Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
2.
J Clin Virol ; 156: 105274, 2022 11.
Article in English | MEDLINE | ID: covidwho-2004205

ABSTRACT

BACKGROUND: Acute viral respiratory infections are a major health burden in children worldwide. In recent years, rapid and sensitive multiplex nucleic acid amplification tests (NAATs) have replaced conventional methods for routine virus detection in the clinical laboratory. OBJECTIVE/STUDY DESIGN: We compared BioFire® FilmArray® Respiratory Panel (FilmArray V1.7), Luminex NxTag® Respiratory Pathogen Panel (NxTag RPP) and Applied Biosystems TaqMan Array Card (TAC) for the detection of eight viruses in pediatric respiratory specimens. Results from the three platforms were analyzed with a single-plex real-time RT-PCR (rRT-PCR) assay for each virus. RESULTS: Of the 170/210 single-plex virus-positive samples, FilmArray detected a virus in 166 (97.6%), TAC in 163 (95.8%) and NxTag RPP in 160 (94.1%) samples. The Positive Percent Agreement (PPA) of FilmArray, NxTag RPP and TAC was highest for influenza B (100%, 100% and 95.2% respectively) and lowest for seasonal coronaviruses on both FilmArray (90.2%) and NxTag RPP (81.8%), and for parainfluenza viruses 1- 4 on TAC (84%). The Negative Percent Agreement (NPA) was lowest for rhinovirus/enterovirus (92.9%, 96.7% and 97.3%) on FilmArray, NxTag RPP and TAC respectively. NPA for all three platforms was highest (100%) for both parainfluenza viruses 1- 4 and influenza A and B, and 100% for human metapneumovirus with TAC as well. CONCLUSION: All three multiplex platforms displayed high overall agreement (>90%) and high NPA (>90%), while PPA was pathogen dependent and varied among platforms; high PPA (>90%) was observed for FilmArray for all eight viruses, TAC for six viruses and NxTag RPP for 4 viruses.


Subject(s)
Molecular Diagnostic Techniques , Respiratory Tract Infections , Virus Diseases , Child , Coronavirus , Humans , Influenza, Human , Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Paramyxoviridae Infections , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Virus Diseases/diagnosis
3.
Sci Immunol ; 7(73): eabm7996, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1949936

ABSTRACT

The acute effects of various respiratory viral infections have been well studied, with extensive characterization of the clinical presentation as well as viral pathogenesis and host responses. However, over the course of the recent COVID-19 pandemic, the incidence and prevalence of chronic sequelae after acute viral infections have become increasingly appreciated as a serious health concern. Post-acute sequelae of COVID-19, alternatively described as "long COVID-19," are characterized by symptoms that persist for longer than 28 days after recovery from acute illness. Although there exists substantial heterogeneity in the nature of the observed sequelae, this phenomenon has also been observed in the context of other respiratory viral infections including influenza virus, respiratory syncytial virus, rhinovirus, severe acute respiratory syndrome coronavirus, and Middle Eastern respiratory syndrome coronavirus. In this Review, we discuss the various sequelae observed following important human respiratory viral pathogens and our current understanding of the immunological mechanisms underlying the failure of restoration of homeostasis in the lung.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , COVID-19/complications , COVID-19/immunology , Coronavirus , Humans , Pandemics , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Virus Diseases/complications , Virus Diseases/immunology
4.
J Clin Virol ; 153: 105221, 2022 08.
Article in English | MEDLINE | ID: covidwho-1907271

