activation. These durability and mechanistic insights argue against possible indiscriminate use of the vaccine and activated innate immune response associated safety concerns in COVID-19, in that order.


Subject(s)
Antiviral Agents/therapeutic use , BCG Vaccine/therapeutic use , COVID-19/drug therapy , Virus Diseases/drug therapy , Adult , BCG Vaccine/immunology , COVID-19/epidemiology , COVID-19/immunology , Child , Datasets as Topic , Gene Expression Profiling , Humans , Immunity, Innate/drug effects , Infant , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , Transcriptome , Virus Diseases/immunology
16.
Int J Infect Dis ; 105: 91-104, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1120841

ABSTRACT

To evaluate the effects of probiotics on respiratory tract infection (RTI) a systematic review of randomized controlled trials (RCTs) from January 2010 to January 2020 was conducted. The PubMed, Google Scholar, Embase, Scopus, Clinicaltrials.gov, and International Clinical Trials Registry Platform databases were systematically searched for the following keywords: respiratory tract infection, probiotics, viral infection, COVID-19, and clinical trial. A total of 27 clinical trials conducted on 9433 patients with RTI plus 10 ongoing clinical studies of probiotics intervention in Coronavirus disease 2019 (COVID-19) were reviewed. The review looked at the potency of probiotics for the hindrance and/or treatment of RTI diseases, this may also apply to COVID-19. The review found that probiotics could significantly increase the plasma levels of cytokines, the effect of influenza vaccine and quality of life, as well as reducing the titer of viruses and the incidence and duration of respiratory infections. These antiviral and immune-modulating activities and their ability to stimulate interferon production recommend the use of probiotics as an adjunctive therapy to prevent COVID-19. Based on this extensive review of RCTs we suggest that probiotics are a rational complementary treatment for RTI diseases and a viable option to support faster recovery.


Subject(s)
COVID-19/prevention & control , Probiotics/therapeutic use , Respiratory Tract Infections/drug therapy , SARS-CoV-2 , Humans , Respiratory Tract Infections/immunology
17.
Int Immunopharmacol ; 92: 107365, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1014567

ABSTRACT

Emerging beta-coronaviruses (ß-CoVs), including Severe Acute Respiratory Syndrome CoV-1 (SARS-CoV-1), Middle East Respiratory Syndrome-CoV (MERS-CoV), and Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2, the cause of COVID19) are responsible for acute respiratory illnesses in human. The epidemiological features of the SARS, MERS, and new COVID-19 have revealed sex-dependent variations in the infection, frequency, treatment, and fatality rates of these syndromes. Females are likely less susceptible to viral infections, perhaps due to their steroid hormone levels, the impact of X-linked genes, and the sex-based immune responses. Although mostly inactive, the X chromosome makes the female's immune system more robust. The extra immune-regulatory genes of the X chromosome are associated with lower levels of viral load and decreased infection rate. Moreover, a higher titer of the antibodies and their longer blood circulation half-life are involved in a more durable immune protection in females. The activation rate of the immune cells and the production of TLR7 and IFN are more prominent in females. Although the bi-allelic expression of the immune regulatory genes can sometimes lead to autoimmune reactions, the higher titer of TLR7 in females is further associated with a stronger anti-viral immune response. Considering these sex-related differences and the similarities between the SARS, MERS, and COVID-19, we will discuss them in immune responses against the ß-CoVs-associated syndromes. We aim to provide information on sex-based disease susceptibility and response. A better understanding of the evasion strategies of pathogens and the host immune responses can provide worthful insights into immunotherapy, and vaccine development approaches.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Female , Humans , Male , Respiratory Tract Infections/drug therapy , Sex Factors
18.
JAMA Dermatol ; 156(12): 1333-1343, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1008230