ABSTRACT

OBJECTIVES: Viral respiratory infections are common in children, and usually associated with non-specific symptoms. Respiratory panel-based testing was implemented during the COVID-19 pandemic, for the rapid differentiation between SARS-CoV-2 and other viral infections, in children attending the emergency department (ED) of the teaching hospital of Lille, northern France, between February 2021 and January 2022. METHODS: Samples were collected using nasopharyngeal swabs. Syndromic respiratory testing was performed with two rapid multiplex molecular assays: the BioFire® Respiratory Panel 2.1 - plus (RP2.1 plus) or the QIAstat-Dx Respiratory SARS-CoV-2 Panel. SARS-CoV-2 variant was screened using mutation-specific PCR-based assays and genome sequencing. RESULTS: A total of 3517 children were included in the study. SARS-CoV-2 was detected in samples from 265 children (7.5%). SARS-CoV-2 infected patients were younger than those without SARS-CoV-2 infection (median age: 6 versus 12 months, p < 0.0001). The majority of infections (61.5%) were associated with the Omicron variant. The median weekly SARS-CoV-2 positivity rate ranged from 1.76% during the Alpha variant wave to 24.5% with the emergence of the Omicron variant. Most children (70.2%) were treated as outpatients, and seventeen patients were admitted to the intensive care unit. Other respiratory viruses were more frequently detected in SARS-CoV-2 negative children than in positive ones (82.1% versus 37.4%, p < 0.0001). Human rhinovirus/enterovirus and respiratory syncytial virus were the most prevalent in both groups. CONCLUSIONS: We observed a low prevalence of SARS-CoV-2 infection in children attending pediatric ED, despite the significant increase due to Delta and Omicron variants, and an important circulation of other respiratory viruses. Severe disease was overall rare in children.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , COVID-19/diagnosis , COVID-19/epidemiology , Emergency Service, Hospital , France , Humans , Infant , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2 , Virus Diseases/diagnosis
5.
PLoS One ; 17(3): e0264855, 2022.
Article in English | MEDLINE | ID: covidwho-1896450

ABSTRACT

Since December 2019 the world has been facing the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Identification of infected patients and discrimination from other respiratory infections have so far been accomplished by using highly specific real-time PCRs. Here we present a rapid multiplex approach (RespiCoV), combining highly multiplexed PCRs and MinION sequencing suitable for the simultaneous screening for 41 viral and five bacterial agents related to respiratory tract infections, including the human coronaviruses NL63, HKU1, OC43, 229E, Middle East respiratory syndrome coronavirus, SARS-CoV, and SARS-CoV-2. RespiCoV was applied to 150 patient samples with suspected SARS-CoV-2 infection and compared with specific real-time PCR. Additionally, several respiratory tract pathogens were identified in samples tested positive or negative for SARS-CoV-2. Finally, RespiCoV was experimentally compared to the commercial RespiFinder 2SMART multiplex screening assay (PathoFinder, The Netherlands).


Subject(s)
Bacteria/genetics , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA Viruses/genetics , Respiratory Tract Infections/diagnosis , SARS-CoV-2/genetics , Bacteria/isolation & purification , COVID-19/virology , Coronavirus/genetics , Coronavirus/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Humans , Multiplex Polymerase Chain Reaction , Nanopores , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA Viruses/isolation & purification , RNA, Viral/chemistry , RNA, Viral/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification
6.
J Infect Dev Ctries ; 16(5): 857-863, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1879506

ABSTRACT

INTRODUCTION: Viruses are responsible for two-thirds of all acute respiratory tract infections. This study aims to retrospectively detect respiratory tract viruses in patients from all age groups who visited the hospital. METHODOLOGY: A total of 1592 samples from 1416 patients with respiratory tract symptoms were sent from several clinics to the Molecular Microbiology Laboratory at Gazi University Hospital from February 2016 to January 2019. Nucleic acid extraction from nasopharyngeal swabs, throat swabs or bronchoalveolar lavage (BAL) samples sent to our laboratory was done using a commercial automated system. Extracted nucleic acids were amplified by a commercial multiplex-real time Polymerase Chain Reaction (PCR) method, which can detect 18 viral respiratory pathogens. RESULTS: Among 1592 samples, 914 (57.4%) were positive for respiratory viruses. The most prevalent were rhinovirus (25.2%) and influenza A virus (12.1%), the least prevalent was the bocavirus (2.6%). Rhinovirus was the most detected as a single agent (21.2%, 194/914) among all positive cases, followed by coronavirus (9.3%, 85/914). The detection rates of coronavirus, human adenovirus, respiratory syncytial virus A/B, human parainfluenza viruses, human metapneumovirus-A/B, human parechovirus, enterovirus and influenza B virus were 9.9%, 8%, 7.7%, 5%, 3.4%, 3.1%, 3%, and 2.8%, respectively. CONCLUSIONS: The most detected viral agents in our study were influenza A virus and rhinovirus. Laboratory diagnosis of respiratory viruses is helpful to prevent unnecessary antibiotic use and is essential in routine diagnostics for antiviral treatment. Multiplex Real-time PCR method is fast and useful for the diagnosis of viral respiratory infections.


Subject(s)
Coronavirus Infections , Enterovirus Infections , Influenza, Human , Picornaviridae Infections , Respiratory Tract Infections , Coronavirus , Coronavirus Infections/epidemiology , Enterovirus Infections/epidemiology , Hospitals, University , Humans , Influenza A virus , Influenza, Human/epidemiology , Picornaviridae Infections/epidemiology , Respiratory Syncytial Viruses , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Retrospective Studies , Turkey/epidemiology
7.
Antimicrob Resist Infect Control ; 11(1): 74, 2022 05 21.
Article in English | MEDLINE | ID: covidwho-1862157

ABSTRACT

BACKGROUND: Patients hospitalised for COVID-19 may present with or acquire bacterial or fungal infections that can affect the course of the disease. The aim of this study was to describe the microbiological characteristics of laboratory-confirmed infections in hospitalised patients with severe COVID-19. METHODS: We reviewed the hospital charts of a sample of patients deceased with COVID-19 from the Italian National COVID-19 Surveillance, who had laboratory-confirmed bacterial or fungal bloodstream infections (BSI) or lower respiratory tract infections (LRTI), evaluating the pathogens responsible for the infections and their antimicrobial susceptibility. RESULTS: Among 157 patients with infections hospitalised from February 2020 to April 2021, 28 (17.8%) had co-infections (≤ 48 h from admission) and 138 (87.9%) had secondary infections (> 48 h). Most infections were bacterial; LRTI were more frequent than BSI. The most common co-infection was pneumococcal LRTI. In secondary infections, Enterococci were the most frequently recovered pathogens in BSI (21.7% of patients), followed by Enterobacterales, mainly K. pneumoniae, while LRTI were mostly associated with Gram-negative bacteria, firstly Enterobacterales (27.4% of patients, K. pneumoniae 15.3%), followed by A. baumannii (19.1%). Fungal infections, both BSI and LRTI, were mostly due to C. albicans. Antibiotic resistance rates were extremely high in Gram-negative bacteria, with almost all A. baumannii isolates resistant to carbapenems (95.5%), and K. pneumoniae and P. aeruginosa showing carbapenem resistance rates of 59.5% and 34.6%, respectively. CONCLUSIONS: In hospitalised patients with severe COVID-19, secondary infections are considerably more common than co-infections, and are mostly due to Gram-negative bacterial pathogens showing a very high rate of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Bacteremia , COVID-19 , Coinfection , Drug Resistance, Microbial , Fungemia , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/complications , Bacteremia/drug therapy , Bacteremia/microbiology , COVID-19/complications , Coinfection/drug therapy , Coinfection/epidemiology , Coinfection/microbiology , Fungemia/complications , Fungemia/drug therapy , Fungemia/microbiology , Hospitalization/statistics & numerical data , Humans , Italy/epidemiology , Population Surveillance , Respiratory Tract Infections/complications , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology
9.
Virol J ; 18(1): 174, 2021 08 23.
Article in English | MEDLINE | ID: covidwho-1770553

ABSTRACT

BACKGROUND: Human rhinovirus (HRV) is one of the major viruses of acute respiratory tract disease among infants and young children. This work aimed to understand the epidemiological and phylogenetic features of HRV in Guangzhou, China. In addition, the clinical characteristics of hospitalized children infected with different subtype of HRV was investigated. METHODS: Hospitalized children aged < 14 years old with acute respiratory tract infections were enrolled from August 2018 to December 2019. HRV was screened for by a real-time reverse-transcription PCR targeting the viral 5'UTR. RESULTS: HRV was detected in 6.41% of the 655 specimens. HRV infection was frequently observed in children under 2 years old (57.13%). HRV-A and HRV-C were detected in 18 (45%) and 22 (55%) specimens. All 40 HRV strains detected were classified into 29 genotypes. The molecular evolutionary rate of HRV-C was estimated to be 3.34 × 10-3 substitutions/site/year and was faster than HRV-A (7.79 × 10-4 substitutions/site/year). Children who experienced rhinorrhoea were more common in the HRV-C infection patients than HRV-A. The viral load was higher in HRV-C detection group than HRV-A detection group (p = 0.0148). The median peak symptom score was higher in patients with HRV-C infection as compared to HRV-A (p = 0.0543), even though the difference did not significance. CONCLUSION: This study revealed the molecular epidemiological characteristics of HRV in patients with respiratory infections in southern China. Children infected with HRV-C caused more severe disease characteristics than HRV-A, which might be connected with higher viral load in patients infected with HRV-C. These findings will provide valuable information for the pathogenic mechanism and treatment of HRV infection.