ABSTRACT

Importance: Baricitinib, an oral selective Janus kinase 1 and 2 inhibitor, effectively reduced disease severity in moderate to severe atopic dermatitis (AD) in 2 phase 3 monotherapy studies. Objective: To assess the efficacy and safety of 4 mg and 2 mg of baricitinib in combination with background topical corticosteroid (TCS) therapy in adults with moderate to severe AD who previously had an inadequate response to TCS therapy. Design, Setting, and Participants: This double-blind, placebo-controlled, phase 3 randomized clinical trial, BREEZE-AD7 (Study of Baricitinib [LY3009104] in Combination With Topical Corticosteroids in Adults With Moderate to Severe Atopic Dermatitis) was conducted from November 16, 2018, to August 22, 2019, at 68 centers across 10 countries in Asia, Australia, Europe, and South America. Patients 18 years or older with moderate to severe AD and an inadequate response to TCSs were included. After completing the study, patients were followed up for up to 4 weeks or enrolled in a long-term extension study. Interventions: Patients were randomly assigned (1:1:1) to receive 2 mg of baricitinib once daily (n = 109), 4 mg of baricitinib once daily (n = 111), or placebo (n = 109) for 16 weeks. The use of low-to-moderate potency TCSs was allowed. Main Outcomes and Measures: The primary end point was the proportion of patients achieving a validated Investigator Global Assessment for Atopic Dermatitis (vIGA-AD) score of 0 (clear) or 1 (almost clear), with a 2-point or greater improvement from baseline at week 16. Results: Among 329 patients (mean [SD] age, 33.8 [12.4] years; 216 [66%] male), at week 16, a vIGA-AD score of 0 (clear) or 1 (almost clear) was achieved by 34 patients (31%) receiving 4 mg of baricitinib and 26 (24%) receiving 2 mg of baricitinib compared with 16 (15%) receiving placebo (odds ratio vs placebo, 2.8 [95% CI, 1.4-5.6]; P = .004 for the 4-mg group; 1.9 [95% CI, 0.9-3.9]; P = .08 for the 2-mg group). Treatment-emergent adverse events were reported in 64 of 111 patients (58%) in the 4-mg group, 61 of 109 patients (56%) in the 2-mg group, and 41 of 108 patients (38%) in the placebo group. Serious adverse events were reported in 4 patients (4%) in the 4-mg group, 2 (2%) in the 2-mg group, and 4 (4%) in the placebo group. The most common adverse events were nasopharyngitis, upper respiratory tract infections, and folliculitis. Conclusions and Relevance: A dose of 4 mg of baricitinib in combination with background TCS therapy significantly improved the signs and symptoms of moderate to severe AD, with a safety profile consistent with previous studies of baricitinib in AD. Trial Registration: ClinicalTrials.gov Identifier: NCT03733301.


Subject(s)
Azetidines/administration & dosage , Dermatitis, Atopic/drug therapy , Glucocorticoids/administration & dosage , Purines/administration & dosage , Pyrazoles/administration & dosage , Sulfonamides/administration & dosage , Administration, Cutaneous , Administration, Oral , Adult , Azetidines/adverse effects , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/immunology , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Female , Folliculitis/chemically induced , Folliculitis/epidemiology , Folliculitis/immunology , Glucocorticoids/adverse effects , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Male , Middle Aged , Nasopharyngitis/chemically induced , Nasopharyngitis/epidemiology , Nasopharyngitis/immunology , Purines/adverse effects , Pyrazoles/adverse effects , Respiratory Tract Infections/chemically induced , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Severity of Illness Index , Signal Transduction/drug effects , Signal Transduction/immunology , Sulfonamides/adverse effects , Young Adult
19.
Curr Sports Med Rep ; 19(9): 341-342, 2020 09.
Article in English | MEDLINE | ID: covidwho-1004385
20.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983191

ABSTRACT

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


Subject(s)
Coronavirus Infections/therapy , Influenza, Human/therapy , Mental Disorders/therapy , Multiple Sclerosis/therapy , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Respiratory Tract Infections/therapy , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Brain/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immunomodulation , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology , Lung/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Microbial Consortia/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Symbiosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...