Subject(s)
Picornaviridae Infections , Respiratory Tract Infections , Rhinovirus , Adolescent , Child , Child, Preschool , China/epidemiology , Enterovirus , Genetic Variation , Humans , Infant , Phylogeny , Picornaviridae Infections/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rhinovirus/genetics
10.
Semin Respir Crit Care Med ; 42(6): 747-758, 2021 12.
Article in English | MEDLINE | ID: covidwho-1768957

ABSTRACT

Respiratory tract infection is one of the most common diseases in human worldwide. Many viruses are implicated in these infections, including emerging viruses, such as the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Identification of the causative viral pathogens of respiratory tract infections is important to select a correct management of patients, choose an appropriate treatment, and avoid unnecessary antibiotics use. Different diagnostic approaches present variable performance in terms of accuracy, sensitivity, specificity, and time-to-result, that have to be acknowledged to be able to choose the right diagnostic test at the right time, in the right patient. This review describes currently available rapid diagnostic strategies and syndromic approaches for the detection of viruses commonly responsible for respiratory diseases.


Subject(s)
Early Diagnosis , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , COVID-19/diagnosis , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Time Factors
11.
PLoS One ; 17(3): e0264949, 2022.
Article in English | MEDLINE | ID: covidwho-1742012

ABSTRACT

BACKGROUND: In the context of COVID-19 pandemic in Catalonia (Spain), the present study analyses respiratory samples collected by the primary care network using Acute Respiratory Infections Sentinel Surveillance System (PIDIRAC) during the 2019-2020 season to complement the pandemic surveillance system in place to detect SARS-CoV-2. The aim of the study is to describe whether SARS-CoV-2 was circulating before the first confirmed case was detected in Catalonia, on February 25th, 2020. METHODS: The study sample was made up of all samples collected by the PIDIRAC primary care network as part of the Influenza and Acute Respiratory Infections (ARI) surveillance system activities. The study on respiratory virus included coronavirus using multiple RT-PCR assays. All positive samples for human coronavirus were subsequently typed for HKU1, OC43, NL63, 229E. Every respiratory sample was frozen at-80°C and retrospectively studied for SARS-CoV-2 detection. A descriptive study was performed, analysing significant differences among variables related to SARS-CoV- 2 cases comparing with rest of coronaviruses cases through a bivariate study with Chi-squared test and statistical significance at 95%. RESULTS: Between October 2019 and April 2020, 878 respiratory samples from patients with acute respiratory infection or influenza syndrome obtained by PIDIRAC were analysed. 51.9% tested positive for influenza virus, 48.1% for other respiratory viruses. SARS-CoV-2 was present in 6 samples. The first positive SARS-CoV-2 case had symptom onset on 2 March 2020. These 6 cases were 3 men and 3 women, aged between 25 and 50 years old. 67% had risk factors, none had previous travel history nor presented viral coinfection. All of them recovered favourably. CONCLUSION: Sentinel Surveillance PIDIRAC enhances global epidemiological surveillance by allowing confirmation of viral circulation and describes the epidemiology of generalized community respiratory viruses' transmission in Catalonia. The system can provide an alert signal when identification of a virus is not achieved in order to take adequate preparedness measures.


Subject(s)
COVID-19/diagnosis , Coronavirus/classification , Orthomyxoviridae/classification , RNA, Viral/genetics , Respiratory Tract Infections/virology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Child, Preschool , Coronavirus/genetics , Coronavirus/isolation & purification , Female , Humans , Infant , Male , Middle Aged , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , Primary Health Care , Retrospective Studies , Sentinel Surveillance , Spain/epidemiology , Young Adult
12.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1726022

ABSTRACT

There is currently debate about human coronavirus (HCoV) seasonality and pathogenicity, as epidemiological data are scarce. Here, we provide epidemiological and clinical features of HCoV patients with acute respiratory infection (ARI) examined in primary care general practice. We also describe HCoV seasonality over six influenza surveillance seasons (week 40 to 15 of each season) from the period 2014/2015 to 2019/2020 in Corsica (France). A sample of patients of all ages presenting for consultation for influenza-like illness (ILI) or ARI was included by physicians of the French Sentinelles Network during this period. Nasopharyngeal samples were tested for the presence of 21 respiratory pathogens by real-time RT-PCR. Among the 1389 ILI/ARI patients, 105 were positive for at least one HCoV (7.5%). On an annual basis, HCoVs circulated from week 48 (November) to weeks 14-15 (May) and peaked in week 6 (February). Overall, among the HCoV-positive patients detected in this study, HCoV-OC43 was the most commonly detected virus, followed by HCoV-NL63, HCoV-HKU1, and HCoV-229E. The HCoV detection rates varied significantly with age (p = 0.00005), with the age group 0-14 years accounting for 28.6% (n = 30) of HCoV-positive patients. Fever and malaise were less frequent in HCoV patients than in influenza patients, while sore throat, dyspnoea, rhinorrhoea, and conjunctivitis were more associated with HCoV positivity. In conclusion, this study demonstrates that HCoV subtypes appear in ARI/ILI patients seen in general practice, with characteristic outbreak patterns primarily in winter. This study also identified symptoms associated with HCoVs in patients with ARI/ILI. Further studies with representative samples should be conducted to provide additional insights into the epidemiology and clinical features of HCoVs.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Respiratory Tract Infections/epidemiology , Adolescent , Adult , Aged , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Female , Humans , Infant , Infant, Newborn , Influenza, Human/epidemiology , Male , Middle Aged , Nasopharynx/virology , Primary Health Care , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2 , Seasons , Young Adult
13.
J Med Virol ; 94(4): 1450-1456, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718389

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is an overwhelming crisis across the world. Human Coronavirus OC43 (HCoV-OC43) is a Betacoronavirus responsible mostly for mild respiratory symptoms. Since the presentations of HCoV-OC43 and severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) are believed to resemble a lot, the aim of this study was to evaluate the frequency and characteristics of HCoV-OC43 in the current pandemic and the rate of coinfection for the two viruses. One hundred and seventeen patients referred to Children's Medical Center, Tehran, Iran with respiratory symptoms were included. Real-time reverse transcription-polymerase chain reaction (RT-PCR) methods were performed for the detection of HCoV-OC43 and SARS-COV-2. Totally, 23 (20%) had a positive RT-PCR for HCoV-OC43 and 25 (21%) were positive for SARS-COV-2. Two patients (2%) had a positive PCR for both HCoV-OC43 and SARS-COV-2. The two groups showed significant differences in having contact with family members with suspected or confirmed COVID-19 (p = 0.017), fever (p = 0.02), edema (p = 0.036), vomiting (p < 0.001), abdominal complaints (p = 0.005), and myalgia (p = 0.02). The median level of lymphocyte count in patients with HCoV-OC43 was significantly lower than patients with SARS-COV-2 infection (p = 0.039). The same frequency of SARS-COV-2 and HCoV-OC43 was found in children with respiratory symptoms during the COVID-19 pandemic. The rate of coinfection of SARS-COV-2 with HCoV-OC43 in our study was 0.08. Further research into the cocirculation of endemic coronaviruses, such as HCoV-OC43 and SARS-CoV2, in different regions, is highly recommended. Attempts to determine the geographic distribution and recruit more flexible test panel designs are also highly recommended.


Subject(s)
COVID-19/diagnosis , Coronavirus OC43, Human/genetics , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , Child , Child, Preschool , Female , Humans , Infant , Iran , Male , Reverse Transcriptase Polymerase Chain Reaction/methods
14.
Semin Respir Crit Care Med ; 43(1): 60-74, 2022 02.
Article in English | MEDLINE | ID: covidwho-1688937

ABSTRACT

Severe viral infections may result in severe illnesses capable of causing acute respiratory failure that could progress rapidly to acute respiratory distress syndrome (ARDS), related to worse outcomes, especially in individuals with a higher risk of infection, including the elderly and those with comorbidities such as asthma, diabetes mellitus and chronic respiratory or cardiovascular disease. In addition, in cases of severe viral pneumonia, co-infection with bacteria such as Streptococcus pneumoniae and Staphylococcus aureus is related to worse outcomes. Respiratory viruses like influenza, rhinovirus, parainfluenza, adenovirus, metapneumovirus, respiratory syncytial virus, and coronavirus have increasingly been detected. This trend has become more prevalent, especially in critically ill patients, due to the availability and implementation of molecular assays in clinical practice. Respiratory viruses have been diagnosed as a frequent cause of severe pneumonia, including cases of community-acquired pneumonia, hospital-acquired pneumonia, and ventilator-associated pneumonia. In this review, we will discuss the epidemiology, diagnosis, clinical characteristics, management, and prognosis of patients with severe infections due to respiratory viruses, with a focus on influenza viruses, non-influenza viruses, and coronaviruses.


Subject(s)
Respiratory Tract Infections , Virus Diseases , Aged , Coronavirus , Humans , Patient Acuity , Prognosis , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/therapy , Respiratory Tract Infections/virology , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Virus Diseases/therapy
15.
PLoS One ; 16(11): e0259908, 2021.
Article in English | MEDLINE | ID: covidwho-1705817

ABSTRACT

INTRODUCTION: The incidence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in the Belgian community is mainly estimated based on test results of patients with coronavirus disease (COVID-19)-like symptoms. The aim of this study was to investigate the evolution of the SARS-CoV-2 reverse transcriptase polymerase chain reaction (RT-PCR) positivity ratio and distribution of viral loads within a cohort of asymptomatic patients screened prior hospitalization or surgery, stratified by age category. MATERIALS/METHODS: We retrospectively studied data on SARS-CoV-2 real-time RT-PCR detection in respiratory tract samples of asymptomatic patients screened pre-hospitalization or pre-surgery in nine Belgian hospitals located in Flanders over a 12-month period (1 April 2020-31 March 2021). RESULTS: In total, 255925 SARS-CoV-2 RT-PCR test results and 2421 positive results for which a viral load was reported, were included in this study. An unweighted overall SARS-CoV-2 real-time RT-PCR positivity ratio of 1.27% was observed with strong spatiotemporal differences. SARS-CoV-2 circulated predominantly in 80+ year old individuals across all time periods except between the first and second COVID-19 wave and in 20-30 year old individuals before the second COVID-19 wave. In contrast to the first wave, a significantly higher positivity ratio was observed for the 20-40 age group in addition to the 80+ age group compared to the other age groups during the second wave. The median viral load follows a similar temporal evolution as the positivity rate with an increase ahead of the second wave and highest viral loads observed for 80+ year old individuals. CONCLUSION: There was a high SARS-CoV-2 circulation among asymptomatic patients with a predominance and highest viral loads observed in the elderly. Moreover, ahead of the second COVID-19 wave an increase in median viral load was noted with the highest overall positivity ratio observed in 20-30 year old individuals, indicating they could have been the hidden drivers of this wave.


Subject(s)
Asymptomatic Diseases/epidemiology , COVID-19/diagnosis , Respiratory Tract Infections/epidemiology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Female , Hospitalization , Humans , Male , Middle Aged , Respiratory Tract Infections/pathology , Respiratory Tract Infections/surgery , Respiratory Tract Infections/virology , SARS-CoV-2/pathogenicity , Young Adult
17.
J Med Virol ; 93(8): 4748-4755, 2021 08.
Article in English | MEDLINE | ID: covidwho-1610624

ABSTRACT

Respiratory infections are one of the most frequent reasons for medical consultations in children. In low resource settings such as in Lao People's Democratic Republic, knowledge gaps and the dearth of laboratory capacity to support differential diagnosis may contribute to antibiotic overuse. We studied the etiology, temporal trends, and genetic diversity of viral respiratory infections in children to provide evidence for prevention and treatment guidelines. From September 2014 to October 2015, throat swabs and nasopharyngeal aspirates from 445 children under 10 years old with symptoms of acute respiratory infection were collected at the Children Hospital in Vientiane. Rapid antigen tests were performed for influenza A and B and respiratory syncytial virus. Real-time reverse-transcription polymerase chain reactions (RT-PCRs) were performed to detect 16 viruses. Influenza infections were detected with a higher sensitivity using PCR than with the rapid antigen test. By RT-PCR screening, at least one pathogen could be identified for 71.7% of cases. Human rhinoviruses were most frequently detected (29.9%), followed by influenza A and B viruses combined (15.9%). We identify and discuss the seasonality of some of the infections. Altogether these data provide a detailed characterization of respiratory pathogens in Lao children and we provide recommendations for vaccination and further studies.


Subject(s)
Coinfection/epidemiology , Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Viruses/genetics , Acute Disease/epidemiology , Child , Child, Preschool , Coinfection/virology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , Laos/epidemiology , Male , Prevalence , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/virology , Viruses/classification , Viruses/isolation & purification
18.
Microbiol Spectr ; 10(1): e0109021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1673362

ABSTRACT

The rapid emergence of the coronavirus disease 2019 (COVID-19) pandemic has introduced a new challenge in diagnosing and differentiating respiratory infections. Accurate diagnosis of respiratory infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is complicated by overlapping symptomology, and stepwise approaches to testing for each infection would lead to increased reagent usage and cost, as well as delays in clinical interventions. To avoid these issues, multiplex molecular assays have been developed to differentiate between respiratory viruses in a single test to meet clinical diagnostic needs. To evaluate the analytical performance of the FDA emergency use authorization (EUA)-approved Abbott Alinity m resp-4-plex assay (Alinity m) in testing for SARS-CoV-2, influenza A virus, influenza B virus, and respiratory syncytial virus (RSV), we compared its performance to those of both the EUA-approved Cepheid Xpert Xpress SARS-CoV-2, influenza A/B virus, and RSV assay (Xpert Xpress) and the EUA-approved Roche Cobas SARS-CoV-2 and influenza A/B virus assay (Cobas) in a single-center retrospective analysis. High concordance was observed among all three assays, with kappa statistics showing an almost perfect agreement (>0.90). The limit of detection (LOD) results for SARS-CoV-2 showed the Alinity m exhibiting the lowest LOD at 26 copies/mL, followed by the Cobas at 58 copies/mL and the Xpert Xpress at 83 copies/mL, with LOD results for the influenza A virus, influenza B virus, and RSV viral targets also showing equivalent or better performance on the Alinity m compared to the other two platforms. The Alinity m can be used as a high-volume testing platform for SARS-CoV-2, influenza A virus, influenza B virus, and RSV and exhibits analytical performance comparable to those of both the Xpert Xpress and Cobas assays. IMPORTANCE The rapid emergence of SARS-CoV-2 has introduced a new challenge in diagnosing and differentiating respiratory infections, especially considering the overlapping symptomology of many of these infections and differences in clinical interventions depending on the pathogen identified. To avoid these issues, multiplex molecular assays like the one described in this article need to be developed to differentiate between the most common respiratory pathogens in a single test and most effectively meet clinical diagnostic needs.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Infections/diagnosis , SARS-CoV-2/isolation & purification , Diagnosis, Differential , Humans , Respiratory Tract Infections/virology , Sensitivity and Specificity , Time Factors
19.
PLoS One ; 17(1): e0262874, 2022.
Article in English | MEDLINE | ID: covidwho-1643288

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has circulated worldwide and causes coronavirus disease 2019 (COVID-19). At the onset of the COVID-19 pandemic, infection control measures were taken, such as hand washing, mask wearing, and behavioral restrictions. However, it is not fully clear how the effects of these non-pharmaceutical interventions changed the prevalence of other pathogens associated with respiratory infections. In this study, we collected 3,508 nasopharyngeal swab samples from 3,249 patients who visited the Yamanashi Central Hospital in Japan from March 1, 2020 to February 28, 2021. We performed multiplex polymerase chain reaction (PCR) using the FilmArray Respiratory Panel and singleplex quantitative reverse transcription PCR targeting SARS-CoV-2 to detect respiratory disease-associated pathogens. At least one pathogen was detected in 246 (7.0%) of the 3,508 samples. Eleven types of pathogens were detected in the samples collected from March-May 2020, during which non-pharmaceutical interventions were not well implemented. In contrast, after non-pharmaceutical interventions were thoroughly implemented, only five types of pathogens were detected, and the majority were SARS-CoV-2, adenoviruses, or human rhinoviruses / enteroviruses. The 0-9 year age group had a higher prevalence of infection with adenoviruses and human rhinoviruses / enteroviruses compared with those 10 years and older, while those 10 years and older had a higher prevalence of infection with SARS-CoV-2 and other pathogens. These results indicated that non-pharmaceutical interventions likely reduced the diversity of circulating pathogens. Moreover, differences in the prevalence of pathogens were observed among the different age groups.


Subject(s)
Adenoviruses, Human/genetics , COVID-19/epidemiology , Enterovirus/genetics , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , SARS-CoV-2/genetics , Adenoviruses, Human/classification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , Enterovirus/classification , Female , Hand Disinfection/methods , Humans , Infant , Infant, Newborn , Japan/epidemiology , Male , Masks/supply & distribution , Middle Aged , Multiplex Polymerase Chain Reaction , Nasopharynx/virology , Prevalence , Quarantine/organization & administration , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Rhinovirus/classification , SARS-CoV-2/pathogenicity
20.
Sci Rep ; 12(1): 939, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1634211

ABSTRACT

With the advent of highly sensitive real-time PCR, multiple pathogens have been identified from nasopharyngeal swabs of patients with acute respiratory infections (ARIs). However, the detection of microorganisms in the upper respiratory tract does not necessarily indicate disease causation. We conducted a matched case-control study, nested within a broader fever aetiology project, to facilitate determination of the aetiology of ARIs in hospitalised patients in Northeastern Laos. Consenting febrile patients of any age admitted to Xiengkhuang Provincial Hospital were included if they met the inclusion criteria for ARI presentation (at least one of the following: cough, rhinorrhoea, nasal congestion, sore throat, difficulty breathing, and/or abnormal chest auscultation). One healthy control for each patient, matched by sex, age, and village of residence, was recruited for the study. Nasopharyngeal swabs were collected from participants and tested for 33 pathogens by probe-based multiplex real-time RT-PCR (FastTrack Diagnostics Respiratory pathogen 33 kit). Attributable fraction of illness for a given microorganism was calculated by comparing results between patients and controls (= 100 * [OR - 1]/OR) (OR = odds ratio). Between 24th June 2019 and 24th June 2020, 205 consenting ARI patients and 205 matching controls were recruited. After excluding eight pairs due to age mismatch, 197 pairs were included in the analysis. Males were predominant with sex ratio 1.2:1 and children < 5 years old accounted for 59% of participants. At least one potential pathogen was detected in 173 (88%) patients and 175 (89%) controls. ARI in admitted patients were attributed to influenza B virus, influenza A virus, human metapneumovirus (HMPV), and respiratory syncytial virus (RSV) in 17.8%, 17.2%, 7.5%, and 6.5% of participants, respectively. SARS-CoV-2 was not detected in any cases or controls. Determining ARI aetiology in individual patients remains challenging. Among hospitalised patients with ARI symptoms presenting to a provincial hospital in Northeastern Laos, half were determined to be caused by one of several respiratory viruses, in particular influenza A virus, influenza B virus, HMPV, and RSV.


Subject(s)
Hospitalization , RNA Virus Infections , RNA Viruses/genetics , Respiratory Tract Infections , Reverse Transcriptase Polymerase Chain Reaction , Acute Disease , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Laos/epidemiology , Male , RNA Virus Infections/diagnosis , RNA Virus Infections/epidemiology , RNA Virus Infections/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/genetics , Respiratory Tract Infections/virology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL